Search (78 results, page 1 of 4)

  • × theme_ss:"Verteilte bibliographische Datenbanken"
  1. Dempsey, L.; Russell, R.; Kirriemur, J.W.: Towards distributed library systems : Z39.50 in a European context (1996) 0.06
    0.06009387 = product of:
      0.1352112 = sum of:
        0.028725008 = weight(_text_:retrieval in 127) [ClassicSimilarity], result of:
          0.028725008 = score(doc=127,freq=2.0), product of:
            0.10743652 = queryWeight, product of:
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.035517205 = queryNorm
            0.26736724 = fieldWeight in 127, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.0625 = fieldNorm(doc=127)
        0.041627884 = weight(_text_:use in 127) [ClassicSimilarity], result of:
          0.041627884 = score(doc=127,freq=4.0), product of:
            0.10875683 = queryWeight, product of:
              3.0620887 = idf(docFreq=5623, maxDocs=44218)
              0.035517205 = queryNorm
            0.3827611 = fieldWeight in 127, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              3.0620887 = idf(docFreq=5623, maxDocs=44218)
              0.0625 = fieldNorm(doc=127)
        0.013296372 = weight(_text_:of in 127) [ClassicSimilarity], result of:
          0.013296372 = score(doc=127,freq=6.0), product of:
            0.05554029 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.035517205 = queryNorm
            0.23940048 = fieldWeight in 127, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.0625 = fieldNorm(doc=127)
        0.051561933 = product of:
          0.0773429 = sum of:
            0.038846172 = weight(_text_:29 in 127) [ClassicSimilarity], result of:
              0.038846172 = score(doc=127,freq=2.0), product of:
                0.12493842 = queryWeight, product of:
                  3.5176873 = idf(docFreq=3565, maxDocs=44218)
                  0.035517205 = queryNorm
                0.31092256 = fieldWeight in 127, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5176873 = idf(docFreq=3565, maxDocs=44218)
                  0.0625 = fieldNorm(doc=127)
            0.03849673 = weight(_text_:22 in 127) [ClassicSimilarity], result of:
              0.03849673 = score(doc=127,freq=2.0), product of:
                0.1243752 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.035517205 = queryNorm
                0.30952093 = fieldWeight in 127, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0625 = fieldNorm(doc=127)
          0.6666667 = coord(2/3)
      0.44444445 = coord(4/9)
    
    Abstract
    Z39.50 is an information retrieval protocol. It has generated much interest but is so far little deployed in UK systems and services. Gives a functional overview of the protocol itself and the standards background, describes some European initiatives which make use of it, and outlines various issues to do with its future use and acceptance. Z39.50 is a crucial building block of future distributed information systems but it needs to be considered alongside other protocols and services to provide useful applications
    Date
    3. 3.1999 17:29:59
    Source
    Program. 30(1996) no.1, S.1-22
  2. Stark, T.: ¬The Net and Z39.50 : toward a virtual union catalog (1997) 0.04
    0.036097433 = product of:
      0.081219226 = sum of:
        0.02513438 = weight(_text_:retrieval in 3194) [ClassicSimilarity], result of:
          0.02513438 = score(doc=3194,freq=2.0), product of:
            0.10743652 = queryWeight, product of:
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.035517205 = queryNorm
            0.23394634 = fieldWeight in 3194, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.0546875 = fieldNorm(doc=3194)
        0.025755936 = weight(_text_:use in 3194) [ClassicSimilarity], result of:
          0.025755936 = score(doc=3194,freq=2.0), product of:
            0.10875683 = queryWeight, product of:
              3.0620887 = idf(docFreq=5623, maxDocs=44218)
              0.035517205 = queryNorm
            0.23682132 = fieldWeight in 3194, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.0620887 = idf(docFreq=5623, maxDocs=44218)
              0.0546875 = fieldNorm(doc=3194)
        0.018998774 = weight(_text_:of in 3194) [ClassicSimilarity], result of:
          0.018998774 = score(doc=3194,freq=16.0), product of:
            0.05554029 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.035517205 = queryNorm
            0.34207192 = fieldWeight in 3194, product of:
              4.0 = tf(freq=16.0), with freq of:
                16.0 = termFreq=16.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.0546875 = fieldNorm(doc=3194)
        0.011330134 = product of:
          0.0339904 = sum of:
            0.0339904 = weight(_text_:29 in 3194) [ClassicSimilarity], result of:
              0.0339904 = score(doc=3194,freq=2.0), product of:
                0.12493842 = queryWeight, product of:
                  3.5176873 = idf(docFreq=3565, maxDocs=44218)
                  0.035517205 = queryNorm
                0.27205724 = fieldWeight in 3194, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5176873 = idf(docFreq=3565, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=3194)
          0.33333334 = coord(1/3)
      0.44444445 = coord(4/9)
    
    Abstract
    The State Library of Iowa, USA, received a Higher Education Act title II grant from the US Dept. of Education in 1994 to create a demonstration project of new library information technologies. Describes 2 interlinked components of the project: Web-based union catalogue development and statewide deployment of the ANSI/NISO Z39.50 standard for database search and retrieval. Z39.50 was chosen because of its ability to searching multiple remote databases in a single session and its common interface across a variety of implementations. Use of a distributed Z39.50 search makes the need for maintaining large union catalogues unnecessary
    Source
    Computers in libraries. 17(1997) no.10, S.27-29
  3. Johnson, E.H.: Objects for distributed heterogeneous information retrieval (2000) 0.04
    0.035408076 = product of:
      0.07966817 = sum of:
        0.025389558 = weight(_text_:retrieval in 6959) [ClassicSimilarity], result of:
          0.025389558 = score(doc=6959,freq=4.0), product of:
            0.10743652 = queryWeight, product of:
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.035517205 = queryNorm
            0.23632148 = fieldWeight in 6959, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.0390625 = fieldNorm(doc=6959)
        0.031864714 = weight(_text_:use in 6959) [ClassicSimilarity], result of:
          0.031864714 = score(doc=6959,freq=6.0), product of:
            0.10875683 = queryWeight, product of:
              3.0620887 = idf(docFreq=5623, maxDocs=44218)
              0.035517205 = queryNorm
            0.29299045 = fieldWeight in 6959, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              3.0620887 = idf(docFreq=5623, maxDocs=44218)
              0.0390625 = fieldNorm(doc=6959)
        0.014393743 = weight(_text_:of in 6959) [ClassicSimilarity], result of:
          0.014393743 = score(doc=6959,freq=18.0), product of:
            0.05554029 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.035517205 = queryNorm
            0.25915858 = fieldWeight in 6959, product of:
              4.2426405 = tf(freq=18.0), with freq of:
                18.0 = termFreq=18.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.0390625 = fieldNorm(doc=6959)
        0.008020152 = product of:
          0.024060456 = sum of:
            0.024060456 = weight(_text_:22 in 6959) [ClassicSimilarity], result of:
              0.024060456 = score(doc=6959,freq=2.0), product of:
                0.1243752 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.035517205 = queryNorm
                0.19345059 = fieldWeight in 6959, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=6959)
          0.33333334 = coord(1/3)
      0.44444445 = coord(4/9)
    
