Search (14 results, page 1 of 1)

  • × author_ss:"Yan, E."
  1. Yan, E.; Sugimoto, C.R.: Institutional interactions : exploring social, cognitive, and geographic relationships between institutions as demonstrated through citation networks (2011) 0.03
    0.033071604 = product of:
      0.1157506 = sum of:
        0.08978786 = weight(_text_:interactions in 4627) [ClassicSimilarity], result of:
          0.08978786 = score(doc=4627,freq=2.0), product of:
            0.22965278 = queryWeight, product of:
              5.8977947 = idf(docFreq=329, maxDocs=44218)
              0.038938753 = queryNorm
            0.39097226 = fieldWeight in 4627, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              5.8977947 = idf(docFreq=329, maxDocs=44218)
              0.046875 = fieldNorm(doc=4627)
        0.025962738 = weight(_text_:with in 4627) [ClassicSimilarity], result of:
          0.025962738 = score(doc=4627,freq=6.0), product of:
            0.09383348 = queryWeight, product of:
              2.409771 = idf(docFreq=10797, maxDocs=44218)
              0.038938753 = queryNorm
            0.2766895 = fieldWeight in 4627, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              2.409771 = idf(docFreq=10797, maxDocs=44218)
              0.046875 = fieldNorm(doc=4627)
      0.2857143 = coord(2/7)
    
    Abstract
    The objective of this research is to examine the interaction of institutions, based on their citation and collaboration networks. The domain of library and information science is examined, using data from 1965-2010. A linear model is formulated to explore the factors that are associated with institutional citation behaviors, using the number of citations as the dependent variable, and the number of collaborations, physical distance, and topical distance as independent variables. It is found that institutional citation behaviors are associated with social, topical, and geographical factors. Dynamically, the number of citations is becoming more associated with collaboration intensity and less dependent on the country boundary and/or physical distance. This research is informative for scientometricians and policy makers.
  2. Zheng, X.; Chen, J.; Yan, E.; Ni, C.: Gender and country biases in Wikipedia citations to scholarly publications (2023) 0.01
    0.011939922 = product of:
      0.041789725 = sum of:
        0.025962738 = weight(_text_:with in 886) [ClassicSimilarity], result of:
          0.025962738 = score(doc=886,freq=6.0), product of:
            0.09383348 = queryWeight, product of:
              2.409771 = idf(docFreq=10797, maxDocs=44218)
              0.038938753 = queryNorm
            0.2766895 = fieldWeight in 886, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              2.409771 = idf(docFreq=10797, maxDocs=44218)
              0.046875 = fieldNorm(doc=886)
        0.015826989 = product of:
          0.031653978 = sum of:
            0.031653978 = weight(_text_:22 in 886) [ClassicSimilarity], result of:
              0.031653978 = score(doc=886,freq=2.0), product of:
                0.13635688 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.038938753 = queryNorm
                0.23214069 = fieldWeight in 886, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046875 = fieldNorm(doc=886)
          0.5 = coord(1/2)
      0.2857143 = coord(2/7)
    
    Abstract
    Ensuring Wikipedia cites scholarly publications based on quality and relevancy without biases is critical to credible and fair knowledge dissemination. We investigate gender- and country-based biases in Wikipedia citation practices using linked data from the Web of Science and a Wikipedia citation dataset. Using coarsened exact matching, we show that publications by women are cited less by Wikipedia than expected, and publications by women are less likely to be cited than those by men. Scholarly publications by authors affiliated with non-Anglosphere countries are also disadvantaged in getting cited by Wikipedia, compared with those by authors affiliated with Anglosphere countries. The level of gender- or country-based inequalities varies by research field, and the gender-country intersectional bias is prominent in math-intensive STEM fields. To ensure the credibility and equality of knowledge presentation, Wikipedia should consider strategies and guidelines to cite scholarly publications independent of the gender and country of authors.
    Date
    22. 1.2023 18:53:32
  3. Ding, Y.; Yan, E.; Frazho, A.; Caverlee, J.: PageRank for ranking authors in co-citation networks (2009) 0.01
    0.0064241113 = product of:
      0.044968776 = sum of:
        0.044968776 = weight(_text_:with in 3161) [ClassicSimilarity], result of:
          0.044968776 = score(doc=3161,freq=18.0), product of:
            0.09383348 = queryWeight, product of:
              2.409771 = idf(docFreq=10797, maxDocs=44218)
              0.038938753 = queryNorm
            0.47924024 = fieldWeight in 3161, product of:
              4.2426405 = tf(freq=18.0), with freq of:
                18.0 = termFreq=18.0
              2.409771 = idf(docFreq=10797, maxDocs=44218)
              0.046875 = fieldNorm(doc=3161)
      0.14285715 = coord(1/7)
    
