Search (47 results, page 1 of 3)

  • × author_ss:"Stock, W.G."
  1. Peters, I.; Stock, W.G.: Power tags in information retrieval (2010) 0.03
    0.02558895 = product of:
      0.07676685 = sum of:
        0.043976005 = weight(_text_:retrieval in 865) [ClassicSimilarity], result of:
          0.043976005 = score(doc=865,freq=12.0), product of:
            0.10743652 = queryWeight, product of:
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.035517205 = queryNorm
            0.40932083 = fieldWeight in 865, product of:
              3.4641016 = tf(freq=12.0), with freq of:
                12.0 = termFreq=12.0
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.0390625 = fieldNorm(doc=865)
        0.018397098 = weight(_text_:use in 865) [ClassicSimilarity], result of:
          0.018397098 = score(doc=865,freq=2.0), product of:
            0.10875683 = queryWeight, product of:
              3.0620887 = idf(docFreq=5623, maxDocs=44218)
              0.035517205 = queryNorm
            0.1691581 = fieldWeight in 865, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.0620887 = idf(docFreq=5623, maxDocs=44218)
              0.0390625 = fieldNorm(doc=865)
        0.014393743 = weight(_text_:of in 865) [ClassicSimilarity], result of:
          0.014393743 = score(doc=865,freq=18.0), product of:
            0.05554029 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.035517205 = queryNorm
            0.25915858 = fieldWeight in 865, product of:
              4.2426405 = tf(freq=18.0), with freq of:
                18.0 = termFreq=18.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.0390625 = fieldNorm(doc=865)
      0.33333334 = coord(3/9)
    
    Abstract
    Purpose - Many Web 2.0 services (including Library 2.0 catalogs) make use of folksonomies. The purpose of this paper is to cut off all tags in the long tail of a document-specific tag distribution. The remaining tags at the beginning of a tag distribution are considered power tags and form a new, additional search option in information retrieval systems. Design/methodology/approach - In a theoretical approach the paper discusses document-specific tag distributions (power law and inverse-logistic shape), the development of such distributions (Yule-Simon process and shuffling theory) and introduces search tags (besides the well-known index tags) as a possibility for generating tag distributions. Findings - Search tags are compatible with broad and narrow folksonomies and with all knowledge organization systems (e.g. classification systems and thesauri), while index tags are only applicable in broad folksonomies. Based on these findings, the paper presents a sketch of an algorithm for mining and processing power tags in information retrieval systems. Research limitations/implications - This conceptual approach is in need of empirical evaluation in a concrete retrieval system. Practical implications - Power tags are a new search option for retrieval systems to limit the amount of hits. Originality/value - The paper introduces power tags as a means for enhancing the precision of search results in information retrieval systems that apply folksonomies, e.g. catalogs in Library 2.0environments.
  2. Schmidt, S.; Stock, W.G.: Collective indexing of emotions in images : a study in emotional information retrieval (2009) 0.02
    0.022899032 = product of:
      0.068697095 = sum of:
        0.03590626 = weight(_text_:retrieval in 2792) [ClassicSimilarity], result of:
          0.03590626 = score(doc=2792,freq=8.0), product of:
            0.10743652 = queryWeight, product of:
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.035517205 = queryNorm
            0.33420905 = fieldWeight in 2792, product of:
              2.828427 = tf(freq=8.0), with freq of:
                8.0 = termFreq=8.0
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.0390625 = fieldNorm(doc=2792)
        0.018397098 = weight(_text_:use in 2792) [ClassicSimilarity], result of:
          0.018397098 = score(doc=2792,freq=2.0), product of:
            0.10875683 = queryWeight, product of:
              3.0620887 = idf(docFreq=5623, maxDocs=44218)
              0.035517205 = queryNorm
            0.1691581 = fieldWeight in 2792, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.0620887 = idf(docFreq=5623, maxDocs=44218)
              0.0390625 = fieldNorm(doc=2792)
        0.014393743 = weight(_text_:of in 2792) [ClassicSimilarity], result of:
          0.014393743 = score(doc=2792,freq=18.0), product of:
            0.05554029 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.035517205 = queryNorm
            0.25915858 = fieldWeight in 2792, product of:
              4.2426405 = tf(freq=18.0), with freq of:
                18.0 = termFreq=18.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.0390625 = fieldNorm(doc=2792)
      0.33333334 = coord(3/9)
    