    Abstract
    The success of the World Wide Web Shows that we can access, search, and retrieve information from globally distributed databases. lf a database, such as a library catalog, has some sort of Web-based front end, we can type its URL into a Web browser and use its HTML-based forms to search for items in that database. Depending an how well the query conforms to the database content, how the search engine interprets the query, and how the server formats the results into HTML, we might actually find something usable. While the first two issues depend an ourselves and the server, an the Web the latter falls to the mercy of HTML, which we all know as a great destroyer of information because it codes for display but not for content description. When looking at an HTML-formatted display, we must depend an our own interpretation to recognize such entities as author names, titles, and subject identifiers. The Web browser can do nothing but display the information. lf we want some other view of the result, such as sorting the records by date (provided it offers such an option to begin with), the server must do it. This makes poor use of the computing power we have at the desktop (or even laptop), which, unless it involves retrieving more records, could easily do the result Set manipulation that we currently send back to the server. Despite having personal computers wich immense computational power, as far as information retrieval goes, we still essentially use them as dumb terminals.
    Date
    22. 9.1997 19:16:05
    Imprint
    Urbana-Champaign, IL : Illinois University at Urbana-Champaign, Graduate School of Library and Information Science
    Source
    Saving the time of the library user through subject access innovation: Papers in honor of Pauline Atherton Cochrane. Ed.: W.J. Wheeler
  4. Nicholson, D.; Steele, M.: CATRIONA : a distributed, locally-oriented, Z39.50 OPAC-based approach to cataloguing the Internet (1996) 0.03
    0.028781977 = product of:
      0.06475945 = sum of:
        0.021543756 = weight(_text_:retrieval in 603) [ClassicSimilarity], result of:
          0.021543756 = score(doc=603,freq=2.0), product of:
            0.10743652 = queryWeight, product of:
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.035517205 = queryNorm
            0.20052543 = fieldWeight in 603, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.046875 = fieldNorm(doc=603)
        0.022076517 = weight(_text_:use in 603) [ClassicSimilarity], result of:
          0.022076517 = score(doc=603,freq=2.0), product of:
            0.10875683 = queryWeight, product of:
              3.0620887 = idf(docFreq=5623, maxDocs=44218)
              0.035517205 = queryNorm
            0.20298971 = fieldWeight in 603, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.0620887 = idf(docFreq=5623, maxDocs=44218)
              0.046875 = fieldNorm(doc=603)
        0.011514995 = weight(_text_:of in 603) [ClassicSimilarity], result of:
          0.011514995 = score(doc=603,freq=8.0), product of:
            0.05554029 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.035517205 = queryNorm
            0.20732689 = fieldWeight in 603, product of:
              2.828427 = tf(freq=8.0), with freq of:
                8.0 = termFreq=8.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.046875 = fieldNorm(doc=603)
        0.009624182 = product of:
          0.028872546 = sum of:
            0.028872546 = weight(_text_:22 in 603) [ClassicSimilarity], result of:
              0.028872546 = score(doc=603,freq=2.0), product of:
                0.1243752 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.035517205 = queryNorm
                0.23214069 = fieldWeight in 603, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046875 = fieldNorm(doc=603)
          0.33333334 = coord(1/3)
      0.44444445 = coord(4/9)
    
    Abstract
    The aims of CATRIONA were: (1) to investigate the requirements for developing procedures and applications for cataloguing and retrieval of networked resources, and (2) to explore the feasibility of a collaborative project to develop such applications and procedures and integrate them with existing library systems. The project established that a distributed catalogue of networked resources integrated with standard Z39.50 library system OPAC interfaces with information on hard-copy resources is already a practical proposition at a basic level. At least one Z39.50 OPAC client can search remote Z39.50 OPACs, retrieve USMARC records with URLs in 856$u, load a viewer like Netscape, and use it to retrieve and display the remotely held electronic resource on the local workstation. A follow-up project on related issues is being finalised.
    Source
    Cataloging and classification quarterly. 22(1996) nos.3/4, S.127-141
  5. Smith, N.: Z39.50 and the OPAC Network in Europe (ONE) Project (1996) 0.03
    0.028254941 = product of:
      0.08476482 = sum of:
        0.02513438 = weight(_text_:retrieval in 3195) [ClassicSimilarity], result of:
          0.02513438 = score(doc=3195,freq=2.0), product of:
            0.10743652 = queryWeight, product of:
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.035517205 = queryNorm
            0.23394634 = fieldWeight in 3195, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.0546875 = fieldNorm(doc=3195)
        0.044610593 = weight(_text_:use in 3195) [ClassicSimilarity], result of:
          0.044610593 = score(doc=3195,freq=6.0), product of:
            0.10875683 = queryWeight, product of:
              3.0620887 = idf(docFreq=5623, maxDocs=44218)
              0.035517205 = queryNorm
            0.4101866 = fieldWeight in 3195, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              3.0620887 = idf(docFreq=5623, maxDocs=44218)
              0.0546875 = fieldNorm(doc=3195)
        0.01501985 = weight(_text_:of in 3195) [ClassicSimilarity], result of:
          0.01501985 = score(doc=3195,freq=10.0), product of:
            0.05554029 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.035517205 = queryNorm
            0.2704316 = fieldWeight in 3195, product of:
              3.1622777 = tf(freq=10.0), with freq of:
                10.0 = termFreq=10.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.0546875 = fieldNorm(doc=3195)
      0.33333334 = coord(3/9)
    