    Abstract
    This paper studies how varied damping factors in the PageRank algorithm influence the ranking of authors and proposes weighted PageRank algorithms. We selected the 108 most highly cited authors in the information retrieval (IR) area from the 1970s to 2008 to form the author co-citation network. We calculated the ranks of these 108 authors based on PageRank with the damping factor ranging from 0.05 to 0.95. In order to test the relationship between different measures, we compared PageRank and weighted PageRank results with the citation ranking, h-index, and centrality measures. We found that in our author co-citation network, citation rank is highly correlated with PageRank with different damping factors and also with different weighted PageRank algorithms; citation rank and PageRank are not significantly correlated with centrality measures; and h-index rank does not significantly correlate with centrality measures but does significantly correlate with other measures. The key factors that have impact on the PageRank of authors in the author co-citation network are being co-cited with important authors.
  4. Yan, E.; Ding, Y.: Applying centrality measures to impact analysis : a coauthorship network analysis (2009) 0.00
    0.004327123 = product of:
      0.03028986 = sum of:
        0.03028986 = weight(_text_:with in 3083) [ClassicSimilarity], result of:
          0.03028986 = score(doc=3083,freq=6.0), product of:
            0.09383348 = queryWeight, product of:
              2.409771 = idf(docFreq=10797, maxDocs=44218)
              0.038938753 = queryNorm
            0.32280442 = fieldWeight in 3083, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              2.409771 = idf(docFreq=10797, maxDocs=44218)
              0.0546875 = fieldNorm(doc=3083)
      0.14285715 = coord(1/7)
    
    Abstract
    Many studies on coauthorship networks focus on network topology and network statistical mechanics. This article takes a different approach by studying micro-level network properties with the aim of applying centrality measures to impact analysis. Using coauthorship data from 16 journals in the field of library and information science (LIS) with a time span of 20 years (1988-2007), we construct an evolving coauthorship network and calculate four centrality measures (closeness centrality, betweenness centrality, degree centrality, and PageRank) for authors in this network. We find that the four centrality measures are significantly correlated with citation counts. We also discuss the usability of centrality measures in author ranking and suggest that centrality measures can be useful indicators for impact analysis.
  5. Yan, E.; Chen, Z.; Li, K.: Authors' status and the perceived quality of their work : measuring citation sentiment change in nobel articles (2020) 0.00
    0.0037089628 = product of:
      0.025962738 = sum of:
        0.025962738 = weight(_text_:with in 5670) [ClassicSimilarity], result of:
          0.025962738 = score(doc=5670,freq=6.0), product of:
            0.09383348 = queryWeight, product of:
              2.409771 = idf(docFreq=10797, maxDocs=44218)
              0.038938753 = queryNorm
            0.2766895 = fieldWeight in 5670, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              2.409771 = idf(docFreq=10797, maxDocs=44218)
              0.046875 = fieldNorm(doc=5670)
      0.14285715 = coord(1/7)
    
    Abstract
    Prior research in status ordering has used numeric indicators to examine the impact of a status change on the perception of a scientist's work. This study measures the perception change directly as reflected in citation sentiment, with the attainment of a Nobel Prize in Chemistry or a Nobel Prize in Physiology or Medicine considered the status change. The article identifies 12,393 citances to 25 Nobel articles in PubMed Central and includes a control article set of 75 articles with 30,851 citances. The results show a moderate increase in citation sentiment toward Nobel articles postaward. Dynamically, for Nobel articles there is a steady sentiment increase, and a Nobel Prize seems to co-occur with this trend. This trend, however, is not evident in the control article set.
  6. Ding, Y.; Jacob, E.K.; Fried, M.; Toma, I.; Yan, E.; Foo, S.; Milojevicacute, S.: Upper tag ontology for integrating social tagging data (2010) 0.00
    0.0030283553 = product of:
      0.021198487 = sum of:
        0.021198487 = weight(_text_:with in 3421) [ClassicSimilarity], result of:
          0.021198487 = score(doc=3421,freq=4.0), product of:
            0.09383348 = queryWeight, product of:
              2.409771 = idf(docFreq=10797, maxDocs=44218)
              0.038938753 = queryNorm
            0.22591603 = fieldWeight in 3421, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              2.409771 = idf(docFreq=10797, maxDocs=44218)
              0.046875 = fieldNorm(doc=3421)
      0.14285715 = coord(1/7)
    
