Search (105 results, page 1 of 6)

  • × theme_ss:"Universale Facettenklassifikationen"
  1. Broughton, V.: ¬The need for a faceted classification as the basis of all methods of information retrieval (2006) 0.03
    0.028839223 = product of:
      0.08651767 = sum of:
        0.040144417 = weight(_text_:retrieval in 2874) [ClassicSimilarity], result of:
          0.040144417 = score(doc=2874,freq=10.0), product of:
            0.10743652 = queryWeight, product of:
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.035517205 = queryNorm
            0.37365708 = fieldWeight in 2874, product of:
              3.1622777 = tf(freq=10.0), with freq of:
                10.0 = termFreq=10.0
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.0390625 = fieldNorm(doc=2874)
        0.026017427 = weight(_text_:use in 2874) [ClassicSimilarity], result of:
          0.026017427 = score(doc=2874,freq=4.0), product of:
            0.10875683 = queryWeight, product of:
              3.0620887 = idf(docFreq=5623, maxDocs=44218)
              0.035517205 = queryNorm
            0.23922569 = fieldWeight in 2874, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              3.0620887 = idf(docFreq=5623, maxDocs=44218)
              0.0390625 = fieldNorm(doc=2874)
        0.020355828 = weight(_text_:of in 2874) [ClassicSimilarity], result of:
          0.020355828 = score(doc=2874,freq=36.0), product of:
            0.05554029 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.035517205 = queryNorm
            0.36650562 = fieldWeight in 2874, product of:
              6.0 = tf(freq=36.0), with freq of:
                36.0 = termFreq=36.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.0390625 = fieldNorm(doc=2874)
      0.33333334 = coord(3/9)
    
    Abstract
    Purpose - The aim of this article is to estimate the impact of faceted classification and the faceted analytical method on the development of various information retrieval tools over the latter part of the twentieth and early twenty-first centuries. Design/methodology/approach - The article presents an examination of various subject access tools intended for retrieval of both print and digital materials to determine whether they exhibit features of faceted systems. Some attention is paid to use of the faceted approach as a means of structuring information on commercial web sites. The secondary and research literature is also surveyed for commentary on and evaluation of facet analysis as a basis for the building of vocabulary and conceptual tools. Findings - The study finds that faceted systems are now very common, with a major increase in their use over the last 15 years. Most LIS subject indexing tools (classifications, subject heading lists and thesauri) now demonstrate features of facet analysis to a greater or lesser degree. A faceted approach is frequently taken to the presentation of product information on commercial web sites, and there is an independent strand of theory and documentation related to this application. There is some significant research on semi-automatic indexing and retrieval (query expansion and query formulation) using facet analytical techniques. Originality/value - This article provides an overview of an important conceptual approach to information retrieval, and compares different understandings and applications of this methodology.
  2. Mills, J.: Faceted classification and logical division in information retrieval (2004) 0.03
    0.02723003 = product of:
      0.08169009 = sum of:
        0.03731488 = weight(_text_:retrieval in 831) [ClassicSimilarity], result of:
          0.03731488 = score(doc=831,freq=6.0), product of:
            0.10743652 = queryWeight, product of:
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.035517205 = queryNorm
            0.34732026 = fieldWeight in 831, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.046875 = fieldNorm(doc=831)
        0.022076517 = weight(_text_:use in 831) [ClassicSimilarity], result of:
          0.022076517 = score(doc=831,freq=2.0), product of:
            0.10875683 = queryWeight, product of:
              3.0620887 = idf(docFreq=5623, maxDocs=44218)
              0.035517205 = queryNorm
            0.20298971 = fieldWeight in 831, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.0620887 = idf(docFreq=5623, maxDocs=44218)
              0.046875 = fieldNorm(doc=831)
        0.022298694 = weight(_text_:of in 831) [ClassicSimilarity], result of:
          0.022298694 = score(doc=831,freq=30.0), product of:
            0.05554029 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.035517205 = queryNorm
            0.4014868 = fieldWeight in 831, product of:
              5.477226 = tf(freq=30.0), with freq of:
                30.0 = termFreq=30.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.046875 = fieldNorm(doc=831)
      0.33333334 = coord(3/9)
    
    Abstract
    The main object of the paper is to demonstrate in detail the role of classification in information retrieval (IR) and the design of classificatory structures by the application of logical division to all forms of the content of records, subject and imaginative. The natural product of such division is a faceted classification. The latter is seen not as a particular kind of library classification but the only viable form enabling the locating and relating of information to be optimally predictable. A detailed exposition of the practical steps in facet analysis is given, drawing on the experience of the new Bliss Classification (BC2). The continued existence of the library as a highly organized information store is assumed. But, it is argued, it must acknowledge the relevance of the revolution in library classification that has taken place. It considers also how alphabetically arranged subject indexes may utilize controlled use of categorical (generically inclusive) and syntactic relations to produce similarly predictable locating and relating systems for IR.
    Footnote
    Artikel in einem Themenheft: The philosophy of information
    Theme
    Klassifikationssysteme im Online-Retrieval
  3. Dimensions of knowledge : facets for knowledge organization (2017) 0.02
    0.018522438 = product of:
      0.05556731 = sum of:
        0.026017427 = weight(_text_:use in 4154) [ClassicSimilarity], result of:
          0.026017427 = score(doc=4154,freq=4.0), product of:
            0.10875683 = queryWeight, product of:
              3.0620887 = idf(docFreq=5623, maxDocs=44218)
              0.035517205 = queryNorm
            0.23922569 = fieldWeight in 4154, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              3.0620887 = idf(docFreq=5623, maxDocs=44218)
              0.0390625 = fieldNorm(doc=4154)
        0.021456927 = weight(_text_:of in 4154) [ClassicSimilarity], result of:
          0.021456927 = score(doc=4154,freq=40.0), product of:
            0.05554029 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.035517205 = queryNorm
            0.38633084 = fieldWeight in 4154, product of:
              6.3245554 = tf(freq=40.0), with freq of:
                40.0 = termFreq=40.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.0390625 = fieldNorm(doc=4154)
        0.008092954 = product of:
          0.02427886 = sum of:
            0.02427886 = weight(_text_:29 in 4154) [ClassicSimilarity], result of:
              0.02427886 = score(doc=4154,freq=2.0), product of:
                0.12493842 = queryWeight, product of:
                  3.5176873 = idf(docFreq=3565, maxDocs=44218)
                  0.035517205 = queryNorm
                0.19432661 = fieldWeight in 4154, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5176873 = idf(docFreq=3565, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=4154)
          0.33333334 = coord(1/3)
      0.33333334 = coord(3/9)
    