    Abstract
    Examines the use of the Z39.50 Information Retrieval protocol for provision of access to its collections. Z39.50 offers a translation of different search engines developed by library systems suppliers and online database hosts. Traces its development and describes its abstraction and metalanguage, and the TCP/IP and OSI layer. It is being further developed in project ONE - OPAC Network in Europe, and European Union Library Plan project which began in Jan 95, of which the British Library is a partner. It aims to link national library catalogues in an open standards and telecommunications network, and to achieve interoperability by use of Z39.50. Describes the project so far, agreements made, and future developments
    Source
    Information services and use. 16(1996) nos.3/4, S.189-197
  6. Lunau, C.D.: Z39.50: a critical component of the Canadian resource sharing infrastructure : implementation activities and results achieved (1997) 0.02
    0.022181114 = product of:
      0.06654334 = sum of:
        0.029435357 = weight(_text_:use in 3193) [ClassicSimilarity], result of:
          0.029435357 = score(doc=3193,freq=2.0), product of:
            0.10875683 = queryWeight, product of:
              3.0620887 = idf(docFreq=5623, maxDocs=44218)
              0.035517205 = queryNorm
            0.27065295 = fieldWeight in 3193, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.0620887 = idf(docFreq=5623, maxDocs=44218)
              0.0625 = fieldNorm(doc=3193)
        0.024275742 = weight(_text_:of in 3193) [ClassicSimilarity], result of:
          0.024275742 = score(doc=3193,freq=20.0), product of:
            0.05554029 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.035517205 = queryNorm
            0.43708345 = fieldWeight in 3193, product of:
              4.472136 = tf(freq=20.0), with freq of:
                20.0 = termFreq=20.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.0625 = fieldNorm(doc=3193)
        0.012832243 = product of:
          0.03849673 = sum of:
            0.03849673 = weight(_text_:22 in 3193) [ClassicSimilarity], result of:
              0.03849673 = score(doc=3193,freq=2.0), product of:
                0.1243752 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.035517205 = queryNorm
                0.30952093 = fieldWeight in 3193, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0625 = fieldNorm(doc=3193)
          0.33333334 = coord(1/3)
      0.33333334 = coord(3/9)
    
    Abstract
    A decentralized resource sharing environment has been a key strategic initiative of the National Library of Canada for many years. The use of open system communication and ISO standards is one of the cornerstones of this vision of the Canadian library service. Summarizes Canadian Z39.50 implementation activities and the major role played by the National Library of Canada. Highlights the achievements and findings of the virtual Canadian union catalogue (vCuc) pilot project
    Date
    3. 3.1999 17:22:57
    Source
    New review of information networking. 1997, no.3, S.77-92
  7. Friedrich, M.; Schimkat, R.-D.; Küchlin, W.: Information retrieval in distributed environments based on context-aware, proactive documents (2002) 0.02
    0.020103225 = product of:
      0.060309675 = sum of:
        0.03554538 = weight(_text_:retrieval in 3608) [ClassicSimilarity], result of:
          0.03554538 = score(doc=3608,freq=4.0), product of:
            0.10743652 = queryWeight, product of:
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.035517205 = queryNorm
            0.33085006 = fieldWeight in 3608, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.0546875 = fieldNorm(doc=3608)
        0.013434161 = weight(_text_:of in 3608) [ClassicSimilarity], result of:
          0.013434161 = score(doc=3608,freq=8.0), product of:
            0.05554029 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.035517205 = queryNorm
            0.24188137 = fieldWeight in 3608, product of:
              2.828427 = tf(freq=8.0), with freq of:
                8.0 = termFreq=8.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.0546875 = fieldNorm(doc=3608)
        0.011330134 = product of:
          0.0339904 = sum of:
            0.0339904 = weight(_text_:29 in 3608) [ClassicSimilarity], result of:
              0.0339904 = score(doc=3608,freq=2.0), product of:
                0.12493842 = queryWeight, product of:
                  3.5176873 = idf(docFreq=3565, maxDocs=44218)
                  0.035517205 = queryNorm
                0.27205724 = fieldWeight in 3608, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5176873 = idf(docFreq=3565, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=3608)
          0.33333334 = coord(1/3)
      0.33333334 = coord(3/9)
    
    Abstract
    In this position paper we propose a document-centric middleware component called Living Documents to support context-aware information retrieval in distributed communities. A Living Document acts as a micro server for a document which contains computational services, a semi-structured knowledge repository to uniformly store and access context-related information, and finally the document's digital content. Our initial prototype of Living Documents is based an the concept of mobile agents and implemented in Java and XML.
    Source
    Gaining insight from research information (CRIS2002): Proceedings of the 6th International Conference an Current Research Information Systems, University of Kassel, August 29 - 31, 2002. Eds: W. Adamczak u. A. Nase
  8. Lopatenko, A.; Asserson, A.; Jeffery, K.G.: CERIF - Information retrieval of research information in a distributed heterogeneous environment (2002) 0.02
    0.01975816 = product of:
      0.059274476 = sum of:
        0.030467471 = weight(_text_:retrieval in 3597) [ClassicSimilarity], result of:
          0.030467471 = score(doc=3597,freq=4.0), product of:
            0.10743652 = queryWeight, product of:
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.035517205 = queryNorm
            0.2835858 = fieldWeight in 3597, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.046875 = fieldNorm(doc=3597)
        0.01909546 = weight(_text_:of in 3597) [ClassicSimilarity], result of:
          0.01909546 = score(doc=3597,freq=22.0), product of:
            0.05554029 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.035517205 = queryNorm
            0.34381276 = fieldWeight in 3597, product of:
              4.690416 = tf(freq=22.0), with freq of:
                22.0 = termFreq=22.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.046875 = fieldNorm(doc=3597)
        0.009711544 = product of:
          0.029134631 = sum of:
            0.029134631 = weight(_text_:29 in 3597) [ClassicSimilarity], result of:
              0.029134631 = score(doc=3597,freq=2.0), product of:
                0.12493842 = queryWeight, product of:
                  3.5176873 = idf(docFreq=3565, maxDocs=44218)
                  0.035517205 = queryNorm
                0.23319192 = fieldWeight in 3597, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5176873 = idf(docFreq=3565, maxDocs=44218)
                  0.046875 = fieldNorm(doc=3597)
          0.33333334 = coord(1/3)
      0.33333334 = coord(3/9)
    
