Search (10 results, page 1 of 1)

  • × author_ss:"Ding, Y."
  1. Ding, Y.: Applying weighted PageRank to author citation networks (2011) 0.06
    0.061855502 = product of:
      0.1855665 = sum of:
        0.1855665 = sum of:
          0.14095847 = weight(_text_:networks in 4188) [ClassicSimilarity], result of:
            0.14095847 = score(doc=4188,freq=6.0), product of:
              0.22247115 = queryWeight, product of:
                4.72992 = idf(docFreq=1060, maxDocs=44218)
                0.047034867 = queryNorm
              0.6336034 = fieldWeight in 4188, product of:
                2.4494898 = tf(freq=6.0), with freq of:
                  6.0 = termFreq=6.0
                4.72992 = idf(docFreq=1060, maxDocs=44218)
                0.0546875 = fieldNorm(doc=4188)
          0.044608027 = weight(_text_:22 in 4188) [ClassicSimilarity], result of:
            0.044608027 = score(doc=4188,freq=2.0), product of:
              0.1647081 = queryWeight, product of:
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.047034867 = queryNorm
              0.2708308 = fieldWeight in 4188, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.0546875 = fieldNorm(doc=4188)
      0.33333334 = coord(1/3)
    
    Abstract
    This article aims to identify whether different weighted PageRank algorithms can be applied to author citation networks to measure the popularity and prestige of a scholar from a citation perspective. Information retrieval (IR) was selected as a test field and data from 1956-2008 were collected from Web of Science. Weighted PageRank with citation and publication as weighted vectors were calculated on author citation networks. The results indicate that both popularity rank and prestige rank were highly correlated with the weighted PageRank. Principal component analysis was conducted to detect relationships among these different measures. For capturing prize winners within the IR field, prestige rank outperformed all the other measures
    Date
    22. 1.2011 13:02:21
  2. Ding, Y.; Yan, E.: Scholarly network similarities : how bibliographic coupling networks, citation networks, cocitation networks, topical networks, coauthorship networks, and coword networks relate to each other (2012) 0.06
    0.05695582 = product of:
      0.17086746 = sum of:
        0.17086746 = product of:
          0.34173492 = sum of:
            0.34173492 = weight(_text_:networks in 274) [ClassicSimilarity], result of:
              0.34173492 = score(doc=274,freq=48.0), product of:
                0.22247115 = queryWeight, product of:
                  4.72992 = idf(docFreq=1060, maxDocs=44218)
                  0.047034867 = queryNorm
                1.5360864 = fieldWeight in 274, product of:
                  6.928203 = tf(freq=48.0), with freq of:
                    48.0 = termFreq=48.0
                  4.72992 = idf(docFreq=1060, maxDocs=44218)
                  0.046875 = fieldNorm(doc=274)
          0.5 = coord(1/2)
      0.33333334 = coord(1/3)
    
    Abstract
    This study explores the similarity among six types of scholarly networks aggregated at the institution level, including bibliographic coupling networks, citation networks, cocitation networks, topical networks, coauthorship networks, and coword networks. Cosine distance is chosen to measure the similarities among the six networks. The authors found that topical networks and coauthorship networks have the lowest similarity; cocitation networks and citation networks have high similarity; bibliographic coupling networks and cocitation networks have high similarity; and coword networks and topical networks have high similarity. In addition, through multidimensional scaling, two dimensions can be identified among the six networks: Dimension 1 can be interpreted as citation-based versus noncitation-based, and Dimension 2 can be interpreted as social versus cognitive. The authors recommend the use of hybrid or heterogeneous networks to study research interaction and scholarly communications.
  3. Yan, E.; Ding, Y.; Sugimoto, C.R.: P-Rank: an indicator measuring prestige in heterogeneous scholarly networks (2011) 0.03
    0.025996659 = product of:
      0.07798997 = sum of:
        0.07798997 = product of:
          0.15597995 = sum of:
            0.15597995 = weight(_text_:networks in 4349) [ClassicSimilarity], result of:
              0.15597995 = score(doc=4349,freq=10.0), product of:
                0.22247115 = queryWeight, product of:
                  4.72992 = idf(docFreq=1060, maxDocs=44218)
                  0.047034867 = queryNorm
                0.70112437 = fieldWeight in 4349, product of:
                  3.1622777 = tf(freq=10.0), with freq of:
                    10.0 = termFreq=10.0
                  4.72992 = idf(docFreq=1060, maxDocs=44218)
                  0.046875 = fieldNorm(doc=4349)
          0.5 = coord(1/2)
      0.33333334 = coord(1/3)
    