    Abstract
    Some documents provoke emotions in people viewing them. Will it be possible to describe emotions consistently and use this information in retrieval systems? We tested collective (statistically aggregated) emotion indexing using images as examples. Considering psychological results, basic emotions are anger, disgust, fear, happiness, and sadness. This study follows an approach developed by Lee and Neal (2007) for music emotion retrieval and applies scroll bars for tagging basic emotions and their intensities. A sample comprising 763 persons tagged emotions caused by images (retrieved from www.Flickr.com) applying scroll bars and (linguistic) tags. Using SPSS, we performed descriptive statistics and correlation analysis. For more than half of the images, the test persons have clear emotion favorites. There are prototypical images for given emotions. The document-specific consistency of tagging using a scroll bar is, for some images, very high. Most of the (most commonly used) linguistic tags are on the basic level (in the sense of Rosch's basic level theory). The distributions of the linguistic tags in our examples follow an inverse power-law. Hence, it seems possible to apply collective image emotion tagging to image information systems and to present a new search option for basic emotions. This article is one of the first steps in the research area of emotional information retrieval (EmIR).
    Source
    Journal of the American Society for Information Science and Technology. 60(2009) no.5, S.863-876
  3. Stock, W.G.; Weber, S.: Facets of informetrics : Preface (2006) 0.02
    0.01569452 = product of:
      0.047083557 = sum of:
        0.014362504 = weight(_text_:retrieval in 76) [ClassicSimilarity], result of:
          0.014362504 = score(doc=76,freq=2.0), product of:
            0.10743652 = queryWeight, product of:
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.035517205 = queryNorm
            0.13368362 = fieldWeight in 76, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.03125 = fieldNorm(doc=76)
        0.014717679 = weight(_text_:use in 76) [ClassicSimilarity], result of:
          0.014717679 = score(doc=76,freq=2.0), product of:
            0.10875683 = queryWeight, product of:
              3.0620887 = idf(docFreq=5623, maxDocs=44218)
              0.035517205 = queryNorm
            0.13532647 = fieldWeight in 76, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.0620887 = idf(docFreq=5623, maxDocs=44218)
              0.03125 = fieldNorm(doc=76)
        0.018003372 = weight(_text_:of in 76) [ClassicSimilarity], result of:
          0.018003372 = score(doc=76,freq=44.0), product of:
            0.05554029 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.035517205 = queryNorm
            0.3241498 = fieldWeight in 76, product of:
              6.6332498 = tf(freq=44.0), with freq of:
                44.0 = termFreq=44.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.03125 = fieldNorm(doc=76)
      0.33333334 = coord(3/9)
    
    Abstract
    According to Jean M. Tague-Sutcliffe "informetrics" is "the study of the quantitative aspects of information in any form, not just records or bibliographies, and in any social group, not just scientists" (Tague-Sutcliffe, 1992, 1). Leo Egghe also defines "informetrics" in a very broad sense. "(W)e will use the term' informetrics' as the broad term comprising all-metrics studies related to information science, including bibliometrics (bibliographies, libraries,...), scientometrics (science policy, citation analysis, research evaluation,...), webometrics (metrics of the web, the Internet or other social networks such as citation or collaboration networks), ..." (Egghe, 2005b,1311). According to Concepcion S. Wilson "informetrics" is "the quantitative study of collections of moderatesized units of potentially informative text, directed to the scientific understanding of information processes at the social level" (Wilson, 1999, 211). We should add to Wilson's units of text also digital collections of images, videos, spoken documents and music. Dietmar Wolfram divides "informetrics" into two aspects, "system-based characteristics that arise from the documentary content of IR systems and how they are indexed, and usage-based characteristics that arise how users interact with system content and the system interfaces that provide access to the content" (Wolfram, 2003, 6). We would like to follow Tague-Sutcliffe, Egghe, Wilson and Wolfram (and others, for example Björneborn & Ingwersen, 2004) and call this broad research of empirical information science "informetrics". Informetrics includes therefore all quantitative studies in information science. If a scientist performs scientific investigations empirically, e.g. on information users' behavior, on scientific impact of academic journals, on the development of the patent application activity of a company, on links of Web pages, on the temporal distribution of blog postings discussing a given topic, on availability, recall and precision of retrieval systems, on usability of Web sites, and so on, he or she contributes to informetrics. We see three subject areas in information science in which such quantitative research takes place, - information users and information usage, - evaluation of information systems, - information itself, Following Wolfram's article, we divide his system-based characteristics into the "information itself "-category and the "information system"-category. Figure 1 is a simplistic graph of subjects and research areas of informetrics as an empirical information science.
  4. Stock, W.G.; Stock, M.: Handbook of information science : a comprehensive handbook (2013) 0.01
    0.013739474 = product of:
      0.041218422 = sum of:
        0.01795313 = weight(_text_:retrieval in 2784) [ClassicSimilarity], result of:
          0.01795313 = score(doc=2784,freq=2.0), product of:
            0.10743652 = queryWeight, product of:
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.035517205 = queryNorm
            0.16710453 = fieldWeight in 2784, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.0390625 = fieldNorm(doc=2784)
        0.015172338 = weight(_text_:of in 2784) [ClassicSimilarity], result of:
          0.015172338 = score(doc=2784,freq=20.0), product of:
            0.05554029 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.035517205 = queryNorm
            0.27317715 = fieldWeight in 2784, product of:
              4.472136 = tf(freq=20.0), with freq of:
                20.0 = termFreq=20.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.0390625 = fieldNorm(doc=2784)
        0.008092954 = product of:
          0.02427886 = sum of:
            0.02427886 = weight(_text_:29 in 2784) [ClassicSimilarity], result of:
              0.02427886 = score(doc=2784,freq=2.0), product of:
                0.12493842 = queryWeight, product of:
                  3.5176873 = idf(docFreq=3565, maxDocs=44218)
                  0.035517205 = queryNorm
                0.19432661 = fieldWeight in 2784, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5176873 = idf(docFreq=3565, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=2784)
          0.33333334 = coord(1/3)
      0.33333334 = coord(3/9)
    