    Abstract
    Data integration and mediation have become central concerns of information technology over the past few decades. With the advent of the Web and the rapid increases in the amount of data and the number of Web documents and users, researchers have focused on enhancing the interoperability of data through the development of metadata schemes. Other researchers have looked to the wealth of metadata generated by bookmarking sites on the Social Web. While several existing ontologies have capitalized on the semantics of metadata created by tagging activities, the Upper Tag Ontology (UTO) emphasizes the structure of tagging activities to facilitate modeling of tagging data and the integration of data from different bookmarking sites as well as the alignment of tagging ontologies. UTO is described and its utility in modeling, harvesting, integrating, searching, and analyzing data is demonstrated with metadata harvested from three major social tagging systems (Delicious, Flickr, and YouTube).
  7. Yan, E.; Ding, Y.: Discovering author impact : a PageRank perspective (2011) 0.00
    0.0028551605 = product of:
      0.019986123 = sum of:
        0.019986123 = weight(_text_:with in 2704) [ClassicSimilarity], result of:
          0.019986123 = score(doc=2704,freq=2.0), product of:
            0.09383348 = queryWeight, product of:
              2.409771 = idf(docFreq=10797, maxDocs=44218)
              0.038938753 = queryNorm
            0.21299566 = fieldWeight in 2704, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              2.409771 = idf(docFreq=10797, maxDocs=44218)
              0.0625 = fieldNorm(doc=2704)
      0.14285715 = coord(1/7)
    
    Abstract
    This article provides an alternative perspective for measuring author impact by applying PageRank algorithm to a coauthorship network. A weighted PageRank algorithm considering citation and coauthorship network topology is proposed. We test this algorithm under different damping factors by evaluating author impact in the informetrics research community. In addition, we also compare this weighted PageRank with the h-index, citation, and program committee (PC) membership of the International Society for Scientometrics and Informetrics (ISSI) conferences. Findings show that this weighted PageRank algorithm provides reliable results in measuring author impact.
  8. Yan, E.: Finding knowledge paths among scientific disciplines (2014) 0.00
    0.0026646124 = product of:
      0.018652286 = sum of:
        0.018652286 = product of:
          0.037304573 = sum of:
            0.037304573 = weight(_text_:22 in 1534) [ClassicSimilarity], result of:
              0.037304573 = score(doc=1534,freq=4.0), product of:
                0.13635688 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.038938753 = queryNorm
                0.27358043 = fieldWeight in 1534, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=1534)
          0.5 = coord(1/2)
      0.14285715 = coord(1/7)
    
    Date
    26.10.2014 20:22:22
  9. Ding, Y.; Jacob, E.K.; Zhang, Z.; Foo, S.; Yan, E.; George, N.L.; Guo, L.: Perspectives on social tagging (2009) 0.00
    0.0021413704 = product of:
      0.014989593 = sum of:
        0.014989593 = weight(_text_:with in 3290) [ClassicSimilarity], result of:
          0.014989593 = score(doc=3290,freq=2.0), product of:
            0.09383348 = queryWeight, product of:
              2.409771 = idf(docFreq=10797, maxDocs=44218)
              0.038938753 = queryNorm
            0.15974675 = fieldWeight in 3290, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              2.409771 = idf(docFreq=10797, maxDocs=44218)
              0.046875 = fieldNorm(doc=3290)
      0.14285715 = coord(1/7)
    