    Abstract
    Ranking scientific productivity and prestige are often limited to homogeneous networks. These networks are unable to account for the multiple factors that constitute the scholarly communication and reward system. This study proposes a new informetric indicator, P-Rank, for measuring prestige in heterogeneous scholarly networks containing articles, authors, and journals. P-Rank differentiates the weight of each citation based on its citing papers, citing journals, and citing authors. Articles from 16 representative library and information science journals are selected as the dataset. Principle Component Analysis is conducted to examine the relationship between P-Rank and other bibliometric indicators. We also compare the correlation and rank variances between citation counts and P-Rank scores. This work provides a new approach to examining prestige in scholarly communication networks in a more comprehensive and nuanced way.
  4. Li, D.; Ding, Y.; Sugimoto, C.; He, B.; Tang, J.; Yan, E.; Lin, N.; Qin, Z.; Dong, T.: Modeling topic and community structure in social tagging : the TTR-LDA-Community model (2011) 0.02
    0.016780771 = product of:
      0.050342314 = sum of:
        0.050342314 = product of:
          0.10068463 = sum of:
            0.10068463 = weight(_text_:networks in 4759) [ClassicSimilarity], result of:
              0.10068463 = score(doc=4759,freq=6.0), product of:
                0.22247115 = queryWeight, product of:
                  4.72992 = idf(docFreq=1060, maxDocs=44218)
                  0.047034867 = queryNorm
                0.45257387 = fieldWeight in 4759, product of:
                  2.4494898 = tf(freq=6.0), with freq of:
                    6.0 = termFreq=6.0
                  4.72992 = idf(docFreq=1060, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=4759)
          0.5 = coord(1/2)
      0.33333334 = coord(1/3)
    
    Abstract
    The presence of social networks in complex systems has made networks and community structure a focal point of study in many domains. Previous studies have focused on the structural emergence and growth of communities and on the topics displayed within the network. However, few scholars have closely examined the relationship between the thematic and structural properties of networks. Therefore, this article proposes the Tagger Tag Resource-Latent Dirichlet Allocation-Community model (TTR-LDA-Community model), which combines the Latent Dirichlet Allocation (LDA) model with the Girvan-Newman community detection algorithm through an inference mechanism. Using social tagging data from Delicious, this article demonstrates the clustering of active taggers into communities, the topic distributions within communities, and the ranking of taggers, tags, and resources within these communities. The data analysis evaluates patterns in community structure and topical affiliations diachronically. The article evaluates the effectiveness of community detection and the inference mechanism embedded in the model and finds that the TTR-LDA-Community model outperforms other traditional models in tag prediction. This has implications for scholars in domains interested in community detection, profiling, and recommender systems.
  5. Lu, C.; Zhang, Y.; Ahn, Y.-Y.; Ding, Y.; Zhang, C.; Ma, D.: Co-contributorship network and division of labor in individual scientific collaborations (2020) 0.02
    0.016780771 = product of:
      0.050342314 = sum of:
        0.050342314 = product of:
          0.10068463 = sum of:
            0.10068463 = weight(_text_:networks in 5963) [ClassicSimilarity], result of:
              0.10068463 = score(doc=5963,freq=6.0), product of:
                0.22247115 = queryWeight, product of:
                  4.72992 = idf(docFreq=1060, maxDocs=44218)
                  0.047034867 = queryNorm
                0.45257387 = fieldWeight in 5963, product of:
                  2.4494898 = tf(freq=6.0), with freq of:
                    6.0 = termFreq=6.0
                  4.72992 = idf(docFreq=1060, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=5963)
          0.5 = coord(1/2)
      0.33333334 = coord(1/3)
    
    Abstract
    Collaborations are pervasive in current science. Collaborations have been studied and encouraged in many disciplines. However, little is known about how a team really functions from the detailed division of labor within. In this research, we investigate the patterns of scientific collaboration and division of labor within individual scholarly articles by analyzing their co-contributorship networks. Co-contributorship networks are constructed by performing the one-mode projection of the author-task bipartite networks obtained from 138,787 articles published in PLoS journals. Given an article, we define 3 types of contributors: Specialists, Team-players, and Versatiles. Specialists are those who contribute to all their tasks alone; team-players are those who contribute to every task with other collaborators; and versatiles are those who do both. We find that team-players are the majority and they tend to contribute to the 5 most common tasks as expected, such as "data analysis" and "performing experiments." The specialists and versatiles are more prevalent than expected by our designed 2 null models. Versatiles tend to be senior authors associated with funding and supervision. Specialists are associated with 2 contrasting roles: the supervising role as team leaders or marginal and specialized contributors.
  6. He, B.; Ding, Y.; Ni, C.: Mining enriched contextual information of scientific collaboration : a meso perspective (2011) 0.01
    0.013701442 = product of:
      0.041104324 = sum of:
        0.041104324 = product of:
          0.08220865 = sum of:
            0.08220865 = weight(_text_:networks in 4444) [ClassicSimilarity], result of:
              0.08220865 = score(doc=4444,freq=4.0), product of:
                0.22247115 = queryWeight, product of:
                  4.72992 = idf(docFreq=1060, maxDocs=44218)
                  0.047034867 = queryNorm
                0.369525 = fieldWeight in 4444, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  4.72992 = idf(docFreq=1060, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=4444)
          0.5 = coord(1/2)
      0.33333334 = coord(1/3)
    
