Search (104 results, page 1 of 6)

  • × theme_ss:"Universale Facettenklassifikationen"
  1. Giri, K.; Gokhale, P.: Developing a banking service ontology using Protégé, an open source software (2015) 0.06
    0.0641703 = product of:
      0.10267249 = sum of:
        0.020873476 = weight(_text_:retrieval in 2793) [ClassicSimilarity], result of:
          0.020873476 = score(doc=2793,freq=2.0), product of:
            0.124912694 = queryWeight, product of:
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.041294612 = queryNorm
            0.16710453 = fieldWeight in 2793, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.0390625 = fieldNorm(doc=2793)
        0.021389665 = weight(_text_:use in 2793) [ClassicSimilarity], result of:
          0.021389665 = score(doc=2793,freq=2.0), product of:
            0.12644777 = queryWeight, product of:
              3.0620887 = idf(docFreq=5623, maxDocs=44218)
              0.041294612 = queryNorm
            0.1691581 = fieldWeight in 2793, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.0620887 = idf(docFreq=5623, maxDocs=44218)
              0.0390625 = fieldNorm(doc=2793)
        0.019324033 = weight(_text_:of in 2793) [ClassicSimilarity], result of:
          0.019324033 = score(doc=2793,freq=24.0), product of:
            0.06457475 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.041294612 = queryNorm
            0.2992506 = fieldWeight in 2793, product of:
              4.8989797 = tf(freq=24.0), with freq of:
                24.0 = termFreq=24.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.0390625 = fieldNorm(doc=2793)
        0.00955682 = product of:
          0.01911364 = sum of:
            0.01911364 = weight(_text_:on in 2793) [ClassicSimilarity], result of:
              0.01911364 = score(doc=2793,freq=6.0), product of:
                0.090823986 = queryWeight, product of:
                  2.199415 = idf(docFreq=13325, maxDocs=44218)
                  0.041294612 = queryNorm
                0.21044704 = fieldWeight in 2793, product of:
                  2.4494898 = tf(freq=6.0), with freq of:
                    6.0 = termFreq=6.0
                  2.199415 = idf(docFreq=13325, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=2793)
          0.5 = coord(1/2)
        0.031528484 = product of:
          0.06305697 = sum of:
            0.06305697 = weight(_text_:computers in 2793) [ClassicSimilarity], result of:
              0.06305697 = score(doc=2793,freq=2.0), product of:
                0.21710795 = queryWeight, product of:
                  5.257537 = idf(docFreq=625, maxDocs=44218)
                  0.041294612 = queryNorm
                0.29044062 = fieldWeight in 2793, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  5.257537 = idf(docFreq=625, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=2793)
          0.5 = coord(1/2)
      0.625 = coord(5/8)
    
    Abstract
    Computers have transformed from single isolated devices to entry points into a worldwide network of information exchange. Consequently, support in the exchange of data, information, and knowledge is becoming the key issue in computer technology today. The increasing volume of data available on the Web makes information retrieval a tedious and difficult task. Researchers are now exploring the possibility of creating a semantic web, in which meaning is made explicit, allowing machines to process and integrate web resources intelligently. The vision of the semantic web introduces the next generation of the Web by establishing a layer of machine-understandable data. The success of the semantic web depends on the easy creation, integration and use of semantic data, which will depend on web ontology. The faceted approach towards analyzing and representing knowledge given by S R Ranganathan would be useful in this regard. Ontology development in different fields is one such area where this approach given by Ranganathan could be applied. This paper presents a case of developing ontology for the field of banking.