    Abstract
    Dealing with information is one of the vital skills in the 21st century. It takes a fair degree of information savvy to create, represent and supply information as well as to search for and retrieve relevant knowledge. How does information (documents, pieces of knowledge) have to be organized in order to be retrievable? What role does metadata play? What are search engines on the Web, or in corporate intranets, and how do they work? How must one deal with natural language processing and tools of knowledge organization, such as thesauri, classification systems, and ontologies? How useful is social tagging? How valuable are intellectually created abstracts and automatically prepared extracts? Which empirical methods allow for user research and which for the evaluation of information systems? This Handbook is a basic work of information science, providing a comprehensive overview of the current state of information retrieval and knowledge representation. It addresses readers from all professions and scientific disciplines, but particularly scholars, practitioners and students of Information Science, Library Science, Computer Science, Information Management, and Knowledge Management. This Handbook is a suitable reference work for Public and Academic Libraries.
    Date
    14.10.2013 19:29:54
  5. Stock, W.G.: On relevance distributions (2006) 0.01
    0.01120842 = product of:
      0.05043789 = sum of:
        0.028725008 = weight(_text_:retrieval in 5116) [ClassicSimilarity], result of:
          0.028725008 = score(doc=5116,freq=2.0), product of:
            0.10743652 = queryWeight, product of:
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.035517205 = queryNorm
            0.26736724 = fieldWeight in 5116, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.0625 = fieldNorm(doc=5116)
        0.021712884 = weight(_text_:of in 5116) [ClassicSimilarity], result of:
          0.021712884 = score(doc=5116,freq=16.0), product of:
            0.05554029 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.035517205 = queryNorm
            0.39093933 = fieldWeight in 5116, product of:
              4.0 = tf(freq=16.0), with freq of:
                16.0 = termFreq=16.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.0625 = fieldNorm(doc=5116)
      0.22222222 = coord(2/9)
    
    Abstract
    There are at least three possible ways that documents are distributed by relevance: informetric (power law), inverse logistic, and dichotomous. The nature of the type of distribution has implications for the construction of relevance ranking algorithms for search engines, for automated (blind) relevance feedback, for user behavior when using Web search engines, for combining of outputs of search engines for metasearch, for topic detection and tracking, and for the methodology of evaluation of information retrieval systems.
    Source
    Journal of the American Society for Information Science and Technology. 57(2006) no.8, S.1126-1129
  6. Stock, M.; Stock, W.G.: Intellectual property information : A comparative analysis of main information providers (2006) 0.01
    0.01015564 = product of:
      0.04570038 = sum of:
        0.030467471 = weight(_text_:retrieval in 210) [ClassicSimilarity], result of:
          0.030467471 = score(doc=210,freq=4.0), product of:
            0.10743652 = queryWeight, product of:
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.035517205 = queryNorm
            0.2835858 = fieldWeight in 210, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.046875 = fieldNorm(doc=210)
        0.015232908 = weight(_text_:of in 210) [ClassicSimilarity], result of:
          0.015232908 = score(doc=210,freq=14.0), product of:
            0.05554029 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.035517205 = queryNorm
            0.2742677 = fieldWeight in 210, product of:
              3.7416575 = tf(freq=14.0), with freq of:
                14.0 = termFreq=14.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.046875 = fieldNorm(doc=210)
      0.22222222 = coord(2/9)
    
    Abstract
    After modeling expert user needs with regard to intellectual property information, we analyze and compare the main providers in this specific information area (Thomson DIALOG, Esp@cenet by the European Patent Office, Questel-Orbit, and STN International) in terms of system content and system functionality. The key question is whether the main providers are able to satisfy these expert user needs. For patent information, some special retrieval features such as chemical structure search (including Markush search), patent family references and citations search, biosequence search, and basic informetric functionality such as ranking, mapping, and visualization of information flows are realized. Considering the results of information science research, the practice of patent information shows unexhausted improvement opportunities (e.g., the application of bibliographic patent coupling and co-patent-citation for mapping patents, patent assignees, and technology specialties). For trademark search, users need multiple truncated search (realized) as well as phonetic search and image retrieval (not realized yet).
    Source
    Journal of the American Society for Information Science and Technology. 57(2006) no.13, S.1794-1803
  7. Knautz, K.; Stock, W.G.: Collective indexing of emotions in videos (2011) 0.01
    0.009771512 = product of:
      0.043971803 = sum of:
        0.025389558 = weight(_text_:retrieval in 295) [ClassicSimilarity], result of:
          0.025389558 = score(doc=295,freq=4.0), product of:
            0.10743652 = queryWeight, product of:
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.035517205 = queryNorm
            0.23632148 = fieldWeight in 295, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.0390625 = fieldNorm(doc=295)
        0.018582245 = weight(_text_:of in 295) [ClassicSimilarity], result of:
          0.018582245 = score(doc=295,freq=30.0), product of:
            0.05554029 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.035517205 = queryNorm
            0.33457235 = fieldWeight in 295, product of:
              5.477226 = tf(freq=30.0), with freq of:
                30.0 = termFreq=30.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.0390625 = fieldNorm(doc=295)
      0.22222222 = coord(2/9)
    