    Abstract
    The identification and contextual definition of concepts is the core of knowledge organization. The full expression of comprehension is accomplished through the use of an extension device called the facet. A facet is a category of dimensional characteristics that cross the hierarchical array of concepts to provide extension, or breadth, to the contexts in which they are discovered or expressed in knowledge organization systems. The use of the facet in knowledge organization has a rich history arising in the mid-nineteenth century. As it has matured through more than a century of application, the notion of the facet in knowledge organization has taken on a variety of meanings, from that of simple categories used in web search engines to the more sophisticated idea of intersecting dimensions of knowledge. This book describes the state of the art of the understanding of facets in knowledge organization today.
    Content
    Inhalt: Richard P. Smiraglia: A Brief Introduction to Facets in Knowledge Organization / Kathryn La Barre: Interrogating Facet Theory: Decolonizing Knowledge Organization / Joseph T. Tennis: Never Facets Alone: The Evolving Thought and Persistent Problems in Ranganathan's Theories of Classification / M. P. Satija and Dong-Guen Oh: The DDC and the Knowledge Categories: Dewey did Faceting without Knowing It / Claudio Gnoli: Classifying Phenomena Part 3: Facets / Rick Szostak: Facet Analysis Without Facet Indicators / Elizabeth Milonas: An Examination of Facets within Search Engine Result Pages / Richard P. Smiraglia: Facets for Clustering and Disambiguation: The Domain Discourse of Facets in Knowledge Organization
    Date
    17. 2.2018 19:11:29
  4. Facets: a fruitful notion in many domains : special issue on facet analysis (2008) 0.02
    0.017779421 = product of:
      0.053338263 = sum of:
        0.012694779 = weight(_text_:retrieval in 3262) [ClassicSimilarity], result of:
          0.012694779 = score(doc=3262,freq=4.0), product of:
            0.10743652 = queryWeight, product of:
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.035517205 = queryNorm
            0.11816074 = fieldWeight in 3262, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.01953125 = fieldNorm(doc=3262)
        0.022531753 = weight(_text_:use in 3262) [ClassicSimilarity], result of:
          0.022531753 = score(doc=3262,freq=12.0), product of:
            0.10875683 = queryWeight, product of:
              3.0620887 = idf(docFreq=5623, maxDocs=44218)
              0.035517205 = queryNorm
            0.20717552 = fieldWeight in 3262, product of:
              3.4641016 = tf(freq=12.0), with freq of:
                12.0 = termFreq=12.0
              3.0620887 = idf(docFreq=5623, maxDocs=44218)
              0.01953125 = fieldNorm(doc=3262)
        0.018111732 = weight(_text_:of in 3262) [ClassicSimilarity], result of:
          0.018111732 = score(doc=3262,freq=114.0), product of:
            0.05554029 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.035517205 = queryNorm
            0.32610077 = fieldWeight in 3262, product of:
              10.677078 = tf(freq=114.0), with freq of:
                114.0 = termFreq=114.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.01953125 = fieldNorm(doc=3262)
      0.33333334 = coord(3/9)
    