    Abstract
    Studying scientific collaboration using coauthorship networks has attracted much attention in recent years. How and in what context two authors collaborate remain among the major questions. Previous studies, however, have focused on either exploring the global topology of coauthorship networks (macro perspective) or ranking the impact of individual authors (micro perspective). Neither of them has provided information on the context of the collaboration between two specific authors, which may potentially imply rich socioeconomic, disciplinary, and institutional information on collaboration. Different from the macro perspective and micro perspective, this article proposes a novel method (meso perspective) to analyze scientific collaboration, in which a contextual subgraph is extracted as the unit of analysis. A contextual subgraph is defined as a small subgraph of a large-scale coauthorship network that captures relationship and context between two coauthors. This method is applied to the field of library and information science. Topological properties of all the subgraphs in four time spans are investigated, including size, average degree, clustering coefficient, and network centralization. Results show that contextual subgprahs capture useful contextual information on two authors' collaboration.
  7. Yan, E.; Ding, Y.: Applying centrality measures to impact analysis : a coauthorship network analysis (2009) 0.01
    0.013563735 = product of:
      0.040691204 = sum of:
        0.040691204 = product of:
          0.08138241 = sum of:
            0.08138241 = weight(_text_:networks in 3083) [ClassicSimilarity], result of:
              0.08138241 = score(doc=3083,freq=2.0), product of:
                0.22247115 = queryWeight, product of:
                  4.72992 = idf(docFreq=1060, maxDocs=44218)
                  0.047034867 = queryNorm
                0.36581108 = fieldWeight in 3083, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  4.72992 = idf(docFreq=1060, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=3083)
          0.5 = coord(1/2)
      0.33333334 = coord(1/3)
    
    Abstract
    Many studies on coauthorship networks focus on network topology and network statistical mechanics. This article takes a different approach by studying micro-level network properties with the aim of applying centrality measures to impact analysis. Using coauthorship data from 16 journals in the field of library and information science (LIS) with a time span of 20 years (1988-2007), we construct an evolving coauthorship network and calculate four centrality measures (closeness centrality, betweenness centrality, degree centrality, and PageRank) for authors in this network. We find that the four centrality measures are significantly correlated with citation counts. We also discuss the usability of centrality measures in author ranking and suggest that centrality measures can be useful indicators for impact analysis.
  8. Ding, Y.; Yan, E.; Frazho, A.; Caverlee, J.: PageRank for ranking authors in co-citation networks (2009) 0.01
    0.011626059 = product of:
      0.034878176 = sum of:
        0.034878176 = product of:
          0.06975635 = sum of:
            0.06975635 = weight(_text_:networks in 3161) [ClassicSimilarity], result of:
              0.06975635 = score(doc=3161,freq=2.0), product of:
                0.22247115 = queryWeight, product of:
                  4.72992 = idf(docFreq=1060, maxDocs=44218)
                  0.047034867 = queryNorm
                0.31355235 = fieldWeight in 3161, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  4.72992 = idf(docFreq=1060, maxDocs=44218)
                  0.046875 = fieldNorm(doc=3161)
          0.5 = coord(1/2)
      0.33333334 = coord(1/3)
    
  9. Ding, Y.: Topic-based PageRank on author cocitation networks (2011) 0.01
    0.011626059 = product of:
      0.034878176 = sum of:
        0.034878176 = product of:
          0.06975635 = sum of:
            0.06975635 = weight(_text_:networks in 4348) [ClassicSimilarity], result of:
              0.06975635 = score(doc=4348,freq=2.0), product of:
                0.22247115 = queryWeight, product of:
                  4.72992 = idf(docFreq=1060, maxDocs=44218)
                  0.047034867 = queryNorm
                0.31355235 = fieldWeight in 4348, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  4.72992 = idf(docFreq=1060, maxDocs=44218)
                  0.046875 = fieldNorm(doc=4348)
          0.5 = coord(1/2)
      0.33333334 = coord(1/3)
    
  10. Ding, Y.; Zhang, G.; Chambers, T.; Song, M.; Wang, X.; Zhai, C.: Content-based citation analysis : the next generation of citation analysis (2014) 0.01
    0.0063725756 = product of:
      0.019117726 = sum of:
        0.019117726 = product of:
          0.038235452 = sum of:
            0.038235452 = weight(_text_:22 in 1521) [ClassicSimilarity], result of:
              0.038235452 = score(doc=1521,freq=2.0), product of:
                0.1647081 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.047034867 = queryNorm
                0.23214069 = fieldWeight in 1521, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046875 = fieldNorm(doc=1521)
          0.5 = coord(1/2)
      0.33333334 = coord(1/3)
    
    Date
    22. 8.2014 16:52:04