    Abstract
    User demands to have access to complete and actual information about research may require integration of data from different CRISs. CRISs are rarely homogenous systems and problems of CRISs integration must be addressed from technological point of view. Implementation of CRIS providing access to heterogeneous data distributed among a number of CRISs is described. A few technologies - distributed databases, web services, semantic web are used for distributed CRIS to address different user requirements. Distributed databases serve to implement very efficient integration of homogenous systems, web services - to provide open access to research information, semantic web - to solve problems of integration semantically and structurally heterogeneous data sources and provide intelligent data retrieval interfaces. The problems of data completeness in distributed systems are addressed and CRIS-adequate solution for data completeness is suggested.
    Source
    Gaining insight from research information (CRIS2002): Proceedings of the 6th International Conference an Current Research Information Systems, University of Kassel, August 29 - 31, 2002. Eds: W. Adamczak u. A. Nase
  9. Dupuis, P.; Lapointe, J.: Developpement d'un outil documentaire à Hydro-Quebec : le Thesaurus HQ (1997) 0.02
    0.019206977 = product of:
      0.057620928 = sum of:
        0.029435357 = weight(_text_:use in 3173) [ClassicSimilarity], result of:
          0.029435357 = score(doc=3173,freq=2.0), product of:
            0.10875683 = queryWeight, product of:
              3.0620887 = idf(docFreq=5623, maxDocs=44218)
              0.035517205 = queryNorm
            0.27065295 = fieldWeight in 3173, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.0620887 = idf(docFreq=5623, maxDocs=44218)
              0.0625 = fieldNorm(doc=3173)
        0.015353328 = weight(_text_:of in 3173) [ClassicSimilarity], result of:
          0.015353328 = score(doc=3173,freq=8.0), product of:
            0.05554029 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.035517205 = queryNorm
            0.27643585 = fieldWeight in 3173, product of:
              2.828427 = tf(freq=8.0), with freq of:
                8.0 = termFreq=8.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.0625 = fieldNorm(doc=3173)
        0.012832243 = product of:
          0.03849673 = sum of:
            0.03849673 = weight(_text_:22 in 3173) [ClassicSimilarity], result of:
              0.03849673 = score(doc=3173,freq=2.0), product of:
                0.1243752 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.035517205 = queryNorm
                0.30952093 = fieldWeight in 3173, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0625 = fieldNorm(doc=3173)
          0.33333334 = coord(1/3)
      0.33333334 = coord(3/9)
    
    Abstract
    Describes the backgroud to the construction of a thesaurus at Hydro-Quebec, Quebec, Canada. Several information units, linked to form a network, share the same bibliographic database. The need for coherence and efficiency was the principle motive for the construction of the multidisciplinary thesaurus. Describes the construction process, discusses the specifity of the tool, its circulation, and considers its use on a partnership basis with other information services
    Footnote
    Übers. des Titels: The development of an information tool at Hydro-Quebec: the HQ Thesaurus
    Source
    Argus. 26(1997) no.3, S.16-22
  10. Vikor, D.L.; Gaumond, G.; Heath, F.M.: Building electronic cooperation in the 1990s : the Maryland, Georgia, and Texas experiences (1997) 0.02
    0.019072372 = product of:
      0.057217117 = sum of:
        0.031220913 = weight(_text_:use in 1680) [ClassicSimilarity], result of:
          0.031220913 = score(doc=1680,freq=4.0), product of:
            0.10875683 = queryWeight, product of:
              3.0620887 = idf(docFreq=5623, maxDocs=44218)
              0.035517205 = queryNorm
            0.2870708 = fieldWeight in 1680, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              3.0620887 = idf(docFreq=5623, maxDocs=44218)
              0.046875 = fieldNorm(doc=1680)
        0.016284661 = weight(_text_:of in 1680) [ClassicSimilarity], result of:
          0.016284661 = score(doc=1680,freq=16.0), product of:
            0.05554029 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.035517205 = queryNorm
            0.2932045 = fieldWeight in 1680, product of:
              4.0 = tf(freq=16.0), with freq of:
                16.0 = termFreq=16.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.046875 = fieldNorm(doc=1680)
        0.009711544 = product of:
          0.029134631 = sum of:
            0.029134631 = weight(_text_:29 in 1680) [ClassicSimilarity], result of:
              0.029134631 = score(doc=1680,freq=2.0), product of:
                0.12493842 = queryWeight, product of:
                  3.5176873 = idf(docFreq=3565, maxDocs=44218)
                  0.035517205 = queryNorm
                0.23319192 = fieldWeight in 1680, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5176873 = idf(docFreq=3565, maxDocs=44218)
                  0.046875 = fieldNorm(doc=1680)
          0.33333334 = coord(1/3)
      0.33333334 = coord(3/9)
    
    Abstract
    During the 1990s statewide cooperative use of networks in the USA has moved towards providing mainly access to bibliographic and full-text resources not held locally and usually provided by commercial vendors for use by libraries. Describes 3 academic library networks: the University System of Maryland's Library Information Management System serving the information needs of users throughout the state; Georgia's GALILEO (Georgia Library Learning On-Line) which provides a set of electronic resources and services for the 34 colleges and universities of the University System of Georgia; and TexShare in which all 52 libraries from the public educational institutions in Texas participate. Although the development of funding sources, the technical implementations and support, and the management organization differ from state to state, all three reflect an incremental shift towards the electronic library
    Date
    29. 7.1998 19:42:59
    Source
    Journal of academic librarianship. 23(1997) no.6, S.511-514
  11. Subject retrieval in a networked environment : Proceedings of the IFLA Satellite Meeting held in Dublin, OH, 14-16 August 2001 and sponsored by the IFLA Classification and Indexing Section, the IFLA Information Technology Section and OCLC (2003) 0.02
    0.018817447 = product of:
      0.042339254 = sum of:
        0.014362504 = weight(_text_:retrieval in 3964) [ClassicSimilarity], result of:
          0.014362504 = score(doc=3964,freq=8.0), product of:
            0.10743652 = queryWeight, product of:
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.035517205 = queryNorm
            0.13368362 = fieldWeight in 3964, product of:
              2.828427 = tf(freq=8.0), with freq of:
                8.0 = termFreq=8.0
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.015625 = fieldNorm(doc=3964)
        0.010406971 = weight(_text_:use in 3964) [ClassicSimilarity], result of:
          0.010406971 = score(doc=3964,freq=4.0), product of:
            0.10875683 = queryWeight, product of:
              3.0620887 = idf(docFreq=5623, maxDocs=44218)
              0.035517205 = queryNorm
            0.09569027 = fieldWeight in 3964, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              3.0620887 = idf(docFreq=5623, maxDocs=44218)
              0.015625 = fieldNorm(doc=3964)
        0.014361722 = weight(_text_:of in 3964) [ClassicSimilarity], result of:
          0.014361722 = score(doc=3964,freq=112.0), product of:
            0.05554029 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.035517205 = queryNorm
            0.25858206 = fieldWeight in 3964, product of:
              10.583005 = tf(freq=112.0), with freq of:
                112.0 = termFreq=112.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.015625 = fieldNorm(doc=3964)
        0.0032080607 = product of:
          0.009624182 = sum of:
            0.009624182 = weight(_text_:22 in 3964) [ClassicSimilarity], result of:
              0.009624182 = score(doc=3964,freq=2.0), product of:
                0.1243752 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.035517205 = queryNorm
                0.07738023 = fieldWeight in 3964, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.015625 = fieldNorm(doc=3964)
          0.33333334 = coord(1/3)
      0.44444445 = coord(4/9)
    