    Footnote
    Rez. in: KO 36(2009) no.1, S.62-63 (K. La Barre): "This special issue of Axiomathes presents an ambitious dual agenda. It attempts to highlight aspects of facet analysis (as used in LIS) that are shared by cognate approaches in philosophy, psychology, linguistics and computer science. Secondarily, the issue aims to attract others to the study and use of facet analysis. The authors represent a blend of lifetime involvement with facet analysis, such as Vickery, Broughton, Beghtol, and Dahlberg; those with well developed research agendas such as Tudhope, and Priss; and relative newcomers such as Gnoli, Cheti and Paradisi, and Slavic. Omissions are inescapable, but a more balanced issue would have resulted from inclusion of at least one researcher from the Indian school of facet theory. Another valuable addition might have been a reaction to the issue by one of the chief critics of facet analysis. Potentially useful, but absent, is a comprehensive bibliography of resources for those wishing to engage in further study, that now lie scattered throughout the issue. Several of the papers assume relative familiarity with facet analytical concepts and definitions, some of which are contested even within LIS. Gnoli's introduction (p. 127-130) traces the trajectory, extensions and new developments of this analytico- synthetic approach to subject access, while providing a laundry list of cognate approaches that are similar to facet analysis. This brief essay and the article by Priss (p. 243-255) directly addresses this first part of Gnoli's agenda. Priss provides detailed discussion of facet-like structures in computer science (p. 245- 246), and outlines the similarity between Formal Concept Analysis and facets. This comparison is equally fruitful for researchers in computer science and library and information science. By bridging into a discussion of visualization challenges for facet display, further research is also invited. Many of the remaining papers comprehensively detail the intellectual heritage of facet analysis (Beghtol; Broughton, p. 195-198; Dahlberg; Tudhope and Binding, p. 213-215; Vickery). Beghtol's (p. 131-144) examination of the origins of facet theory through the lens of the textbooks written by Ranganathan's mentor W.C.B. Sayers (1881-1960), Manual of Classification (1926, 1944, 1955) and a textbook written by Mills A Modern Outline of Classification (1964), serves to reveal the deep intellectual heritage of the changes in classification theory over time, as well as Ranganathan's own influence on and debt to Sayers.
    Several of the papers are clearly written as primers and neatly address the second agenda item: attracting others to the study and use of facet analysis. The most valuable papers are written in clear, approachable language. Vickery's paper (p. 145-160) is a clarion call for faceted classification and facet analysis. The heart of the paper is a primer for central concepts and techniques. Vickery explains the value of using faceted classification in document retrieval. Also provided are potential solutions to thorny interface and display issues with facets. Vickery looks to complementary themes in knowledge organization, such as thesauri and ontologies as potential areas for extending the facet concept. Broughton (p. 193-210) describes a rigorous approach to the application of facet analysis in the creation of a compatible thesaurus from the schedules of the 2nd edition of the Bliss Classification (BC2). This discussion of exemplary faceted thesauri, recent standards work, and difficulties encountered in the project will provide valuable guidance for future research in this area. Slavic (p. 257-271) provides a challenge to make faceted classification come 'alive' through promoting the use of machine-readable formats for use and exchange in applications such as Topic Maps and SKOS (Simple Knowledge Organization Systems), and as supported by the standard BS8723 (2005) Structured Vocabulary for Information Retrieval. She also urges designers of faceted classifications to get involved in standards work. Cheti and Paradisi (p. 223-241) outline a basic approach to converting an existing subject indexing tool, the Nuovo Soggetario, into a faceted thesaurus through the use of facet analysis. This discussion, well grounded in the canonical literature, may well serve as a primer for future efforts. Also useful for those who wish to construct faceted thesauri is the article by Tudhope and Binding (p. 211-222). This contains an outline of basic elements to be found in exemplar faceted thesauri, and a discussion of project FACET (Faceted Access to Cultural heritage Terminology) with algorithmically-based semantic query expansion in a dataset composed of items from the National Museum of Science and Industry indexed with AAT (Art and Architecture Thesaurus). This paper looks to the future hybridization of ontologies and facets through standards developments such as SKOS because of the "lightweight semantics" inherent in facets.
    Two of the papers revisit the interaction of facets with the theory of integrative levels, which posits that the organization of the natural world reflects increasingly interdependent complexity. This approach was tested as a basis for the creation of faceted classifications in the 1960s. These contemporary treatments of integrative levels are not discipline-driven as were the early approaches, but instead are ontological and phenomenological in focus. Dahlberg (p. 161-172) outlines the creation of the ICC (Information Coding System) and the application of the Systematifier in the generation of facets and the creation of a fully faceted classification. Gnoli (p. 177-192) proposes the use of fundamental categories as a way to redefine facets and fundamental categories in "more universal and level-independent ways" (p. 192). Given that Axiomathes has a stated focus on "contemporary issues in cognition and ontology" and the following thesis: "that real advances in contemporary science may depend upon a consideration of the origins and intellectual history of ideas at the forefront of current research," this venue seems well suited for the implementation of the stated agenda, to illustrate complementary approaches and to stimulate research. As situated, this special issue may well serve as a bridge to a more interdisciplinary dialogue about facet analysis than has previously been the case."
  5. Giri, K.; Gokhale, P.: Developing a banking service ontology using Protégé, an open source software (2015) 0.02
    0.017656898 = product of:
      0.052970693 = sum of:
        0.01795313 = weight(_text_:retrieval in 2793) [ClassicSimilarity], result of:
          0.01795313 = score(doc=2793,freq=2.0), product of:
            0.10743652 = queryWeight, product of:
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.035517205 = queryNorm
            0.16710453 = fieldWeight in 2793, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.0390625 = fieldNorm(doc=2793)
        0.018397098 = weight(_text_:use in 2793) [ClassicSimilarity], result of:
          0.018397098 = score(doc=2793,freq=2.0), product of:
            0.10875683 = queryWeight, product of:
              3.0620887 = idf(docFreq=5623, maxDocs=44218)
              0.035517205 = queryNorm
            0.1691581 = fieldWeight in 2793, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.0620887 = idf(docFreq=5623, maxDocs=44218)
              0.0390625 = fieldNorm(doc=2793)
        0.016620465 = weight(_text_:of in 2793) [ClassicSimilarity], result of:
          0.016620465 = score(doc=2793,freq=24.0), product of:
            0.05554029 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.035517205 = queryNorm
            0.2992506 = fieldWeight in 2793, product of:
              4.8989797 = tf(freq=24.0), with freq of:
                24.0 = termFreq=24.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.0390625 = fieldNorm(doc=2793)
      0.33333334 = coord(3/9)
    