    Source
    Annals of library and information studies. 62(2015) no.4, S.281-285
  2. Broughton, V.: ¬The need for a faceted classification as the basis of all methods of information retrieval (2006) 0.06
    0.05646444 = product of:
      0.11292888 = sum of:
        0.046674512 = weight(_text_:retrieval in 2874) [ClassicSimilarity], result of:
          0.046674512 = score(doc=2874,freq=10.0), product of:
            0.124912694 = queryWeight, product of:
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.041294612 = queryNorm
            0.37365708 = fieldWeight in 2874, product of:
              3.1622777 = tf(freq=10.0), with freq of:
                10.0 = termFreq=10.0
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.0390625 = fieldNorm(doc=2874)
        0.030249555 = weight(_text_:use in 2874) [ClassicSimilarity], result of:
          0.030249555 = score(doc=2874,freq=4.0), product of:
            0.12644777 = queryWeight, product of:
              3.0620887 = idf(docFreq=5623, maxDocs=44218)
              0.041294612 = queryNorm
            0.23922569 = fieldWeight in 2874, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              3.0620887 = idf(docFreq=5623, maxDocs=44218)
              0.0390625 = fieldNorm(doc=2874)
        0.023667008 = weight(_text_:of in 2874) [ClassicSimilarity], result of:
          0.023667008 = score(doc=2874,freq=36.0), product of:
            0.06457475 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.041294612 = queryNorm
            0.36650562 = fieldWeight in 2874, product of:
              6.0 = tf(freq=36.0), with freq of:
                36.0 = termFreq=36.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.0390625 = fieldNorm(doc=2874)
        0.012337802 = product of:
          0.024675604 = sum of:
            0.024675604 = weight(_text_:on in 2874) [ClassicSimilarity], result of:
              0.024675604 = score(doc=2874,freq=10.0), product of:
                0.090823986 = queryWeight, product of:
                  2.199415 = idf(docFreq=13325, maxDocs=44218)
                  0.041294612 = queryNorm
                0.271686 = fieldWeight in 2874, product of:
                  3.1622777 = tf(freq=10.0), with freq of:
                    10.0 = termFreq=10.0
                  2.199415 = idf(docFreq=13325, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=2874)
          0.5 = coord(1/2)
      0.5 = coord(4/8)
    
    Abstract
    Purpose - The aim of this article is to estimate the impact of faceted classification and the faceted analytical method on the development of various information retrieval tools over the latter part of the twentieth and early twenty-first centuries. Design/methodology/approach - The article presents an examination of various subject access tools intended for retrieval of both print and digital materials to determine whether they exhibit features of faceted systems. Some attention is paid to use of the faceted approach as a means of structuring information on commercial web sites. The secondary and research literature is also surveyed for commentary on and evaluation of facet analysis as a basis for the building of vocabulary and conceptual tools. Findings - The study finds that faceted systems are now very common, with a major increase in their use over the last 15 years. Most LIS subject indexing tools (classifications, subject heading lists and thesauri) now demonstrate features of facet analysis to a greater or lesser degree. A faceted approach is frequently taken to the presentation of product information on commercial web sites, and there is an independent strand of theory and documentation related to this application. There is some significant research on semi-automatic indexing and retrieval (query expansion and query formulation) using facet analytical techniques. Originality/value - This article provides an overview of an important conceptual approach to information retrieval, and compares different understandings and applications of this methodology.