    Abstract
    Purpose - The object of this empirical research study is emotion, as depicted and aroused in videos. This paper seeks to answer the questions: Are users able to index such emotions consistently? Are the users' votes usable for emotional video retrieval? Design/methodology/approach - The authors worked with a controlled vocabulary for nine basic emotions (love, happiness, fun, surprise, desire, sadness, anger, disgust and fear), a slide control for adjusting the emotions' intensity, and the approach of broad folksonomies. Different users tagged the same videos. The test persons had the task of indexing the emotions of 20 videos (reprocessed clips from YouTube). The authors distinguished between emotions which were depicted in the video and those that were evoked in the user. Data were received from 776 participants and a total of 279,360 slide control values were analyzed. Findings - The consistency of the users' votes is very high; the tag distributions for the particular videos' emotions are stable. The final shape of the distributions will be reached by the tagging activities of only very few users (less than 100). By applying the approach of power tags it is possible to separate the pivotal emotions of every document - if indeed there is any feeling at all. Originality/value - This paper is one of the first steps in the new research area of emotional information retrieval (EmIR). To the authors' knowledge, it is the first research project into the collective indexing of emotions in videos.
    Source
    Journal of documentation. 67(2011) no.6, S.975-994
  8. Stock, W.G.: ¬Die Wichtigkeit wissenschaftlicher Dokumente relativ zu gegebenen Thematiken (1981) 0.01
    0.009241734 = product of:
      0.0415878 = sum of:
        0.02513438 = weight(_text_:retrieval in 13) [ClassicSimilarity], result of:
          0.02513438 = score(doc=13,freq=2.0), product of:
            0.10743652 = queryWeight, product of:
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.035517205 = queryNorm
            0.23394634 = fieldWeight in 13, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.0546875 = fieldNorm(doc=13)
        0.016453419 = weight(_text_:of in 13) [ClassicSimilarity], result of:
          0.016453419 = score(doc=13,freq=12.0), product of:
            0.05554029 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.035517205 = queryNorm
            0.29624295 = fieldWeight in 13, product of:
              3.4641016 = tf(freq=12.0), with freq of:
                12.0 = termFreq=12.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.0546875 = fieldNorm(doc=13)
      0.22222222 = coord(2/9)
    
    Abstract
    Scientific documents are more or less important in relation to give subjects and this importance can be measured. An empirical investigation into philosophical information was carried out using a weighting algorithm developed by N. Henrichs which results in a distribution by weighting of documents on an average philosophical subject. With the aid of statistical methods a threshold value can be obtained that separates the important and unimportant documents on a subject. The knowledge of theis threshold value is important for various practical and theoretic questions: providing new possibilities for research strategy in information retrieval; evaluation of the 'titleworthiness' of subjects by comparison of document titles and themes for which the document at hand is important; and making available data on thematic trends for scientific results
  9. Stock, W.G.: Concepts and semantic relations in information science (2010) 0.01
    0.00875779 = product of:
      0.039410055 = sum of:
        0.01795313 = weight(_text_:retrieval in 4008) [ClassicSimilarity], result of:
          0.01795313 = score(doc=4008,freq=2.0), product of:
            0.10743652 = queryWeight, product of:
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.035517205 = queryNorm
            0.16710453 = fieldWeight in 4008, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.0390625 = fieldNorm(doc=4008)
        0.021456927 = weight(_text_:of in 4008) [ClassicSimilarity], result of:
          0.021456927 = score(doc=4008,freq=40.0), product of:
            0.05554029 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.035517205 = queryNorm
            0.38633084 = fieldWeight in 4008, product of:
              6.3245554 = tf(freq=40.0), with freq of:
                40.0 = termFreq=40.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.0390625 = fieldNorm(doc=4008)
      0.22222222 = coord(2/9)
    
    Abstract
    Concept-based information retrieval and knowledge representation are in need of a theory of concepts and semantic relations. Guidelines for the construction and maintenance of knowledge organization systems (KOS) (such as ANSI/NISO Z39.19-2005 in the U.S.A. or DIN 2331:1980 in Germany) do not consider results of concept theory and theory of relations to the full extent. They are not able to unify the currently different worlds of traditional controlled vocabularies, of the social web (tagging and folksonomies) and of the semantic web (ontologies). Concept definitions as well as semantic relations are based on epistemological theories (empiricism, rationalism, hermeneutics, pragmatism, and critical theory). A concept is determined via its intension and extension as well as by definition. We will meet the problem of vagueness by introducing prototypes. Some important definitions are concept explanations (after Aristotle) and the definition of family resemblances (in the sense of Wittgenstein). We will model concepts as frames (according to Barsalou). The most important paradigmatic relation in KOS is hierarchy, which must be arranged into different classes: Hyponymy consists of taxonomy and simple hyponymy, meronymy consists of many different part-whole-relations. For practical application purposes, the transitivity of the given relation is very important. Unspecific associative relations are of little help to our focused applications and should be replaced by generalizable and domain-specific relations. We will discuss the reflexivity, symmetry, and transitivity of paradigmatic relations as well as the appearance of specific semantic relations in the different kinds of KOS (folksonomies, nomenclatures, classification systems, thesauri, and ontologies). Finally, we will pick out KOS as a central theme of the Semantic Web.
    Source
    Journal of the American Society for Information Science and Technology. 61(2010) no.10, S.1951-1969
  10. Garfield, E.; Stock, W.G.: Citation Consciousness : Interview with Eugene Garfiels, chairman emeritus of ISI; Philadelphia (2002) 0.01
    0.007257948 = product of:
      0.032660767 = sum of:
        0.016620465 = weight(_text_:of in 613) [ClassicSimilarity], result of:
          0.016620465 = score(doc=613,freq=6.0), product of:
            0.05554029 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.035517205 = queryNorm
            0.2992506 = fieldWeight in 613, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.078125 = fieldNorm(doc=613)
        0.016040305 = product of:
          0.048120912 = sum of:
            0.048120912 = weight(_text_:22 in 613) [ClassicSimilarity], result of:
              0.048120912 = score(doc=613,freq=2.0), product of:
                0.1243752 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.035517205 = queryNorm
                0.38690117 = fieldWeight in 613, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.078125 = fieldNorm(doc=613)
          0.33333334 = coord(1/3)
      0.22222222 = coord(2/9)
    