    Abstract
    Computers have transformed from single isolated devices to entry points into a worldwide network of information exchange. Consequently, support in the exchange of data, information, and knowledge is becoming the key issue in computer technology today. The increasing volume of data available on the Web makes information retrieval a tedious and difficult task. Researchers are now exploring the possibility of creating a semantic web, in which meaning is made explicit, allowing machines to process and integrate web resources intelligently. The vision of the semantic web introduces the next generation of the Web by establishing a layer of machine-understandable data. The success of the semantic web depends on the easy creation, integration and use of semantic data, which will depend on web ontology. The faceted approach towards analyzing and representing knowledge given by S R Ranganathan would be useful in this regard. Ontology development in different fields is one such area where this approach given by Ranganathan could be applied. This paper presents a case of developing ontology for the field of banking.
    Source
    Annals of library and information studies. 62(2015) no.4, S.281-285
  6. Heuvel, C. van den: Multidimensional classifications : past and future conceptualizations and visualizations (2012) 0.02
    0.017605338 = product of:
      0.05281601 = sum of:
        0.02513438 = weight(_text_:retrieval in 632) [ClassicSimilarity], result of:
          0.02513438 = score(doc=632,freq=2.0), product of:
            0.10743652 = queryWeight, product of:
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.035517205 = queryNorm
            0.23394634 = fieldWeight in 632, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.0546875 = fieldNorm(doc=632)
        0.016453419 = weight(_text_:of in 632) [ClassicSimilarity], result of:
          0.016453419 = score(doc=632,freq=12.0), product of:
            0.05554029 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.035517205 = queryNorm
            0.29624295 = fieldWeight in 632, product of:
              3.4641016 = tf(freq=12.0), with freq of:
                12.0 = termFreq=12.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.0546875 = fieldNorm(doc=632)
        0.011228213 = product of:
          0.033684637 = sum of:
            0.033684637 = weight(_text_:22 in 632) [ClassicSimilarity], result of:
              0.033684637 = score(doc=632,freq=2.0), product of:
                0.1243752 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.035517205 = queryNorm
                0.2708308 = fieldWeight in 632, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=632)
          0.33333334 = coord(1/3)
      0.33333334 = coord(3/9)
    
    Abstract
    This paper maps the concepts "space" and "dimensionality" in classifications, in particular in visualizations hereof, from a historical perspective. After a historical excursion in the domain of classification theory of what in mathematics is known as dimensionality reduction in representations of a single universe of knowledge, its potentiality will be explored for information retrieval and navigation in the multiverse of the World Wide Web.
    Content
    This paper is an adaptation and augmented version of a paper presented at the NASKO 2011 conference: Charles van den Heuvel. 2011. Multidimensional classifications: Past and future conceptualizations and visualizations. In Smiraglia, Richard P., ed. Proceedings from North American Symposium on Knowledge Organization, Vol. 3. Toronto, Canada, pp. 105-21. Vgl.: http://www.ergon-verlag.de/isko_ko/downloads/ko_39_2012_6_e.pdf.
    Date
    22. 2.2013 11:31:25
  7. Dahlberg, I.: Towards a future for knowledge organization (2006) 0.02
    0.017510058 = product of:
      0.052530173 = sum of:
        0.028725008 = weight(_text_:retrieval in 1476) [ClassicSimilarity], result of:
          0.028725008 = score(doc=1476,freq=2.0), product of:
            0.10743652 = queryWeight, product of:
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.035517205 = queryNorm
            0.26736724 = fieldWeight in 1476, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.0625 = fieldNorm(doc=1476)
        0.010856442 = weight(_text_:of in 1476) [ClassicSimilarity], result of:
          0.010856442 = score(doc=1476,freq=4.0), product of:
            0.05554029 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.035517205 = queryNorm
            0.19546966 = fieldWeight in 1476, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.0625 = fieldNorm(doc=1476)
        0.012948724 = product of:
          0.038846172 = sum of:
            0.038846172 = weight(_text_:29 in 1476) [ClassicSimilarity], result of:
              0.038846172 = score(doc=1476,freq=2.0), product of:
                0.12493842 = queryWeight, product of:
                  3.5176873 = idf(docFreq=3565, maxDocs=44218)
                  0.035517205 = queryNorm
                0.31092256 = fieldWeight in 1476, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5176873 = idf(docFreq=3565, maxDocs=44218)
                  0.0625 = fieldNorm(doc=1476)
          0.33333334 = coord(1/3)
      0.33333334 = coord(3/9)
    
    Abstract
    Discusses the origin and evolution of the Information Coding Classification (ICC); its theoretical basis, and structure and advantageous attributes for organizing knowledge. Pleads that the considerable work already done on the system should be taken up and developed by interested research groups through collaborative effort. Concludes with some thoughts on the future of knowledge organization for information retrieval and other applications
    Date
    29. 2.2008 13:41:01
  8. Satija, M. P.: Use of Colon Classification (1986) 0.02
    0.016494231 = product of:
      0.07422404 = sum of:
        0.058870714 = weight(_text_:use in 101) [ClassicSimilarity], result of:
          0.058870714 = score(doc=101,freq=2.0), product of:
            0.10875683 = queryWeight, product of:
              3.0620887 = idf(docFreq=5623, maxDocs=44218)
              0.035517205 = queryNorm
            0.5413059 = fieldWeight in 101, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.0620887 = idf(docFreq=5623, maxDocs=44218)
              0.125 = fieldNorm(doc=101)
        0.015353328 = weight(_text_:of in 101) [ClassicSimilarity], result of:
          0.015353328 = score(doc=101,freq=2.0), product of:
            0.05554029 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.035517205 = queryNorm
            0.27643585 = fieldWeight in 101, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.125 = fieldNorm(doc=101)
      0.22222222 = coord(2/9)
    