    Content
    Enthält die Beiträge: Devadason, F.J., N. Intaraksa u. P. Patamawongjariya u.a.: Faceted indexing application for organizing and accessing internet resources; Nicholson, D., S. Wake: HILT: subject retrieval in a distributed environment; Olson, T.: Integrating LCSH and MeSH in information systems; Kuhr, P.S.: Putting the world back together: mapping multiple vocabularies into a single thesaurus; Freyre, E., M. Naudi: MACS : subject access across languages and networks; McIlwaine, I.C.: The UDC and the World Wide Web; Garrison, W.A.: The Colorado Digitization Project: subject access issues; Vizine-Goetz, D., R. Thompson: Towards DDC-classified displays of Netfirst search results: subject access issues; Godby, C.J., J. Stuler: The Library of Congress Classification as a knowledge base for automatic subject categorization: subject access issues; O'Neill, E.T., E. Childress u. R. Dean u.a.: FAST: faceted application of subject terminology; Bean, C.A., R. Green: Improving subject retrieval with frame representation; Zeng, M.L., Y. Chen: Features of an integrated thesaurus management and search system for the networked environment; Hudon, M.: Subject access to Web resources in education; Qin, J., J. Chen: A multi-layered, multi-dimensional representation of digital educational resources; Riesthuis, G.J.A.: Information languages and multilingual subject access; Geisselmann, F.: Access methods in a database of e-journals; Beghtol, C.: The Iter Bibliography: International standard subject access to medieval and renaissance materials (400-1700); Slavic, A.: General library classification in learning material metadata: the application in IMS/LOM and CDMES metadata schemas; Cordeiro, M.I.: From library authority control to network authoritative metadata sources; Koch, T., H. Neuroth u. M. Day: Renardus: Cross-browsing European subject gateways via a common classification system (DDC); Olson, H.A., D.B. Ward: Mundane standards, everyday technologies, equitable access; Burke, M.A.: Personal Construct Theory as a research tool in Library and Information Science: case study: development of a user-driven classification of photographs
    Footnote
    Rez. in: KO 31(2004) no.2, S.117-118 (D. Campbell): "This excellent volume offers 22 papers delivered at an IFLA Satellite meeting in Dublin Ohio in 2001. The conference gathered together information and computer scientists to discuss an important and difficult question: in what specific ways can the accumulated skills, theories and traditions of librarianship be mobilized to face the challenges of providing subject access to information in present and future networked information environments? The papers which grapple with this question are organized in a surprisingly deft and coherent way. Many conferences and proceedings have unhappy sessions that contain a hodge-podge of papers that didn't quite fit any other categories. As befits a good classificationist, editor I.C. McIlwaine has kept this problem to a minimum. The papers are organized into eight sessions, which split into two broad categories. The first five sessions deal with subject domains, and the last three deal with subject access tools. The five sessions and thirteen papers that discuss access in different domains appear in order of in creasing intension. The first papers deal with access in multilingual environments, followed by papers an access across multiple vocabularies and across sectors, ending up with studies of domain-specific retrieval (primarily education). Some of the papers offer predictably strong work by scholars engaged in ongoing, long-term research. Gerard Riesthuis offers a clear analysis of the complexities of negotiating non-identical thesauri, particularly in cases where hierarchical structure varies across different languages. Hope Olson and Dennis Ward use Olson's familiar and welcome method of using provocative and unconventional theory to generate meliorative approaches to blas in general subject access schemes. Many papers, an the other hand, deal with specific ongoing projects: Renardus, The High Level Thesaurus Project, The Colorado Digitization Project and The Iter Bibliography for medieval and Renaissance material. Most of these papers display a similar structure: an explanation of the theory and purpose of the project, an account of problems encountered in the implementation, and a discussion of the results, both promising and disappointing, thus far. Of these papers, the account of the Multilanguage Access to Subjects Project in Europe (MACS) deserves special mention. In describing how the project is founded an the principle of the equality of languages, with each subject heading language maintained in its own database, and with no single language used as a pivot for the others, Elisabeth Freyre and Max Naudi offer a particularly vivid example of the way the ethics of librarianship translate into pragmatic contexts and concrete procedures. The three sessions and nine papers devoted to subject access tools split into two kinds: papers that discuss the use of theory and research to generate new tools for a networked environment, and those that discuss the transformation of traditional subject access tools in this environment. In the new tool development area, Mary Burke provides a promising example of the bidirectional approach that is so often necessary: in her case study of user-driven classification of photographs, she user personal construct theory to clarify the practice of classification, while at the same time using practice to test the theory. Carol Bean and Rebecca Green offer an intriguing combination of librarianship and computer science, importing frame representation technique from artificial intelligence to standardize syntagmatic relationships to enhance recall and precision.
    The papers discussing the transformation of traditional tools locate the point of transformation in different places. Some, like the papers an DDC, LCC and UDC, suggest that these schemes can be imported into the networked environment and used as a basis for improving access to networked resources, just as they improve access to physical resources. While many of these papers are intriguing, I suspect that convincing those outside the profession will be difficult. In particular, Edward O'Neill and his colleagues, while offering a fascinating suggestion for preserving the Library of Congress Subject Headings and their associated infrastructure by converting them into a faceted scheme, will have an uphill battle convincing the unconverted that LCSH has a place in the online networked environment. Two papers deserve mention for taking a different approach: both Francis Devadason and Maria Ines Cordeiro suggest that we import concepts and techniques rather than realized schemes. Devadason argues for the creation of a faceted pre-coordinate indexing scheme for Internet resources based an Deep Structure indexing, which originates in Bhattacharyya's Postulate-Based Permuted Subject Indexing and in Ranganathan's chain indexing techniques. Cordeiro takes up the vitally important role of authority control in Web environments, suggesting that the techniques of authority control be expanded to enhance user flexibility. By focusing her argument an the concepts rather than an the existing tools, and by making useful and important distinctions between library and non-library uses of authority control, Cordeiro suggests that librarianship's contribution to networked access has less to do with its tools and infrastructure, and more to do with concepts that need to be boldly reinvented. The excellence of this collection derives in part from the energy, insight and diversity of the papers. Credit also goes to the planning and forethought that went into the conference itself by OCLC, the IFLA Classification and Indexing Section, the IFLA Information Technology Section, and the Program Committee, headed by editor I.C. McIlwaine. This collection avoids many of the problems of conference proceedings, and instead offers the best of such proceedings: detail, diversity, and judicious mixtures of theory and practice. Some of the disadvantages that plague conference proceedings appear here. Busy scholars sometimes interpret the concept of "camera-ready copy" creatively, offering diagrams that could have used some streamlining, and label boxes that cut off the tops or bottoms of letters. The papers are necessarily short, and many of them raise issues that deserve more extensive treatment. The issue of subject access in networked environments is crying out for further synthesis at the conceptual and theoretical level. But no synthesis can afford to ignore the kind of energetic, imaginative and important work that the papers in these proceedings represent."
  12. Smith, N.A.: ONE, OPAC network in Europe : taking a further step towards a Europe-wide information network (1995) 0.02
    0.018560153 = product of:
      0.055680454 = sum of:
        0.029435357 = weight(_text_:use in 8452) [ClassicSimilarity], result of:
          0.029435357 = score(doc=8452,freq=2.0), product of:
            0.10875683 = queryWeight, product of:
              3.0620887 = idf(docFreq=5623, maxDocs=44218)
              0.035517205 = queryNorm
            0.27065295 = fieldWeight in 8452, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.0620887 = idf(docFreq=5623, maxDocs=44218)
              0.0625 = fieldNorm(doc=8452)
        0.013296372 = weight(_text_:of in 8452) [ClassicSimilarity], result of:
          0.013296372 = score(doc=8452,freq=6.0), product of:
            0.05554029 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.035517205 = queryNorm
            0.23940048 = fieldWeight in 8452, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.0625 = fieldNorm(doc=8452)
        0.012948724 = product of:
          0.038846172 = sum of:
            0.038846172 = weight(_text_:29 in 8452) [ClassicSimilarity], result of:
              0.038846172 = score(doc=8452,freq=2.0), product of:
                0.12493842 = queryWeight, product of:
                  3.5176873 = idf(docFreq=3565, maxDocs=44218)
                  0.035517205 = queryNorm
                0.31092256 = fieldWeight in 8452, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5176873 = idf(docFreq=3565, maxDocs=44218)
                  0.0625 = fieldNorm(doc=8452)
          0.33333334 = coord(1/3)
      0.33333334 = coord(3/9)
    