    Content
    Abschnitte zu: The origins of citation indexing in science - Citation analysis in sociology, history and philosophy of science - From ASIS to ASIST
    Source
    Password. 2002, H.6, S.22-25
  11. Stock, W.G.: Informational cities : analysis and construction of cities in the knowledge society (2011) 0.01
    0.0066682124 = product of:
      0.030006956 = sum of:
        0.021986805 = weight(_text_:of in 4452) [ClassicSimilarity], result of:
          0.021986805 = score(doc=4452,freq=42.0), product of:
            0.05554029 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.035517205 = queryNorm
            0.39587128 = fieldWeight in 4452, product of:
              6.4807405 = tf(freq=42.0), with freq of:
                42.0 = termFreq=42.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.0390625 = fieldNorm(doc=4452)
        0.008020152 = product of:
          0.024060456 = sum of:
            0.024060456 = weight(_text_:22 in 4452) [ClassicSimilarity], result of:
              0.024060456 = score(doc=4452,freq=2.0), product of:
                0.1243752 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.035517205 = queryNorm
                0.19345059 = fieldWeight in 4452, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=4452)
          0.33333334 = coord(1/3)
      0.22222222 = coord(2/9)
    
    Abstract
    Informational cities are prototypical cities of the knowledge society. If they are informational world cities, they are new centers of power. According to Manuel Castells (1989), in those cities space of flows (flows of money, power, and information) tend to override space of places. Information and communication technology infrastructures, cognitive infrastructures (as groundwork of knowledge cities and creative cities), and city-level knowledge management are of great importance. Digital libraries provide access to the global explicit knowledge. The informational city consists of creative clusters and spaces for personal contacts to stimulate sharing of implicit information. In such cities, we can observe job polarization in favor of well-trained employees. The corporate structure of informational cities is made up of financial services, knowledge-intensive high-tech industrial enterprises, companies of the information economy, and further creative and knowledge-intensive service enterprises. Weak location factors are facilities for culture, recreational activities, and consumption. Political willingness to create an informational city and e-governance activities are crucial aspects for the development of such cities. This conceptual article frames indicators which are able to mark the degree of "informativeness" of a city. Finally, based upon findings of network economy, we try to explain why certain cities master the transition to informational cities and others (lagging to relative insignificance) do not. The article connects findings of information science and of urbanistics and urban planning.
    Date
    3. 7.2011 19:22:49
    Source
    Journal of the American Society for Information Science and Technology. 62(2011) no.5, S.963-986
  12. Stock, W.G.: Information Retrieval : Informationen suchen und finden (2007) 0.01
    0.006219147 = product of:
      0.05597232 = sum of:
        0.05597232 = weight(_text_:retrieval in 1851) [ClassicSimilarity], result of:
          0.05597232 = score(doc=1851,freq=54.0), product of:
            0.10743652 = queryWeight, product of:
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.035517205 = queryNorm
            0.52098036 = fieldWeight in 1851, product of:
              7.3484693 = tf(freq=54.0), with freq of:
                54.0 = termFreq=54.0
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.0234375 = fieldNorm(doc=1851)
      0.11111111 = coord(1/9)
    