  9. Dousa, T.M.: Categories and the architectonics of system in Julius Otto Kaiser's method of systematic indexing (2014) 0.02
    0.016492724 = product of:
      0.04947817 = sum of:
        0.01795313 = weight(_text_:retrieval in 1418) [ClassicSimilarity], result of:
          0.01795313 = score(doc=1418,freq=2.0), product of:
            0.10743652 = queryWeight, product of:
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.035517205 = queryNorm
            0.16710453 = fieldWeight in 1418, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.0390625 = fieldNorm(doc=1418)
        0.023504887 = weight(_text_:of in 1418) [ClassicSimilarity], result of:
          0.023504887 = score(doc=1418,freq=48.0), product of:
            0.05554029 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.035517205 = queryNorm
            0.42320424 = fieldWeight in 1418, product of:
              6.928203 = tf(freq=48.0), with freq of:
                48.0 = termFreq=48.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.0390625 = fieldNorm(doc=1418)
        0.008020152 = product of:
          0.024060456 = sum of:
            0.024060456 = weight(_text_:22 in 1418) [ClassicSimilarity], result of:
              0.024060456 = score(doc=1418,freq=2.0), product of:
                0.1243752 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.035517205 = queryNorm
                0.19345059 = fieldWeight in 1418, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=1418)
          0.33333334 = coord(1/3)
      0.33333334 = coord(3/9)
    
    Abstract
    Categories, or concepts of high generality representing the most basic kinds of entities in the world, have long been understood to be a fundamental element in the construction of knowledge organization systems (KOSs), particularly faceted ones. Commentators on facet analysis have tended to foreground the role of categories in the structuring of controlled vocabularies and the construction of compound index terms, and the implications of this for subject representation and information retrieval. Less attention has been paid to the variety of ways in which categories can shape the overall architectonic framework of a KOS. This case study explores the range of functions that categories took in structuring various aspects of an early analytico-synthetic KOS, Julius Otto Kaiser's method of Systematic Indexing (SI). Within SI, categories not only functioned as mechanisms to partition an index vocabulary into smaller groupings of terms and as elements in the construction of compound index terms but also served as means of defining the units of indexing, or index items, incorporated into an index; determining the organization of card index files and the articulation of the guide card system serving as a navigational aids thereto; and setting structural constraints to the establishment of cross-references between terms. In all these ways, Kaiser's system of categories contributed to the general systematicity of SI.
    Source
    Knowledge organization in the 21st century: between historical patterns and future prospects. Proceedings of the Thirteenth International ISKO Conference 19-22 May 2014, Kraków, Poland. Ed.: Wieslaw Babik
  10. Aitchison, J.: ¬The thesaurofacet. A multipurpose retrieval language tool (1970) 0.02
    0.01617852 = product of:
      0.07280334 = sum of:
        0.057450015 = weight(_text_:retrieval in 460) [ClassicSimilarity], result of:
          0.057450015 = score(doc=460,freq=2.0), product of:
            0.10743652 = queryWeight, product of:
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.035517205 = queryNorm
            0.5347345 = fieldWeight in 460, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.125 = fieldNorm(doc=460)
        0.015353328 = weight(_text_:of in 460) [ClassicSimilarity], result of:
          0.015353328 = score(doc=460,freq=2.0), product of:
            0.05554029 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.035517205 = queryNorm
            0.27643585 = fieldWeight in 460, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.125 = fieldNorm(doc=460)
      0.22222222 = coord(2/9)
    
    Source
    Journal of documentation. 26(1970), S.187-203
  11. Broughton, V.: ¬A faceted classification as the basis of a faceted terminology : conversion of a classified structure to thesaurus format in the Bliss Bibliographic Classification, 2nd Edition (2008) 0.02
    0.016175931 = product of:
      0.048527792 = sum of:
        0.021543756 = weight(_text_:retrieval in 1857) [ClassicSimilarity], result of:
          0.021543756 = score(doc=1857,freq=2.0), product of:
            0.10743652 = queryWeight, product of:
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.035517205 = queryNorm
            0.20052543 = fieldWeight in 1857, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.046875 = fieldNorm(doc=1857)
        0.017272491 = weight(_text_:of in 1857) [ClassicSimilarity], result of:
          0.017272491 = score(doc=1857,freq=18.0), product of:
            0.05554029 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.035517205 = queryNorm
            0.3109903 = fieldWeight in 1857, product of:
              4.2426405 = tf(freq=18.0), with freq of:
                18.0 = termFreq=18.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.046875 = fieldNorm(doc=1857)
        0.009711544 = product of:
          0.029134631 = sum of:
            0.029134631 = weight(_text_:29 in 1857) [ClassicSimilarity], result of:
              0.029134631 = score(doc=1857,freq=2.0), product of:
                0.12493842 = queryWeight, product of:
                  3.5176873 = idf(docFreq=3565, maxDocs=44218)
                  0.035517205 = queryNorm
                0.23319192 = fieldWeight in 1857, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5176873 = idf(docFreq=3565, maxDocs=44218)
                  0.046875 = fieldNorm(doc=1857)
          0.33333334 = coord(1/3)
      0.33333334 = coord(3/9)
    