  3. Mills, J.: Faceted classification and logical division in information retrieval (2004) 0.05
    0.05079969 = product of:
      0.10159938 = sum of:
        0.04338471 = weight(_text_:retrieval in 831) [ClassicSimilarity], result of:
          0.04338471 = score(doc=831,freq=6.0), product of:
            0.124912694 = queryWeight, product of:
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.041294612 = queryNorm
            0.34732026 = fieldWeight in 831, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.046875 = fieldNorm(doc=831)
        0.025667597 = weight(_text_:use in 831) [ClassicSimilarity], result of:
          0.025667597 = score(doc=831,freq=2.0), product of:
            0.12644777 = queryWeight, product of:
              3.0620887 = idf(docFreq=5623, maxDocs=44218)
              0.041294612 = queryNorm
            0.20298971 = fieldWeight in 831, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.0620887 = idf(docFreq=5623, maxDocs=44218)
              0.046875 = fieldNorm(doc=831)
        0.02592591 = weight(_text_:of in 831) [ClassicSimilarity], result of:
          0.02592591 = score(doc=831,freq=30.0), product of:
            0.06457475 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.041294612 = queryNorm
            0.4014868 = fieldWeight in 831, product of:
              5.477226 = tf(freq=30.0), with freq of:
                30.0 = termFreq=30.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.046875 = fieldNorm(doc=831)
        0.006621159 = product of:
          0.013242318 = sum of:
            0.013242318 = weight(_text_:on in 831) [ClassicSimilarity], result of:
              0.013242318 = score(doc=831,freq=2.0), product of:
                0.090823986 = queryWeight, product of:
                  2.199415 = idf(docFreq=13325, maxDocs=44218)
                  0.041294612 = queryNorm
                0.14580199 = fieldWeight in 831, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  2.199415 = idf(docFreq=13325, maxDocs=44218)
                  0.046875 = fieldNorm(doc=831)
          0.5 = coord(1/2)
      0.5 = coord(4/8)
    
    Abstract
    The main object of the paper is to demonstrate in detail the role of classification in information retrieval (IR) and the design of classificatory structures by the application of logical division to all forms of the content of records, subject and imaginative. The natural product of such division is a faceted classification. The latter is seen not as a particular kind of library classification but the only viable form enabling the locating and relating of information to be optimally predictable. A detailed exposition of the practical steps in facet analysis is given, drawing on the experience of the new Bliss Classification (BC2). The continued existence of the library as a highly organized information store is assumed. But, it is argued, it must acknowledge the relevance of the revolution in library classification that has taken place. It considers also how alphabetically arranged subject indexes may utilize controlled use of categorical (generically inclusive) and syntactic relations to produce similarly predictable locating and relating systems for IR.
    Footnote
    Artikel in einem Themenheft: The philosophy of information
    Theme
    Klassifikationssysteme im Online-Retrieval
  4. Austin, D.: Prospects for a new general classification (1969) 0.05
    0.04514385 = product of:
      0.120383605 = sum of:
        0.020873476 = weight(_text_:retrieval in 1519) [ClassicSimilarity], result of:
          0.020873476 = score(doc=1519,freq=2.0), product of:
            0.124912694 = queryWeight, product of:
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.041294612 = queryNorm
            0.16710453 = fieldWeight in 1519, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.0390625 = fieldNorm(doc=1519)
        0.0167351 = weight(_text_:of in 1519) [ClassicSimilarity], result of:
          0.0167351 = score(doc=1519,freq=18.0), product of:
            0.06457475 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.041294612 = queryNorm
            0.25915858 = fieldWeight in 1519, product of:
              4.2426405 = tf(freq=18.0), with freq of:
                18.0 = termFreq=18.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.0390625 = fieldNorm(doc=1519)
        0.082775034 = sum of:
          0.0110352645 = weight(_text_:on in 1519) [ClassicSimilarity], result of:
            0.0110352645 = score(doc=1519,freq=2.0), product of:
              0.090823986 = queryWeight, product of:
                2.199415 = idf(docFreq=13325, maxDocs=44218)
                0.041294612 = queryNorm
              0.121501654 = fieldWeight in 1519, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                2.199415 = idf(docFreq=13325, maxDocs=44218)
                0.0390625 = fieldNorm(doc=1519)
          0.07173977 = weight(_text_:line in 1519) [ClassicSimilarity], result of:
            0.07173977 = score(doc=1519,freq=2.0), product of:
              0.23157367 = queryWeight, product of:
                5.6078424 = idf(docFreq=440, maxDocs=44218)
                0.041294612 = queryNorm
              0.30979243 = fieldWeight in 1519, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                5.6078424 = idf(docFreq=440, maxDocs=44218)
                0.0390625 = fieldNorm(doc=1519)
      0.375 = coord(3/8)
    
    Abstract
    In traditional classification schemes, the universe of knowledge is brokeii down into self- contained disciplines which are further analysed to the point at which a particular concept is located. This leads to problems of: (a) currency: keeping the scheme in line with new discoveries. (b) hospitality: allowing room for insertion of new subjects (c) cross-classification: a concept may be considered in such a way that it fits as logically into one discipline as another. Machine retrieval is also hampered by the fact that any individual concept is notated differently, depending on where in the scheme it appears. The approach now considered is from an organized universe of concepts, every concept being set down only once in an appropriate vocabulary, where it acquires the notation which identifies it wherever it is used. It has been found that all the concepts present in any compound subject can be handled as though they belong to one of two basic concept types, being either Entities or Attributes. In classing, these concepts are identified, and notation is selected from appropriate schedules. Subjects are then built according to formal rules, the final class number incorporating operators which convey the fundamental relationships between concepts. From this viewpoint, the Rules and Operators of the proposed system can be seen as the grammar of an IR language, and the schedules of Entities and Attributes as its vocabulary.