    Abstract
    OPAC Network in Europe (ONE) is a project aimed at providing users with better ways to access library OPACs and national catalogues and which will stimulate and facilitate internetworking between libraries in Europe. The project is based on SR/Z39.50 standards which enable users to search widely different computer systems across networks and offer end users the promise of greater ease of use through a solution to the proliferation of different user interfaces to library catalogues
    Source
    Program. 29(1995) no.4, S.427-432
  13. Burrows, T.: ¬The virtual catalogue : bibliographic access for the virtual library (1993) 0.02
    0.018521324 = product of:
      0.05556397 = sum of:
        0.029435357 = weight(_text_:use in 5286) [ClassicSimilarity], result of:
          0.029435357 = score(doc=5286,freq=2.0), product of:
            0.10875683 = queryWeight, product of:
              3.0620887 = idf(docFreq=5623, maxDocs=44218)
              0.035517205 = queryNorm
            0.27065295 = fieldWeight in 5286, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.0620887 = idf(docFreq=5623, maxDocs=44218)
              0.0625 = fieldNorm(doc=5286)
        0.013296372 = weight(_text_:of in 5286) [ClassicSimilarity], result of:
          0.013296372 = score(doc=5286,freq=6.0), product of:
            0.05554029 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.035517205 = queryNorm
            0.23940048 = fieldWeight in 5286, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.0625 = fieldNorm(doc=5286)
        0.012832243 = product of:
          0.03849673 = sum of:
            0.03849673 = weight(_text_:22 in 5286) [ClassicSimilarity], result of:
              0.03849673 = score(doc=5286,freq=2.0), product of:
                0.1243752 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.035517205 = queryNorm
                0.30952093 = fieldWeight in 5286, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0625 = fieldNorm(doc=5286)
          0.33333334 = coord(1/3)
      0.33333334 = coord(3/9)
    
    Abstract
    Proposes a new model for bibliographic access, the virtual catalogue, to serve the virtual library. Suggests the use of current software and networks to build links between bibliographic databases of all kinds, including full text, to enable the user to search a specified subset of databases. Suggests that local data be limited to holdings information linked to, but separate from, bibliographic databases both local and remote
    Date
    8.10.2000 14:47:22
  14. Xu, J.; Croft, W.B.: Topic-based language models for distributed retrieval (2000) 0.02
    0.017496487 = product of:
      0.07873419 = sum of:
        0.06463126 = weight(_text_:retrieval in 38) [ClassicSimilarity], result of:
          0.06463126 = score(doc=38,freq=18.0), product of:
            0.10743652 = queryWeight, product of:
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.035517205 = queryNorm
            0.60157627 = fieldWeight in 38, product of:
              4.2426405 = tf(freq=18.0), with freq of:
                18.0 = termFreq=18.0
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.046875 = fieldNorm(doc=38)
        0.01410293 = weight(_text_:of in 38) [ClassicSimilarity], result of:
          0.01410293 = score(doc=38,freq=12.0), product of:
            0.05554029 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.035517205 = queryNorm
            0.25392252 = fieldWeight in 38, product of:
              3.4641016 = tf(freq=12.0), with freq of:
                12.0 = termFreq=12.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.046875 = fieldNorm(doc=38)
      0.22222222 = coord(2/9)
    