    Abstract
    Facet analysis is an established methodology for building classifications and subject indexing systems, but has been less rigorously applied to thesauri. The process of creating a compatible thesaurus from the schedules of the Bliss Bibliographic Classification 2nd edition highlights the ways in which the conceptual relationships in a subject field are handled in the two types of retrieval languages. An underlying uniformity of theory is established, and the way in which software can manage the relationships is discussed. The manner of displaying verbal expressions of concepts (vocabulary control) is also considered, but is found to be less well controlled in the classification than in the thesaurus. Nevertheless, there is good reason to think that facet analysis provides a sound basis for structuring a variety of knowledge organization tools.
    Date
    31. 5.2008 19:11:29
  12. ¬The BSO manual : the development, rationale and use of the Broad System of Ordering (1979) 0.02
    0.015669033 = product of:
      0.07051065 = sum of:
        0.051511873 = weight(_text_:use in 1051) [ClassicSimilarity], result of:
          0.051511873 = score(doc=1051,freq=2.0), product of:
            0.10875683 = queryWeight, product of:
              3.0620887 = idf(docFreq=5623, maxDocs=44218)
              0.035517205 = queryNorm
            0.47364265 = fieldWeight in 1051, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.0620887 = idf(docFreq=5623, maxDocs=44218)
              0.109375 = fieldNorm(doc=1051)
        0.018998774 = weight(_text_:of in 1051) [ClassicSimilarity], result of:
          0.018998774 = score(doc=1051,freq=4.0), product of:
            0.05554029 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.035517205 = queryNorm
            0.34207192 = fieldWeight in 1051, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.109375 = fieldNorm(doc=1051)
      0.22222222 = coord(2/9)
    
  13. Green, R.: Facet analysis and semantic frames (2017) 0.01
    0.0136279315 = product of:
      0.040883794 = sum of:
        0.018397098 = weight(_text_:use in 3849) [ClassicSimilarity], result of:
          0.018397098 = score(doc=3849,freq=2.0), product of:
            0.10875683 = queryWeight, product of:
              3.0620887 = idf(docFreq=5623, maxDocs=44218)
              0.035517205 = queryNorm
            0.1691581 = fieldWeight in 3849, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.0620887 = idf(docFreq=5623, maxDocs=44218)
              0.0390625 = fieldNorm(doc=3849)
        0.014393743 = weight(_text_:of in 3849) [ClassicSimilarity], result of:
          0.014393743 = score(doc=3849,freq=18.0), product of:
            0.05554029 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.035517205 = queryNorm
            0.25915858 = fieldWeight in 3849, product of:
              4.2426405 = tf(freq=18.0), with freq of:
                18.0 = termFreq=18.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.0390625 = fieldNorm(doc=3849)
        0.008092954 = product of:
          0.02427886 = sum of:
            0.02427886 = weight(_text_:29 in 3849) [ClassicSimilarity], result of:
              0.02427886 = score(doc=3849,freq=2.0), product of:
                0.12493842 = queryWeight, product of:
                  3.5176873 = idf(docFreq=3565, maxDocs=44218)
                  0.035517205 = queryNorm
                0.19432661 = fieldWeight in 3849, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5176873 = idf(docFreq=3565, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=3849)
          0.33333334 = coord(1/3)
      0.33333334 = coord(3/9)
    
    Abstract
    Various fields, each with its own theories, techniques, and tools, are concerned with identifying and representing the conceptual structure of specific knowledge domains. This paper compares facet analysis, an analytic technique coming out of knowledge organization (especially as undertaken by members of the Classification Research Group (CRG)), with semantic frame analysis, an analytic technique coming out of lexical semantics (especially as undertaken by the developers of Frame-Net) The investigation addresses three questions: 1) how do CRG-style facet analysis and semantic frame analysis characterize the conceptual structures that they identify?; 2) how similar are the techniques they use?; and, 3) how similar are the conceptual structures they produce? Facet analysis is concerned with the logical categories underlying the terminology of an entire field, while semantic frame analysis is concerned with the participant-and-prop structure manifest in sentences about a type of situation or event. When their scope of application is similar, as, for example, in the areas of the performing arts or education, the resulting facets and semantic frame elements often bear striking resemblance, without being the same; facets are more often expressed as semantic types, while frame elements are more often expressed as roles.
    Date
    29. 9.2017 18:58:02
  14. Austin, D.: Prospects for a new general classification (1969) 0.01
    0.013479943 = product of:
      0.04043983 = sum of:
        0.01795313 = weight(_text_:retrieval in 1519) [ClassicSimilarity], result of:
          0.01795313 = score(doc=1519,freq=2.0), product of:
            0.10743652 = queryWeight, product of:
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.035517205 = queryNorm
            0.16710453 = fieldWeight in 1519, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.0390625 = fieldNorm(doc=1519)
        0.014393743 = weight(_text_:of in 1519) [ClassicSimilarity], result of:
          0.014393743 = score(doc=1519,freq=18.0), product of:
            0.05554029 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.035517205 = queryNorm
            0.25915858 = fieldWeight in 1519, product of:
              4.2426405 = tf(freq=18.0), with freq of:
                18.0 = termFreq=18.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.0390625 = fieldNorm(doc=1519)
        0.008092954 = product of:
          0.02427886 = sum of:
            0.02427886 = weight(_text_:29 in 1519) [ClassicSimilarity], result of:
              0.02427886 = score(doc=1519,freq=2.0), product of:
                0.12493842 = queryWeight, product of:
                  3.5176873 = idf(docFreq=3565, maxDocs=44218)
                  0.035517205 = queryNorm
                0.19432661 = fieldWeight in 1519, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5176873 = idf(docFreq=3565, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=1519)
          0.33333334 = coord(1/3)
      0.33333334 = coord(3/9)
    