    Abstract
    Information Retrieval ist die Wissenschaft, die Technik und die Praxis des Suchens und Findens von Informationen. Drei Anwendungsfälle zeigen die Relevanz dieser Teildisziplin in der Informationswissenschaft und Informatik: Suchmaschinen im Internet, Recherchewerkzeuge in unternehmensinternen Netzwerken und elektronische Informationsdienste. Das Lehrbuch vermittelt umfassend und auf leicht verständliche Weise grundlegende Kenntnisse über Theorien, Modelle und Anwendungen des Information Retrieval. Stock stellt die Retrievalforschung als einheitliche Wissenschaftsdisziplin dar, die klassische Modelle sowie aktuelle Ansätze des Web Information Retrieval gleichermaßen umfasst. Neben dem Retrieval nach Texten behandelt das Buch weitere Medien wie Bilder, Videos, gesprochene Sprache und Musik.
    Content
    Enthält die Kapitel: - Grundlagen der Informationswissenschaft Ziel der Buchreihe - Informationswissenschaft - Information und Wissen - Propädeutik des Information Retrieval Geschichte des Information Retrieval - Grundbegriffe des Information Retrieval - Relevanz und Pertinenz - Dokumente - Typologie von Retrievalsystemen - Architektur eines Retrievalsystems - Boolesche Retrievalsysteme Boolesches Retrieval - Informetrische Analysen - Erweitertes Boolesches Retrieval - Informationslinguistik - Natural Language Processing n-Gramme - Worte - Phrasen, Eigennamen, Komposita - Begriffe - Anaphora - Fehlertolerantes Retrieval - Klassische Retrievalmodelle Textstatistik - Vektorraummodell - Probabilistisches Modell - Web Information Retrieval Linktopologie - Strukturinformationen in Dokumenten - Nutzer und Nutzung - Themenentdeckung und -verfolgung - Spezialprobleme des Information Retrieval Soziale Netzwerke und "small worlds" - Kontrolliertes Vokabular - Sprachübergreifendes Retrieval - Anfragedialog - Retrieval von Textstellen - Bild- und Tonretrieval
    Footnote
    Rez. in: BuB 59(2007) H.3, S.238-239 (J. Plieninger): " ... Wertvoll ist bei Stocks »Information Retrieval« auch der Blick auf die Informationsbedürfnisse und das Verhalten der Benutzer. Er beschreibt auch daraus folgende unterschiedliche Fragestellungen für die Recherche, etwa ob es sich um ein konkretes Informationsbedürfnis handelt (Concrete Information Need - CIN) oder um ein problemorientiertes (Problem Oriented Information Need - POIN; Seite 51 f.). Das Buch geht über das hinaus, was man als Bibliothekar/in sonst auf dem Suchsektor zu lesen gewohnt ist - genau die richtige Mischung an Informationen zur vielgestaltigen Methodik, Hintergrundinformationen und Schilderung praktischer Anwendungsbereiche. Insofern stellt die Lektüre dieses grundlegenden Buches eine Bereicherung für alle dar, die mit der Recherche im weitesten Sinne zu tun haben: Neben Informationswissenschaftlern und Studierenden dieses Faches sind es vor allem Bibliothekare, die mit dem Suchen und Finden sowie der Schulung in diesem Bereich beauftragt sind."
    Weitere Rez. in: Information - Wissenschaft und Praxis 58(2007) H.5, S.318-319 (R. Ferber): "Mit Information Retrieval - Informationen suchen und finden von Wolfgang G. Stock liegt ein ca. 600-seitiges Lehrbuch aus dem Oldenbourg Verlag vor. Der Einleitung kann man entnehmen, dass es sich dabei nur um den ersten Band einer vierbändigen Reihe zur Informationswissenschaft handelt. Der Klappentext verspricht die umfassende Vermittlung grundlegender Kenntnisse über Theorien, Modelle und Anwendungen des Information Retrieval, dargestellt als einheitliche Wissenschaftsdisziplin, die klassische Modelle und aktuelle Ansätze des Web Information Retrieval umfasst. Wie sein Umfang bereits erwarten lässt, bietet das Buch einen breiten Zugang zum Thema Information Retrieval. Es ist in weiten Teilen in einem erzählenden und kommunikativen Stil geschrieben, der durch viele Beispiele und rhetorische Fragen den Zugang zum Thema erleichtert. . . . Insgesamt bietet das Buch eine gute und ausführliche Einführung in das Thema Information Retrieval. Seine Stärke sind die Breite der Quellen und dargestellten Ansätze, die ausführliche Einführung in die verschiedenen Themen, Fragestellungen und Lösungsansätze, insbesondere in den Bereichen Textstatistik und Informetrie. Es ist gut zu lesen, auch wenn man sich manchmal etwas mehr inhaltliche Stringenz wünschen würde. Die Merk(ab) sätze am Schluss jedes Kapitels erleichtern auch dem eiligen Leser die Orientierung in dem durchaus umfangreichen Werk."
    LCSH
    Information storage and retrieval systems
    Information retrieval
    RSWK
    Information Retrieval / Lehrbuch
    Subject
    Information Retrieval / Lehrbuch
    Information storage and retrieval systems
    Information retrieval
  13. Stock, W.G.: Qualitätskriterien von Suchmaschinen : Checkliste für Retrievalsysteme (2000) 0.01
    0.0057718405 = product of:
      0.025973283 = sum of:
        0.01795313 = weight(_text_:retrieval in 5773) [ClassicSimilarity], result of:
          0.01795313 = score(doc=5773,freq=2.0), product of:
            0.10743652 = queryWeight, product of:
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.035517205 = queryNorm
            0.16710453 = fieldWeight in 5773, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.0390625 = fieldNorm(doc=5773)
        0.008020152 = product of:
          0.024060456 = sum of:
            0.024060456 = weight(_text_:22 in 5773) [ClassicSimilarity], result of:
              0.024060456 = score(doc=5773,freq=2.0), product of:
                0.1243752 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.035517205 = queryNorm
                0.19345059 = fieldWeight in 5773, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=5773)
          0.33333334 = coord(1/3)
      0.22222222 = coord(2/9)
    