    Abstract
    Effective retrieval in a distributed environment is an important but difficult problem. Lack of effectiveness appears to have two major causes. First, existing collection selection algorithms do not work well on heterogeneous collections. Second, relevant documents are scattered over many collections and searching a few collections misses many relevant documents. We propose a topic-oriented approach to distributed retrieval. With this approach, we structure the document set of a distributed retrieval environment around a set of topics. Retrieval for a query involves first selecting the right topics for the query and then dispatching the search process to collections that contain such topics. The content of a topic is characterized by a language model. In environments where the labeling of documents by topics is unavailable, document clustering is employed for topic identification. Based on these ideas, three methods are proposed to suit different environments. We show that all three methods improve effectiveness of distributed retrieval
    Series
    The Kluwer international series on information retrieval; 7
    Source
    Advances in information retrieval: Recent research from the Center for Intelligent Information Retrieval. Ed.: W.B. Croft
  15. Croft, W.B.: Combining approaches to information retrieval (2000) 0.02
    0.01692619 = product of:
      0.07616785 = sum of:
        0.060934942 = weight(_text_:retrieval in 6862) [ClassicSimilarity], result of:
          0.060934942 = score(doc=6862,freq=16.0), product of:
            0.10743652 = queryWeight, product of:
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.035517205 = queryNorm
            0.5671716 = fieldWeight in 6862, product of:
              4.0 = tf(freq=16.0), with freq of:
                16.0 = termFreq=16.0
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.046875 = fieldNorm(doc=6862)
        0.015232908 = weight(_text_:of in 6862) [ClassicSimilarity], result of:
          0.015232908 = score(doc=6862,freq=14.0), product of:
            0.05554029 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.035517205 = queryNorm
            0.2742677 = fieldWeight in 6862, product of:
              3.7416575 = tf(freq=14.0), with freq of:
                14.0 = termFreq=14.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.046875 = fieldNorm(doc=6862)
      0.22222222 = coord(2/9)
    
    Abstract
    The combination of different text representations and search strategies has become a standard technique for improving the effectiveness of information retrieval. Combination, for example, has been studied extensively in the TREC evaluations and is the basis of the "meta-search" engines used on the Web. This paper examines the development of this technique, including both experimental results and the retrieval models that have been proposed as formal frameworks for combination. We show that combining approaches for information retrieval can be modeled as combining the outputs of multiple classifiers based on one or more representations, and that this simple model can provide explanations for many of the experimental results. We also show that this view of combination is very similar to the inference net model, and that a new approach to retrieval based on language models supports combination and can be integrated with the inference net model
    Series
    The Kluwer international series on information retrieval; 7
    Source
    Advances in information retrieval: Recent research from the Center for Intelligent Information Retrieval. Ed.: W.B. Croft
  16. Sarinder, K.K.S.; Lim, L.H.S.; Merican, A.F.; Dimyati, K.: Biodiversity information retrieval across networked data sets (2010) 0.02
    0.01680176 = product of:
      0.050405275 = sum of:
        0.025389558 = weight(_text_:retrieval in 3951) [ClassicSimilarity], result of:
          0.025389558 = score(doc=3951,freq=4.0), product of:
            0.10743652 = queryWeight, product of:
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.035517205 = queryNorm
            0.23632148 = fieldWeight in 3951, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.0390625 = fieldNorm(doc=3951)
        0.013570553 = weight(_text_:of in 3951) [ClassicSimilarity], result of:
          0.013570553 = score(doc=3951,freq=16.0), product of:
            0.05554029 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.035517205 = queryNorm
            0.24433708 = fieldWeight in 3951, product of:
              4.0 = tf(freq=16.0), with freq of:
                16.0 = termFreq=16.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.0390625 = fieldNorm(doc=3951)
        0.011445164 = product of:
          0.03433549 = sum of:
            0.03433549 = weight(_text_:29 in 3951) [ClassicSimilarity], result of:
              0.03433549 = score(doc=3951,freq=4.0), product of:
                0.12493842 = queryWeight, product of:
                  3.5176873 = idf(docFreq=3565, maxDocs=44218)
                  0.035517205 = queryNorm
                0.2748193 = fieldWeight in 3951, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  3.5176873 = idf(docFreq=3565, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=3951)
          0.33333334 = coord(1/3)
      0.33333334 = coord(3/9)
    
    Abstract
    Purpose - Biodiversity resources are inevitably digital and stored in a wide variety of formats by researchers or stakeholders. In Malaysia, although digitizing biodiversity data has long been stressed, the interoperability of the biodiversity data is still an issue that requires attention. This is because, when data are shared, the question of copyright occurs, creating a setback among researchers wanting to promote or share data through online presentations. To solve this, the aim is to present an approach to integrate data through wrapping of datasets stored in relational databases located on networked platforms. Design/methodology/approach - The approach uses tools such as XML, PHP, ASP and HTML to integrate distributed databases in heterogeneous formats. Five current database integration systems were reviewed and all of them have common attributes such as query-oriented, using a mediator-based approach and integrating a structured data model. These common attributes were also adopted in the proposed solution. Distributed Generic Information Retrieval (DiGIR) was used as a model in designing the proposed solution. Findings - A new database integration system was developed, which is user-friendly and simple with common attributes found in current integration systems.
    Date
    29. 8.2010 12:29:10
    Footnote
    Beitrag in einem Special Issue: Content architecture: exploiting and managing diverse resources: proceedings of the first national conference of the United Kingdom chapter of the International Society for Knowedge Organization (ISKO)
  17. Callan, J.: Distributed information retrieval (2000) 0.02
    0.016666794 = product of:
      0.07500057 = sum of:
        0.061566405 = weight(_text_:retrieval in 31) [ClassicSimilarity], result of:
          0.061566405 = score(doc=31,freq=12.0), product of:
            0.10743652 = queryWeight, product of:
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.035517205 = queryNorm
            0.5730491 = fieldWeight in 31, product of:
              3.4641016 = tf(freq=12.0), with freq of:
                12.0 = termFreq=12.0
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.0546875 = fieldNorm(doc=31)
        0.013434161 = weight(_text_:of in 31) [ClassicSimilarity], result of:
          0.013434161 = score(doc=31,freq=8.0), product of:
            0.05554029 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.035517205 = queryNorm
            0.24188137 = fieldWeight in 31, product of:
              2.828427 = tf(freq=8.0), with freq of:
                8.0 = termFreq=8.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.0546875 = fieldNorm(doc=31)
      0.22222222 = coord(2/9)
    
    Abstract
    A multi-database model of distributed information retrieval is presented, in which people are assumed to have access to many searchable text databases. In such an environment, full-text information retrieval consists of discovering database contents, ranking databases by their expected ability to satisfy the query, searching a small number of databases, and merging results returned by different databases. This paper presents algorithms for each task. It also discusses how to reorganize conventional test collections into multi-database testbeds, and evaluation methodologies for multi-database experiments. A broad and diverse group of experimental results is presented to demonstrate that the algorithms are effective, efficient, robust, and scalable
    Series
    The Kluwer international series on information retrieval; 7
    Source
    Advances in information retrieval: Recent research from the Center for Intelligent Information Retrieval. Ed.: W.B. Croft
  18. Crestani, F.; Wu, S.: Testing the cluster hypothesis in distributed information retrieval (2006) 0.02
    0.016052863 = product of:
      0.07223788 = sum of:
        0.059543792 = weight(_text_:retrieval in 984) [ClassicSimilarity], result of:
          0.059543792 = score(doc=984,freq=22.0), product of:
            0.10743652 = queryWeight, product of:
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.035517205 = queryNorm
            0.554223 = fieldWeight in 984, product of:
              4.690416 = tf(freq=22.0), with freq of:
                22.0 = termFreq=22.0
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.0390625 = fieldNorm(doc=984)
        0.012694089 = weight(_text_:of in 984) [ClassicSimilarity], result of:
          0.012694089 = score(doc=984,freq=14.0), product of:
            0.05554029 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.035517205 = queryNorm
            0.22855641 = fieldWeight in 984, product of:
              3.7416575 = tf(freq=14.0), with freq of:
                14.0 = termFreq=14.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.0390625 = fieldNorm(doc=984)
      0.22222222 = coord(2/9)
    