    Abstract
    In traditional classification schemes, the universe of knowledge is brokeii down into self- contained disciplines which are further analysed to the point at which a particular concept is located. This leads to problems of: (a) currency: keeping the scheme in line with new discoveries. (b) hospitality: allowing room for insertion of new subjects (c) cross-classification: a concept may be considered in such a way that it fits as logically into one discipline as another. Machine retrieval is also hampered by the fact that any individual concept is notated differently, depending on where in the scheme it appears. The approach now considered is from an organized universe of concepts, every concept being set down only once in an appropriate vocabulary, where it acquires the notation which identifies it wherever it is used. It has been found that all the concepts present in any compound subject can be handled as though they belong to one of two basic concept types, being either Entities or Attributes. In classing, these concepts are identified, and notation is selected from appropriate schedules. Subjects are then built according to formal rules, the final class number incorporating operators which convey the fundamental relationships between concepts. From this viewpoint, the Rules and Operators of the proposed system can be seen as the grammar of an IR language, and the schedules of Entities and Attributes as its vocabulary.
    Date
    10.10.2014 18:17:29
    Source
    Journal of Librarianship. 1(1969) no.3, S.149-169
  15. Wilson, T.D.: ¬The work of the British Classification Research Group (1972) 0.01
    0.013193816 = product of:
      0.05937217 = sum of:
        0.043087512 = weight(_text_:retrieval in 2766) [ClassicSimilarity], result of:
          0.043087512 = score(doc=2766,freq=2.0), product of:
            0.10743652 = queryWeight, product of:
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.035517205 = queryNorm
            0.40105087 = fieldWeight in 2766, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.09375 = fieldNorm(doc=2766)
        0.016284661 = weight(_text_:of in 2766) [ClassicSimilarity], result of:
          0.016284661 = score(doc=2766,freq=4.0), product of:
            0.05554029 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.035517205 = queryNorm
            0.2932045 = fieldWeight in 2766, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.09375 = fieldNorm(doc=2766)
      0.22222222 = coord(2/9)
    
    Source
    Subject retrieval in the seventies: new directions. Proc. of an int. symp. ... College Park, 14.-15.5.1971. Ed.: H.H. Wellisch u.a
  16. Milonas, E.: ¬The use of facets in Web search engines 0.01
    0.012043583 = product of:
      0.054196123 = sum of:
        0.0364244 = weight(_text_:use in 3545) [ClassicSimilarity], result of:
          0.0364244 = score(doc=3545,freq=4.0), product of:
            0.10875683 = queryWeight, product of:
              3.0620887 = idf(docFreq=5623, maxDocs=44218)
              0.035517205 = queryNorm
            0.33491597 = fieldWeight in 3545, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              3.0620887 = idf(docFreq=5623, maxDocs=44218)
              0.0546875 = fieldNorm(doc=3545)
        0.017771725 = weight(_text_:of in 3545) [ClassicSimilarity], result of:
          0.017771725 = score(doc=3545,freq=14.0), product of:
            0.05554029 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.035517205 = queryNorm
            0.31997898 = fieldWeight in 3545, product of:
              3.7416575 = tf(freq=14.0), with freq of:
                14.0 = termFreq=14.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.0546875 = fieldNorm(doc=3545)
      0.22222222 = coord(2/9)
    
    Abstract
    The World Wide Web consists of a plethora of information that a Web searcher can retrieve via Web search engines such as Google. These Web search engines display an insurmountable amount of information in a seemingly unorganized linear format. Recently, some Web search engines have incorporated facets or terms alongside the linear display allowing the searcher the ability to narrow search results. The goal of this study is to examine the use of facets in these Web search engines.
    Source
    Paradigms and conceptual systems in knowledge organization: Proceedings of the Eleventh International ISKO conference, Rome, 23-26 February 2010, ed. Claudio Gnoli, Indeks, Frankfurt M
  17. Broughton, V.: Bliss Bibliographic Classification Second Edition (2009) 0.01
    0.010719837 = product of:
      0.048239265 = sum of:
        0.029435357 = weight(_text_:use in 3755) [ClassicSimilarity], result of:
          0.029435357 = score(doc=3755,freq=2.0), product of:
            0.10875683 = queryWeight, product of:
              3.0620887 = idf(docFreq=5623, maxDocs=44218)
              0.035517205 = queryNorm
            0.27065295 = fieldWeight in 3755, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.0620887 = idf(docFreq=5623, maxDocs=44218)
              0.0625 = fieldNorm(doc=3755)
        0.018803908 = weight(_text_:of in 3755) [ClassicSimilarity], result of:
          0.018803908 = score(doc=3755,freq=12.0), product of:
            0.05554029 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.035517205 = queryNorm
            0.33856338 = fieldWeight in 3755, product of:
              3.4641016 = tf(freq=12.0), with freq of:
                12.0 = termFreq=12.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.0625 = fieldNorm(doc=3755)
      0.22222222 = coord(2/9)
    
