Search (68 results, page 4 of 4)

  • × type_ss:"p"
  1. Robertson, S.E.: OKAPI at TREC-3 (1995) 0.00
    0.0014724231 = product of:
      0.008834538 = sum of:
        0.008834538 = weight(_text_:in in 5694) [ClassicSimilarity], result of:
          0.008834538 = score(doc=5694,freq=4.0), product of:
            0.059380736 = queryWeight, product of:
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.043654136 = queryNorm
            0.14877784 = fieldWeight in 5694, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.0546875 = fieldNorm(doc=5694)
      0.16666667 = coord(1/6)
    
    Abstract
    Reports text information retrieval experiments performed as part of the 3 rd round of Text Retrieval Conferences (TREC) using the Okapi online catalogue system at City University, UK. The emphasis in TREC-3 was: further refinement of term weighting functions; an investigation of run time passage determination and searching; expansion of ad hoc queries by terms extracted from the top documents retrieved by a trial search; new methods for choosing query expansion terms after relevance feedback, now split into methods of ranking terms prior to selection and subsequent selection procedures; and the development of a user interface procedure within the new TREC interactive search framework
    Theme
    Semantisches Umfeld in Indexierung u. Retrieval
  2. Lange, C.; Ion, P.; Dimou, A.; Bratsas, C.; Sperber, W.; Kohlhasel, M.; Antoniou, I.: Getting mathematics towards the Web of Data : the case of the Mathematics Subject Classification (2012) 0.00
    0.0012881019 = product of:
      0.007728611 = sum of:
        0.007728611 = weight(_text_:in in 111) [ClassicSimilarity], result of:
          0.007728611 = score(doc=111,freq=6.0), product of:
            0.059380736 = queryWeight, product of:
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.043654136 = queryNorm
            0.1301535 = fieldWeight in 111, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.0390625 = fieldNorm(doc=111)
      0.16666667 = coord(1/6)
    
    Abstract
    The Mathematics Subject Classification (MSC), maintained by the American Mathematical Society's Mathematical Reviews (MR) and FIZ Karlsruhe's Zentralblatt für Mathematik (Zbl), is a scheme for classifying publications in mathematics according to their subjects. While it is widely used, its traditional, idiosyncratic conceptualization and representation requires custom implementations of search, query and annotation support. This did not encourage people to create and explore connections of mathematics to subjects of related domains (e.g. science), and it made the scheme hard to maintain. We have reimplemented the current version of MSC2010 as a Linked Open Dataset using SKOS and our focus is concentrated on turning it into the new MSC authority. This paper explains the motivation, and details of our design considerations and how we realized them in the implementation. We present in-the-field use cases and point out how e-science applications can take advantage of the MSC LOD set. We conclude with a roadmap for bootstrapping the presence of mathematical and mathematics-based science, technology, and engineering knowledge on the Web of Data, where it has been noticeably underrepresented so far, starting from MSC/SKOS as a seed.
  3. Lund, B.D.: ¬A brief review of ChatGPT : its value and the underlying GPT technology (2023) 0.00
    0.0012620769 = product of:
      0.0075724614 = sum of:
        0.0075724614 = weight(_text_:in in 873) [ClassicSimilarity], result of:
          0.0075724614 = score(doc=873,freq=4.0), product of:
            0.059380736 = queryWeight, product of:
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.043654136 = queryNorm
            0.12752387 = fieldWeight in 873, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.046875 = fieldNorm(doc=873)
      0.16666667 = coord(1/6)
    
    Abstract
    In this review paper, ChatGPT, a public tool developed by OpenAI that utilizes GPT technology to fulfill a range of text-based requests is examined. ChatGPT is a sophisticated chatbot capable of understanding and interpreting user requests, generating appropriate responses in nearly natural human language, and completing advanced tasks such as writing thank you letters and addressing productivity issues. The details of how ChatGPT works, as well as the potential impacts of this technology on various industries, are discussed. The concept of Generative Pre-Trained Transformer (GPT), the language model on which ChatGPT is based, is also explored, as well as the process of unsupervised pretraining and supervised fine-tuning that is used to refine the GPT algorithm. A letter written by ChatGPT to a colleague from Iran is presented as an example of the chatbot's capabilities.
  4. Kemp, A. de: Information provision : a publisher's point of view in changing times and with new technologies (1993) 0.00
    0.0011898974 = product of:
      0.0071393843 = sum of:
        0.0071393843 = weight(_text_:in in 6235) [ClassicSimilarity], result of:
          0.0071393843 = score(doc=6235,freq=2.0), product of:
            0.059380736 = queryWeight, product of:
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.043654136 = queryNorm
            0.120230645 = fieldWeight in 6235, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.0625 = fieldNorm(doc=6235)
      0.16666667 = coord(1/6)
    
  5. Lund, B.D.: ¬A chat with ChatGPT : how will AI impact scholarly publishing? (2022) 0.00
    0.0011898974 = product of:
      0.0071393843 = sum of:
        0.0071393843 = weight(_text_:in in 850) [ClassicSimilarity], result of:
          0.0071393843 = score(doc=850,freq=2.0), product of:
            0.059380736 = queryWeight, product of:
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.043654136 = queryNorm
            0.120230645 = fieldWeight in 850, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.0625 = fieldNorm(doc=850)
      0.16666667 = coord(1/6)
    