    Abstract
    How to merge and organise query results retrieved from different resources is one of the key issues in distributed information retrieval. Some previous research and experiments suggest that cluster-based document browsing is more effective than a single merged list. Cluster-based retrieval results presentation is based on the cluster hypothesis, which states that documents that cluster together have a similar relevance to a given query. However, while this hypothesis has been demonstrated to hold in classical information retrieval environments, it has never been fully tested in heterogeneous distributed information retrieval environments. Heterogeneous document representations, the presence of document duplicates, and disparate qualities of retrieval results, are major features of an heterogeneous distributed information retrieval environment that might disrupt the effectiveness of the cluster hypothesis. In this paper we report on an experimental investigation into the validity and effectiveness of the cluster hypothesis in highly heterogeneous distributed information retrieval environments. The results show that although clustering is affected by different retrieval results representations and quality, the cluster hypothesis still holds and that generating hierarchical clusters in highly heterogeneous distributed information retrieval environments is still a very effective way of presenting retrieval results to users.
  19. Krause, J.: Heterogenität und Integration : Zur Weiterentwicklung von Inhaltserschließung und Retrieval in sich veränderten Kontexten (2001) 0.02
    0.015692897 = product of:
      0.04707869 = sum of:
        0.01795313 = weight(_text_:retrieval in 6071) [ClassicSimilarity], result of:
          0.01795313 = score(doc=6071,freq=2.0), product of:
            0.10743652 = queryWeight, product of:
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.035517205 = queryNorm
            0.16710453 = fieldWeight in 6071, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.0390625 = fieldNorm(doc=6071)
        0.018397098 = weight(_text_:use in 6071) [ClassicSimilarity], result of:
          0.018397098 = score(doc=6071,freq=2.0), product of:
            0.10875683 = queryWeight, product of:
              3.0620887 = idf(docFreq=5623, maxDocs=44218)
              0.035517205 = queryNorm
            0.1691581 = fieldWeight in 6071, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.0620887 = idf(docFreq=5623, maxDocs=44218)
              0.0390625 = fieldNorm(doc=6071)
        0.0107284635 = weight(_text_:of in 6071) [ClassicSimilarity], result of:
          0.0107284635 = score(doc=6071,freq=10.0), product of:
            0.05554029 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.035517205 = queryNorm
            0.19316542 = fieldWeight in 6071, product of:
              3.1622777 = tf(freq=10.0), with freq of:
                10.0 = termFreq=10.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.0390625 = fieldNorm(doc=6071)
      0.33333334 = coord(3/9)
    
    Abstract
    As an important support tool in science research, specialized information systems are rapidly changing their character. The potential for improvement compared with today's usual systems is enormous. This fact will be demonstrated by means of two problem complexes: - WWW search engines, which were developed without any government grants, are increasingly dominating the scene. Does the WWW displace information centers with their high quality databases? What are the results we can get nowadays using general WWW search engines? - In addition to the WWW and specialized databases, scientists now use WWW library catalogues of digital libraries, which combine the catalogues from an entire region or a country. At the same time, however, they are faced with highly decentralized heterogeneous databases which contain the widest range of textual sources and data, e.g. from surveys. One consequence is the presence of serious inconsistencies in quality, relevance and content analysis. Thus, the main problem to be solved is as follows: users must be supplied with heterogeneous data from different sources, modalities and content development processes via a visual user interface without inconsistencies in content development, for example, seriously impairing the quality of the search results, e. g. when phrasing their search inquiry in the terminology to which they are accustomed
  20. Avrahami, T.T.; Yau, L.; Si, L.; Callan, J.P.: ¬The FedLemur project : Federated search in the real world (2006) 0.01
    0.0146806985 = product of:
      0.044042096 = sum of:
        0.021543756 = weight(_text_:retrieval in 5271) [ClassicSimilarity], result of:
          0.021543756 = score(doc=5271,freq=2.0), product of:
            0.10743652 = queryWeight, product of:
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.035517205 = queryNorm
            0.20052543 = fieldWeight in 5271, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.046875 = fieldNorm(doc=5271)
        0.012874156 = weight(_text_:of in 5271) [ClassicSimilarity], result of:
          0.012874156 = score(doc=5271,freq=10.0), product of:
            0.05554029 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.035517205 = queryNorm
            0.23179851 = fieldWeight in 5271, product of:
              3.1622777 = tf(freq=10.0), with freq of:
                10.0 = termFreq=10.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.046875 = fieldNorm(doc=5271)
        0.009624182 = product of:
          0.028872546 = sum of:
            0.028872546 = weight(_text_:22 in 5271) [ClassicSimilarity], result of:
              0.028872546 = score(doc=5271,freq=2.0), product of:
                0.1243752 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.035517205 = queryNorm
                0.23214069 = fieldWeight in 5271, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046875 = fieldNorm(doc=5271)
          0.33333334 = coord(1/3)
      0.33333334 = coord(3/9)
    
    Abstract
    Federated search and distributed information retrieval systems provide a single user interface for searching multiple full-text search engines. They have been an active area of research for more than a decade, but in spite of their success as a research topic, they are still rare in operational environments. This article discusses a prototype federated search system developed for the U.S. government's FedStats Web portal, and the issues addressed in adapting research solutions to this operational environment. A series of experiments explore how well prior research results, parameter settings, and heuristics apply in the FedStats environment. The article concludes with a set of lessons learned from this technology transfer effort, including observations about search engine quality in the real world.
    Date
    22. 7.2006 16:02:07
    Source
    Journal of the American Society for Information Science and Technology. 57(2006) no.3, S.347-358

Languages

  • e 57
  • d 19
  • f 1
  • More… Less…

Types

  • a 68
  • el 11
  • m 4
  • x 4
  • r 1
  • s 1
  • More… Less…

Classifications