    Abstract
    Social tagging is one of the major phenomena transforming the World Wide Web from a static platform into an actively shared information space. This paper addresses various aspects of social tagging, including different views on the nature of social tagging, how to make use of social tags, and how to bridge social tagging with other Web functionalities; it discusses the use of facets to facilitate browsing and searching of tagging data; and it presents an analogy between bibliometrics and tagometrics, arguing that established bibliometric methodologies can be applied to analyze tagging behavior on the Web. Based on the Upper Tag Ontology (UTO), a Web crawler was built to harvest tag data from Delicious, Flickr, and YouTube in September 2007. In total, 1.8 million objects, including bookmarks, photos, and videos, 3.1 million taggers, and 12.1 million tags were collected and analyzed. Some tagging patterns and variations are identified and discussed.
  10. Yan, E.; Yu, Q.: Using path-based approaches to examine the dynamic structure of discipline-level citation networks (2016) 0.00
    0.0021413704 = product of:
      0.014989593 = sum of:
        0.014989593 = weight(_text_:with in 3053) [ClassicSimilarity], result of:
          0.014989593 = score(doc=3053,freq=2.0), product of:
            0.09383348 = queryWeight, product of:
              2.409771 = idf(docFreq=10797, maxDocs=44218)
              0.038938753 = queryNorm
            0.15974675 = fieldWeight in 3053, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              2.409771 = idf(docFreq=10797, maxDocs=44218)
              0.046875 = fieldNorm(doc=3053)
      0.14285715 = coord(1/7)
    
    Abstract
    The objective of this paper is to identify the dynamic structure of several time-dependent, discipline-level citation networks through a path-based method. A network data set is prepared that comprises 27 subjects and their citations aggregated from more than 27,000 journals and proceedings indexed in the Scopus database. A maximum spanning tree method is employed to extract paths in the weighted, directed, and cyclic networks. This paper finds that subjects such as Medicine, Biochemistry, Chemistry, Materials Science, Physics, and Social Sciences are the ones with multiple branches in the spanning tree. This paper also finds that most paths connect science, technology, engineering, and mathematics (STEM) fields; 2 critical paths connecting STEM and non-STEM fields are the one from Mathematics to Decision Sciences and the one from Medicine to Social Sciences.
  11. Yan, E.: Disciplinary knowledge production and diffusion in science (2016) 0.00
    0.0021413704 = product of:
      0.014989593 = sum of:
        0.014989593 = weight(_text_:with in 3092) [ClassicSimilarity], result of:
          0.014989593 = score(doc=3092,freq=2.0), product of:
            0.09383348 = queryWeight, product of:
              2.409771 = idf(docFreq=10797, maxDocs=44218)
              0.038938753 = queryNorm
            0.15974675 = fieldWeight in 3092, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              2.409771 = idf(docFreq=10797, maxDocs=44218)
              0.046875 = fieldNorm(doc=3092)
      0.14285715 = coord(1/7)
    
    Abstract
    This study examines patterns of dynamic disciplinary knowledge production and diffusion. It uses a citation data set of Scopus-indexed journals and proceedings. The journal-level citation data set is aggregated into 27 subject areas and these subjects are selected as the unit of analysis. A 3-step approach is employed: the first step examines disciplines' citation characteristics through scientific trading dimensions; the second step analyzes citation flows between pairs of disciplines; and the third step uses egocentric citation networks to assess individual disciplines' citation flow diversity through Shannon entropy. The results show that measured by scientific impact, the subjects of Chemical Engineering, Energy, and Environmental Science have the fastest growth. Furthermore, most subjects are carrying out more diversified knowledge trading practices by importing higher volumes of knowledge from a greater number of subjects. The study also finds that the growth rates of disciplinary citations align with the growth rates of global research and development (R&D) expenditures, thus providing evidence to support the impact of R&D expenditures on knowledge production.
  12. Zhu, Y.; Yan, E.; Song, I.-Y..: ¬The use of a graph-based system to improve bibliographic information retrieval : system design, implementation, and evaluation (2017) 0.00
    0.0021413704 = product of:
      0.014989593 = sum of:
        0.014989593 = weight(_text_:with in 3356) [ClassicSimilarity], result of:
          0.014989593 = score(doc=3356,freq=2.0), product of:
            0.09383348 = queryWeight, product of:
              2.409771 = idf(docFreq=10797, maxDocs=44218)
              0.038938753 = queryNorm
            0.15974675 = fieldWeight in 3356, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              2.409771 = idf(docFreq=10797, maxDocs=44218)
              0.046875 = fieldNorm(doc=3356)
      0.14285715 = coord(1/7)
    