    Source
    Journal of Librarianship. 1(1969) no.3, S.149-169
  5. Heuvel, C. van den: Multidimensional classifications : past and future conceptualizations and visualizations (2012) 0.04
    0.037829667 = product of:
      0.075659335 = sum of:
        0.029222867 = weight(_text_:retrieval in 632) [ClassicSimilarity], result of:
          0.029222867 = score(doc=632,freq=2.0), product of:
            0.124912694 = queryWeight, product of:
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.041294612 = queryNorm
            0.23394634 = fieldWeight in 632, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.0546875 = fieldNorm(doc=632)
        0.019129815 = weight(_text_:of in 632) [ClassicSimilarity], result of:
          0.019129815 = score(doc=632,freq=12.0), product of:
            0.06457475 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.041294612 = queryNorm
            0.29624295 = fieldWeight in 632, product of:
              3.4641016 = tf(freq=12.0), with freq of:
                12.0 = termFreq=12.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.0546875 = fieldNorm(doc=632)
        0.007724685 = product of:
          0.01544937 = sum of:
            0.01544937 = weight(_text_:on in 632) [ClassicSimilarity], result of:
              0.01544937 = score(doc=632,freq=2.0), product of:
                0.090823986 = queryWeight, product of:
                  2.199415 = idf(docFreq=13325, maxDocs=44218)
                  0.041294612 = queryNorm
                0.17010231 = fieldWeight in 632, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  2.199415 = idf(docFreq=13325, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=632)
          0.5 = coord(1/2)
        0.019581974 = product of:
          0.039163947 = sum of:
            0.039163947 = weight(_text_:22 in 632) [ClassicSimilarity], result of:
              0.039163947 = score(doc=632,freq=2.0), product of:
                0.1446067 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.041294612 = queryNorm
                0.2708308 = fieldWeight in 632, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=632)
          0.5 = coord(1/2)
      0.5 = coord(4/8)
    
    Abstract
    This paper maps the concepts "space" and "dimensionality" in classifications, in particular in visualizations hereof, from a historical perspective. After a historical excursion in the domain of classification theory of what in mathematics is known as dimensionality reduction in representations of a single universe of knowledge, its potentiality will be explored for information retrieval and navigation in the multiverse of the World Wide Web.
    Content
    This paper is an adaptation and augmented version of a paper presented at the NASKO 2011 conference: Charles van den Heuvel. 2011. Multidimensional classifications: Past and future conceptualizations and visualizations. In Smiraglia, Richard P., ed. Proceedings from North American Symposium on Knowledge Organization, Vol. 3. Toronto, Canada, pp. 105-21. Vgl.: http://www.ergon-verlag.de/isko_ko/downloads/ko_39_2012_6_e.pdf.