    Abstract
    This is a short project that serves as an inspiration for a forthcoming paper, which will explore the technical side of ChatGPT and the ethical issues it presents for academic researchers, which will result in a peer-reviewed publication. This demonstrates that capacities of ChatGPT as a "chatbot" that is far more advanced than many alternatives available today and may even be able to be used to draft entire academic manuscripts for researchers. ChatGPT is available via https://chat.openai.com/chat.
  6. Peponakis, M.; Mastora, A.; Kapidakis, S.; Doerr, M.: Expressiveness and machine processability of Knowledge Organization Systems (KOS) : an analysis of concepts and relations (2020) 0.00
    0.0010517307 = product of:
      0.006310384 = sum of:
        0.006310384 = weight(_text_:in in 5787) [ClassicSimilarity], result of:
          0.006310384 = score(doc=5787,freq=4.0), product of:
            0.059380736 = queryWeight, product of:
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.043654136 = queryNorm
            0.10626988 = fieldWeight in 5787, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.0390625 = fieldNorm(doc=5787)
      0.16666667 = coord(1/6)
    
    Abstract
    This study considers the expressiveness (that is the expressive power or expressivity) of different types of Knowledge Organization Systems (KOS) and discusses its potential to be machine-processable in the context of the Semantic Web. For this purpose, the theoretical foundations of KOS are reviewed based on conceptualizations introduced by the Functional Requirements for Subject Authority Data (FRSAD) and the Simple Knowledge Organization System (SKOS); natural language processing techniques are also implemented. Applying a comparative analysis, the dataset comprises a thesaurus (Eurovoc), a subject headings system (LCSH) and a classification scheme (DDC). These are compared with an ontology (CIDOC-CRM) by focusing on how they define and handle concepts and relations. It was observed that LCSH and DDC focus on the formalism of character strings (nomens) rather than on the modelling of semantics; their definition of what constitutes a concept is quite fuzzy, and they comprise a large number of complex concepts. By contrast, thesauri have a coherent definition of what constitutes a concept, and apply a systematic approach to the modelling of relations. Ontologies explicitly define diverse types of relations, and are by their nature machine-processable. The paper concludes that the potential of both the expressiveness and machine processability of each KOS is extensively regulated by its structural rules. It is harder to represent subject headings and classification schemes as semantic networks with nodes and arcs, while thesauri are more suitable for such a representation. In addition, a paradigm shift is revealed which focuses on the modelling of relations between concepts, rather than the concepts themselves.
  7. Isaac, A.; Raemy, J.A.; Meijers, E.; Valk, S. De; Freire, N.: Metadata aggregation via linked data : results of the Europeana Common Culture project (2020) 0.00
    8.9242304E-4 = product of:
      0.005354538 = sum of:
        0.005354538 = weight(_text_:in in 39) [ClassicSimilarity], result of:
          0.005354538 = score(doc=39,freq=2.0), product of:
            0.059380736 = queryWeight, product of:
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.043654136 = queryNorm
            0.09017298 = fieldWeight in 39, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.046875 = fieldNorm(doc=39)
      0.16666667 = coord(1/6)
    
    Abstract
    Digital cultural heritage resources are widely available on the web through the digital libraries of heritage institutions. To address the difficulties of discoverability in cultural heritage, the common practice is metadata aggregation, where centralized efforts like Europeana facilitate discoverability by collecting the resources' metadata. We present the results of the linked data aggregation task conducted within the Europeana Common Culture project, which attempted an innovative approach to aggregation based on linked data made available by cultural heritage institutions. This task ran for one year with participation of eleven organizations, involving the three member roles of the Europeana network: data providers, intermediary aggregators, and the central aggregation hub, Europeana. We report on the challenges that were faced by data providers, the standards and specifications applied, and the resulting aggregated metadata.
  8. Zhai, X.: ChatGPT user experience: : implications for education (2022) 0.00
    7.4368593E-4 = product of:
      0.0044621155 = sum of:
        0.0044621155 = weight(_text_:in in 849) [ClassicSimilarity], result of:
          0.0044621155 = score(doc=849,freq=2.0), product of:
            0.059380736 = queryWeight, product of:
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.043654136 = queryNorm
            0.07514416 = fieldWeight in 849, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.0390625 = fieldNorm(doc=849)
      0.16666667 = coord(1/6)
    
    Abstract
    ChatGPT, a general-purpose conversation chatbot released on November 30, 2022, by OpenAI, is expected to impact every aspect of society. However, the potential impacts of this NLP tool on education remain unknown. Such impact can be enormous as the capacity of ChatGPT may drive changes to educational learning goals, learning activities, and assessment and evaluation practices. This study was conducted by piloting ChatGPT to write an academic paper, titled Artificial Intelligence for Education (see Appendix A). The piloting result suggests that ChatGPT is able to help researchers write a paper that is coherent, (partially) accurate, informative, and systematic. The writing is extremely efficient (2-3 hours) and involves very limited professional knowledge from the author. Drawing upon the user experience, I reflect on the potential impacts of ChatGPT, as well as similar AI tools, on education. The paper concludes by suggesting adjusting learning goals-students should be able to use AI tools to conduct subject-domain tasks and education should focus on improving students' creativity and critical thinking rather than general skills. To accomplish the learning goals, researchers should design AI-involved learning tasks to engage students in solving real-world problems. ChatGPT also raises concerns that students may outsource assessment tasks. This paper concludes that new formats of assessments are needed to focus on creativity and critical thinking that AI cannot substitute.

Years

Languages

  • e 44
  • d 24

Types