    Abstract
    In this article, we propose a graph-based interactive bibliographic information retrieval system-GIBIR. GIBIR provides an effective way to retrieve bibliographic information. The system represents bibliographic information as networks and provides a form-based query interface. Users can develop their queries interactively by referencing the system-generated graph queries. Complex queries such as "papers on information retrieval, which were cited by John's papers that had been presented in SIGIR" can be effectively answered by the system. We evaluate the proposed system by developing another relational database-based bibliographic information retrieval system with the same interface and functions. Experiment results show that the proposed system executes the same queries much faster than the relational database-based system, and on average, our system reduced the execution time by 72% (for 3-node query), 89% (for 4-node query), and 99% (for 5-node query).
  13. Milojevic, S.; Sugimoto, C.R.; Yan, E.; Ding, Y.: ¬The cognitive structure of Library and Information Science : analysis of article title words (2011) 0.00
    0.0017844755 = product of:
      0.012491328 = sum of:
        0.012491328 = weight(_text_:with in 4608) [ClassicSimilarity], result of:
          0.012491328 = score(doc=4608,freq=2.0), product of:
            0.09383348 = queryWeight, product of:
              2.409771 = idf(docFreq=10797, maxDocs=44218)
              0.038938753 = queryNorm
            0.1331223 = fieldWeight in 4608, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              2.409771 = idf(docFreq=10797, maxDocs=44218)
              0.0390625 = fieldNorm(doc=4608)
      0.14285715 = coord(1/7)
    
    Abstract
    This study comprises a suite of analyses of words in article titles in order to reveal the cognitive structure of Library and Information Science (LIS). The use of title words to elucidate the cognitive structure of LIS has been relatively neglected. The present study addresses this gap by performing (a) co-word analysis and hierarchical clustering, (b) multidimensional scaling, and (c) determination of trends in usage of terms. The study is based on 10,344 articles published between 1988 and 2007 in 16 LIS journals. Methodologically, novel aspects of this study are: (a) its large scale, (b) removal of non-specific title words based on the "word concentration" measure (c) identification of the most frequent terms that include both single words and phrases, and (d) presentation of the relative frequencies of terms using "heatmaps". Conceptually, our analysis reveals that LIS consists of three main branches: the traditionally recognized library-related and information-related branches, plus an equally distinct bibliometrics/scientometrics branch. The three branches focus on: libraries, information, and science, respectively. In addition, our study identifies substructures within each branch. We also tentatively identify "information seeking behavior" as a branch that is establishing itself separate from the three main branches. Furthermore, we find that cognitive concepts in LIS evolve continuously, with no stasis since 1992. The most rapid development occurred between 1998 and 2001, influenced by the increased focus on the Internet. The change in the cognitive landscape is found to be driven by the emergence of new information technologies, and the retirement of old ones.
  14. Li, D.; Ding, Y.; Sugimoto, C.; He, B.; Tang, J.; Yan, E.; Lin, N.; Qin, Z.; Dong, T.: Modeling topic and community structure in social tagging : the TTR-LDA-Community model (2011) 0.00
    0.0017844755 = product of:
      0.012491328 = sum of:
        0.012491328 = weight(_text_:with in 4759) [ClassicSimilarity], result of:
          0.012491328 = score(doc=4759,freq=2.0), product of:
            0.09383348 = queryWeight, product of:
              2.409771 = idf(docFreq=10797, maxDocs=44218)
              0.038938753 = queryNorm
            0.1331223 = fieldWeight in 4759, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              2.409771 = idf(docFreq=10797, maxDocs=44218)
              0.0390625 = fieldNorm(doc=4759)
      0.14285715 = coord(1/7)
    
    Abstract
    The presence of social networks in complex systems has made networks and community structure a focal point of study in many domains. Previous studies have focused on the structural emergence and growth of communities and on the topics displayed within the network. However, few scholars have closely examined the relationship between the thematic and structural properties of networks. Therefore, this article proposes the Tagger Tag Resource-Latent Dirichlet Allocation-Community model (TTR-LDA-Community model), which combines the Latent Dirichlet Allocation (LDA) model with the Girvan-Newman community detection algorithm through an inference mechanism. Using social tagging data from Delicious, this article demonstrates the clustering of active taggers into communities, the topic distributions within communities, and the ranking of taggers, tags, and resources within these communities. The data analysis evaluates patterns in community structure and topical affiliations diachronically. The article evaluates the effectiveness of community detection and the inference mechanism embedded in the model and finds that the TTR-LDA-Community model outperforms other traditional models in tag prediction. This has implications for scholars in domains interested in community detection, profiling, and recommender systems.