    Abstract
    Suchmaschinen im World Wide Web wird nachgesagt, dass sie - insbesondere im Vergleich zur Retrievalsoftware kommerzieller Online-Archive suboptimale Methoden und Werkzeuge einsetzen. Elaborierte befehlsorientierte Retrievalsysteme sind vom Laien gar nicht und vom Professional nur dann zu bedienen, wenn man stets damit arbeitet. Die Suchsysteme einiger "independents", also isolierter Informationsproduzenten im Internet, zeichnen sich durch einen Minimalismus aus, der an den Befehlsumfang anfangs der 70er Jahre erinnert. Retrievalsoftware in Intranets, wenn sie denn überhaupt benutzt wird, setzt fast ausnahmslos auf automatische Methoden von Indexierung und Retrieval und ignoriert dabei nahezu vollständig dokumentarisches Know how. Suchmaschinen bzw. Retrievalsysteme - wir wollen beide Bezeichnungen synonym verwenden - bereiten demnach, egal wo sie vorkommen, Schwierigkeiten. An ihrer Qualität wird gezweifelt. Aber was heißt überhaupt: Qualität von Suchmaschinen? Was zeichnet ein gutes Retrievalsystem aus? Und was fehlt einem schlechten? Wir wollen eine Liste von Kriterien entwickeln, die für gutes Suchen (und Finden!) wesentlich sind. Es geht also ausschließlich um Quantität und Qualität der Suchoptionen, nicht um weitere Leistungsindikatoren wie Geschwindigkeit oder ergonomische Benutzerschnittstellen. Stillschweigend vorausgesetzt wirdjedoch der Abschied von ausschließlich befehlsorientierten Systemen, d.h. wir unterstellen Bildschirmgestaltungen, die die Befehle intuitiv einleuchtend darstellen. Unsere Checkliste enthält nur solche Optionen, die entweder (bei irgendwelchen Systemen) schon im Einsatz sind (und wiederholt damit zum Teil Altbekanntes) oder deren technische Realisierungsmöglichkeit bereits in experimentellen Umgebungen aufgezeigt worden ist. insofern ist die Liste eine Minimalforderung an Retrievalsysteme, die durchaus erweiterungsfähig ist. Gegliedert wird der Kriterienkatalog nach (1.) den Basisfunktionen zur Suche singulärer Datensätze, (2.) den informetrischen Funktionen zur Charakterisierunggewisser Nachweismengen sowie (3.) den Kriterien zur Mächtigkeit automatischer Indexierung und natürlichsprachiger Suche
    Source
    Password. 2000, H.5, S.22-31
  14. Stock, W.G.: Verkaufte Suchwörter, verkaufte Links : Retrieval nach Homepages optimiert? (1999) 0.00
    0.004837114 = product of:
      0.043534026 = sum of:
        0.043534026 = weight(_text_:retrieval in 4142) [ClassicSimilarity], result of:
          0.043534026 = score(doc=4142,freq=6.0), product of:
            0.10743652 = queryWeight, product of:
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.035517205 = queryNorm
            0.40520695 = fieldWeight in 4142, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.0546875 = fieldNorm(doc=4142)
      0.11111111 = coord(1/9)
    
    Abstract
    Selten wurde ein Dienst so stark diskutiert wie 'RealNames', da sowohl seine Suchwörter als auch die darauf aufsetzenden Links auf Homepages verkauft werden. Machen wir uns doch nichts vor: Das WWW ist ein kommerzielles Unternehmen, die Dienstleistungen müssen finanziert werden. Und warum soll nicht ein Privatunternehmen mit Inhaltserschließung Gewinne erzielen? RealNames mit seinem 'Internet Keyword System' ist eine interessante Idee, das Retrieval nach Homepages zielgenau durchzuführen. Was bringt RealNames den Nutzern? Wann sollte jemand, der Sites im WWW unterhält, Suchwörter und Links bei RealNames abonnieren (und was kostet das)? Im Oktober 1999 haben wir RealNames genauer angeschaut. Analysiert wurde das gezielte Retrieval nach Homepages bei AltaVista, Fireball und bei RealNames.com
  15. Weller, K.; Stock, W.G.: Transitive meronymy : automatic concept-based query expansion using weighted transitive part-whole relations (2008) 0.00
    0.0039494867 = product of:
      0.03554538 = sum of:
        0.03554538 = weight(_text_:retrieval in 1835) [ClassicSimilarity], result of:
          0.03554538 = score(doc=1835,freq=4.0), product of:
            0.10743652 = queryWeight, product of:
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.035517205 = queryNorm
            0.33085006 = fieldWeight in 1835, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.0546875 = fieldNorm(doc=1835)
      0.11111111 = coord(1/9)
    
    Abstract
    Transitive Meronymie. Automatische begriffsbasierte Suchanfrageerweiterung unter Nutzung gewichteter transitiver Teil-Ganzes-Relationen. Unsere theoretisch orientierte Arbeit isoliert transitive Teil-Ganzes-Beziehungen. Wir diskutieren den Einsatz der Meronymie bei der automatischen begriffsbasierten Suchanfrageerweiterung im Information Retrieval. Aus praktischen Gründen schlagen wir vor, die Bestandsrelationen zu spezifizieren und die einzelnen Arten mit unterschiedlichen Gewichtungswerten zu versehen, die im Retrieval genutzt werden. Für das Design von Wissensordnungen ist bedeutsam, dass innerhalb der Begriffsleiter einer Abstraktionsrelation ein Begriff alle seine Teile (sowie alle transitiven Teile der Teile) an seine Unterbegriffe vererbt.
  16. Stock, W.G.; Gust von Loh, S.: Wissensrepräsentation - Information Retrieval - Wissensmanagement : Das Forschungsprogramm der Düsseldorfer Informationswissenschaft (2008) 0.00
    0.0033852747 = product of:
      0.030467471 = sum of:
        0.030467471 = weight(_text_:retrieval in 4014) [ClassicSimilarity], result of:
          0.030467471 = score(doc=4014,freq=4.0), product of:
            0.10743652 = queryWeight, product of:
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.035517205 = queryNorm
            0.2835858 = fieldWeight in 4014, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.046875 = fieldNorm(doc=4014)
      0.11111111 = coord(1/9)
    