    Abstract
    This entry looks at the origins of the Bliss Bibliographic Classification 2nd edition and the theory on which it is built. The reasons for the decision to revise the classification are examined, as are the influences on classification theory of the mid-twentieth century. The process of revision and construction of schedules using facet analysis is described. The use of BC2 is considered along with some recent development work on thesaural and digital formats.
    Source
    Encyclopedia of library and information sciences. 3rd ed. Ed.: M.J. Bates
  18. Classification and information control : Papers representing the work of the Classification Research Group during 1960-1968 (1969) 0.01
    0.010556794 = product of:
      0.047505572 = sum of:
        0.031220913 = weight(_text_:use in 3402) [ClassicSimilarity], result of:
          0.031220913 = score(doc=3402,freq=4.0), product of:
            0.10875683 = queryWeight, product of:
              3.0620887 = idf(docFreq=5623, maxDocs=44218)
              0.035517205 = queryNorm
            0.2870708 = fieldWeight in 3402, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              3.0620887 = idf(docFreq=5623, maxDocs=44218)
              0.046875 = fieldNorm(doc=3402)
        0.016284661 = weight(_text_:of in 3402) [ClassicSimilarity], result of:
          0.016284661 = score(doc=3402,freq=16.0), product of:
            0.05554029 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.035517205 = queryNorm
            0.2932045 = fieldWeight in 3402, product of:
              4.0 = tf(freq=16.0), with freq of:
                16.0 = termFreq=16.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.046875 = fieldNorm(doc=3402)
      0.22222222 = coord(2/9)
    
    Content
    Enthält die Beiträge: FAIRTHORNE, R.A.: 'Browsing' schemes and 'specialist' schemes; KYLE, B.R.F.: Lessons learned from experience in drafting the Kyle classification; MILLS, J.: Inadequacies of exing general classification schemes; COATES, E.J.: CRG proposals for a new general classification; TOMLINSON, H.: Notes on initial work for NATO classification; TOMLINSON, H.: Report on work for new general classification scheme; TOMLINSON, H.: Expansion of categories using mining terms; TOMLINSON, H.: Relationship between geology and mining; TOMLINSON, H.: Use of categories for sculpture; TOMLINSON, H.: Expansion of categories using terms from physics; TOMLINSON, H.: The distinction between physical and chemical entities; TOMLINSON, H.: Concepts within politics; TOMLINSON, H.: Problems arising from first GCS papers; AUSTIN, D.: The theory of integrative levels reconsidered as the basis of a general classification; AUSTIN, D.: Demonstration: provisional scheme for naturally occuring entities; AUSTIN, D.: Stages in classing and exercises; AUSTIN, D.: Report to the Library Association Research Committee on the use of the NATO grant
  19. Hudon, M.: Facet (2020) 0.01
    0.010536093 = product of:
      0.047412418 = sum of:
        0.02513438 = weight(_text_:retrieval in 5899) [ClassicSimilarity], result of:
          0.02513438 = score(doc=5899,freq=2.0), product of:
            0.10743652 = queryWeight, product of:
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.035517205 = queryNorm
            0.23394634 = fieldWeight in 5899, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.0546875 = fieldNorm(doc=5899)
        0.022278037 = weight(_text_:of in 5899) [ClassicSimilarity], result of:
          0.022278037 = score(doc=5899,freq=22.0), product of:
            0.05554029 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.035517205 = queryNorm
            0.40111488 = fieldWeight in 5899, product of:
              4.690416 = tf(freq=22.0), with freq of:
                22.0 = termFreq=22.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.0546875 = fieldNorm(doc=5899)
      0.22222222 = coord(2/9)
    
    Abstract
    S.R. Ranganathan is credited with the introduction of the term "facet" in the field of knowledge organization towards the middle of the twentieth century. Facets have traditionally been used to organize document collections and to express complex subjects. In the digital world, they act as filters to facilitate navigation and improve retrieval. But the popularity of the term does not mean that a definitive characterization of the concept has been established. Indeed, several conceptualizations of the facet co-exist. This article provides an overview of formal and informal definitions found in the literature of knowledge organization, followed by a discussion of four common conceptualizations of the facet: process vs product, nature vs function, object vs subject and organization vs navigation.
    Series
    Reviews of concepts in knowledge organization
  20. Austin, D.: Differences between library classifications and machine-based subject retrieval systems : some inferences drawn from research in Britain, 1963-1973 (1979) 0.01
    0.010111575 = product of:
      0.04550209 = sum of:
        0.03590626 = weight(_text_:retrieval in 2564) [ClassicSimilarity], result of:
          0.03590626 = score(doc=2564,freq=2.0), product of:
            0.10743652 = queryWeight, product of:
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.035517205 = queryNorm
            0.33420905 = fieldWeight in 2564, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.078125 = fieldNorm(doc=2564)
        0.00959583 = weight(_text_:of in 2564) [ClassicSimilarity], result of:
          0.00959583 = score(doc=2564,freq=2.0), product of:
            0.05554029 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.035517205 = queryNorm
            0.17277241 = fieldWeight in 2564, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.078125 = fieldNorm(doc=2564)
      0.22222222 = coord(2/9)
    
    Source
    Ordering systems for global information networks. Proc. of the 3rd Int. Study Conf. on Classification Research, Bombay 1975. Ed. by A. Neelameghan

Languages

  • e 101
  • d 3
  • chi 1
  • More… Less…

Types

  • a 87
  • el 10
  • m 10
  • s 4
  • b 2
  • More… Less…