    Abstract
    Die Informationswissenschaft im Sinne des Düsseldorfer Forschungsprogramms untersucht das Auswerten, Bereitstellen, Suchen und Finden von relevantem (vorwiegend digital vorliegendem) Wissen. Sie umfasst ein Spektrum von fünf Teildisziplinen. Eine zentrale Rolle spielt das Information Retrieval, die Wissenschaft der Suchmaschinen unter Berücksichtigung technischer Systeme und Informationsbedürfnisse der Nutzer. Wissensrepräsentation thematisiert Metadaten sowie Methoden und Werkzeuge für den Einsatz beim Indexieren und Referieren. Anwendungsnahe Teilgebiete sind das Wissensmanagement mit der Konzentration auf das (Ver-)Teilen unternehmensinternen Wissens und der Integration externen Wissens in die betriebliche Informationswirtschaft sowie Forschungen zum Informationsmarkt mit einem weiten Gegenstandsbereich, der sich von der Informationsinfrastruktur eines Landes über die Branche elektronischer Informationsdienste und dem Informationsrecht bis hin zur Netzökonomie erstreckt. Informationswissenschaft geht - soweit möglich - empirisch vor und erfasst ihre Gegenstände mittels quantitativer Methoden. Informetrische Forschungen umfassen die deskriptive Informetrie, die Webometrie, die Szientometrie genauso wie die Evaluation von Informationssystemen und Nutzer- sowie Informationsbedarfsanalysen. Die Informationswissenschaft der Heinrich-Heine-Universität Düsseldorf verfolgt ein Forschungsprogramm, das sich allen Teildisziplinen widmet. Unser Begriff von "Forschungsprogramm" folgt den wissenschaftstheoretischen Überlegungen von Imre Lakatos.
  17. Stock, W.G.: Textwortmethode : Norbert Henrichs zum 65. (3) (2000) 0.00
    0.0031916676 = product of:
      0.028725008 = sum of:
        0.028725008 = weight(_text_:retrieval in 4891) [ClassicSimilarity], result of:
          0.028725008 = score(doc=4891,freq=2.0), product of:
            0.10743652 = queryWeight, product of:
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.035517205 = queryNorm
            0.26736724 = fieldWeight in 4891, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.0625 = fieldNorm(doc=4891)
      0.11111111 = coord(1/9)
    
    Abstract
    Nur wenige Dokumentationsmethoden werden mit dem Namen ihrer Entwickler assoziiert. Ausnahmen sind Melvil Dewey (DDC), S.R. Ranganathan (Colon Classification) - und Norbert Henrichs. Seine Textwortmethode ermöglicht die Indexierung und das Retrieval von Literatur aus Fachgebieten, die keine allseits akzeptierte Fachterminologie vorweisen, also viele Sozial- und Geisteswissenschaften, vorneweg die Philosophie. Für den Einsatz in der elektronischen Philosophie-Dokumentation hat Henrichs in den späten sechziger Jahren die Textwortmethode entworfen. Er ist damit nicht nur einer der Pioniere der Anwendung der elektronischen Datenverarbeitung in der Informationspraxis, sondern auch der Pionier bei der Dokumentation terminologisch nicht starrer Fachsprachen
  18. Stock, W.G.: Informationswissenschaft interdisziplinär (2012) 0.00
    0.0031916676 = product of:
      0.028725008 = sum of:
        0.028725008 = weight(_text_:retrieval in 559) [ClassicSimilarity], result of:
          0.028725008 = score(doc=559,freq=2.0), product of:
            0.10743652 = queryWeight, product of:
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.035517205 = queryNorm
            0.26736724 = fieldWeight in 559, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.0625 = fieldNorm(doc=559)
      0.11111111 = coord(1/9)
    
    Abstract
    Einleitungsartikel zu einem Themenheft. Informationswissenschaft umfasst als Kerndisziplinen Information Retrieval, Wissensrepräsentation, Informetrie (einschließlich Web Science), Wissensmanagement und die Erforschung von Informations- bzw. Wissensgesellschaft und der Informationsmärkte (Stock & Stock, 2012). In vielen Forschungsprojekten befassen sich Informationswissenschaftler mit Themen, die auch von anderen Wissenschaftsdisziplinen bearbeitet werden. Informationswissenschaft ist also durchaus (auch) eine interdisziplinäre Angelegenheit. Dieses Themenheft von IWP stellt die Interdisziplinarität von Informationswissenschaft anhand von Beispielen der Forschungsergebnisse aus Düsseldorf in den Vordergrund.
  19. Stock, W.G.: Wissenschaftsinformatik : Fundierung, Gegenstand und Methoden (1980) 0.00
    0.0028516096 = product of:
      0.025664486 = sum of:
        0.025664486 = product of:
          0.07699346 = sum of:
            0.07699346 = weight(_text_:22 in 2808) [ClassicSimilarity], result of:
              0.07699346 = score(doc=2808,freq=2.0), product of:
                0.1243752 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.035517205 = queryNorm
                0.61904186 = fieldWeight in 2808, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.125 = fieldNorm(doc=2808)
          0.33333334 = coord(1/3)
      0.11111111 = coord(1/9)
    
    Source
    Ratio. 22(1980), S.155-164
  20. Stock, W.G.: Informationsmangel trotz Überfluß : Informationsgesellschaft verlangt neue Berufe und Berufsbilder (1995) 0.00
    0.0028516096 = product of:
      0.025664486 = sum of:
        0.025664486 = product of:
          0.07699346 = sum of:
            0.07699346 = weight(_text_:22 in 2027) [ClassicSimilarity], result of:
              0.07699346 = score(doc=2027,freq=2.0), product of:
                0.1243752 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.035517205 = queryNorm
                0.61904186 = fieldWeight in 2027, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.125 = fieldNorm(doc=2027)
          0.33333334 = coord(1/3)
      0.11111111 = coord(1/9)
    
    Source
    Insider. 1995, Nr.4, Juli, S.19-22

Years

Languages

  • d 31
  • e 16

Types

  • a 37
  • m 8
  • r 2
  • More… Less…