    Date
    22. 2.2013 11:31:25
  6. Dousa, T.M.: Categories and the architectonics of system in Julius Otto Kaiser's method of systematic indexing (2014) 0.03
    0.03385327 = product of:
      0.06770654 = sum of:
        0.020873476 = weight(_text_:retrieval in 1418) [ClassicSimilarity], result of:
          0.020873476 = score(doc=1418,freq=2.0), product of:
            0.124912694 = queryWeight, product of:
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.041294612 = queryNorm
            0.16710453 = fieldWeight in 1418, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.0390625 = fieldNorm(doc=1418)
        0.027328307 = weight(_text_:of in 1418) [ClassicSimilarity], result of:
          0.027328307 = score(doc=1418,freq=48.0), product of:
            0.06457475 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.041294612 = queryNorm
            0.42320424 = fieldWeight in 1418, product of:
              6.928203 = tf(freq=48.0), with freq of:
                48.0 = termFreq=48.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.0390625 = fieldNorm(doc=1418)
        0.0055176322 = product of:
          0.0110352645 = sum of:
            0.0110352645 = weight(_text_:on in 1418) [ClassicSimilarity], result of:
              0.0110352645 = score(doc=1418,freq=2.0), product of:
                0.090823986 = queryWeight, product of:
                  2.199415 = idf(docFreq=13325, maxDocs=44218)
                  0.041294612 = queryNorm
                0.121501654 = fieldWeight in 1418, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  2.199415 = idf(docFreq=13325, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=1418)
          0.5 = coord(1/2)
        0.013987125 = product of:
          0.02797425 = sum of:
            0.02797425 = weight(_text_:22 in 1418) [ClassicSimilarity], result of:
              0.02797425 = score(doc=1418,freq=2.0), product of:
                0.1446067 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.041294612 = queryNorm
                0.19345059 = fieldWeight in 1418, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=1418)
          0.5 = coord(1/2)
      0.5 = coord(4/8)
    
    Abstract
    Categories, or concepts of high generality representing the most basic kinds of entities in the world, have long been understood to be a fundamental element in the construction of knowledge organization systems (KOSs), particularly faceted ones. Commentators on facet analysis have tended to foreground the role of categories in the structuring of controlled vocabularies and the construction of compound index terms, and the implications of this for subject representation and information retrieval. Less attention has been paid to the variety of ways in which categories can shape the overall architectonic framework of a KOS. This case study explores the range of functions that categories took in structuring various aspects of an early analytico-synthetic KOS, Julius Otto Kaiser's method of Systematic Indexing (SI). Within SI, categories not only functioned as mechanisms to partition an index vocabulary into smaller groupings of terms and as elements in the construction of compound index terms but also served as means of defining the units of indexing, or index items, incorporated into an index; determining the organization of card index files and the articulation of the guide card system serving as a navigational aids thereto; and setting structural constraints to the establishment of cross-references between terms. In all these ways, Kaiser's system of categories contributed to the general systematicity of SI.
    Source
    Knowledge organization in the 21st century: between historical patterns and future prospects. Proceedings of the Thirteenth International ISKO Conference 19-22 May 2014, Kraków, Poland. Ed.: Wieslaw Babik
  7. Facets: a fruitful notion in many domains : special issue on facet analysis (2008) 0.03
    0.03339647 = product of:
      0.06679294 = sum of:
        0.014759776 = weight(_text_:retrieval in 3262) [ClassicSimilarity], result of:
          0.014759776 = score(doc=3262,freq=4.0), product of:
            0.124912694 = queryWeight, product of:
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.041294612 = queryNorm
            0.11816074 = fieldWeight in 3262, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.01953125 = fieldNorm(doc=3262)
        0.026196882 = weight(_text_:use in 3262) [ClassicSimilarity], result of:
          0.026196882 = score(doc=3262,freq=12.0), product of:
            0.12644777 = queryWeight, product of:
              3.0620887 = idf(docFreq=5623, maxDocs=44218)
              0.041294612 = queryNorm
            0.20717552 = fieldWeight in 3262, product of:
              3.4641016 = tf(freq=12.0), with freq of:
                12.0 = termFreq=12.0
              3.0620887 = idf(docFreq=5623, maxDocs=44218)
              0.01953125 = fieldNorm(doc=3262)
        0.021057876 = weight(_text_:of in 3262) [ClassicSimilarity], result of:
          0.021057876 = score(doc=3262,freq=114.0), product of:
            0.06457475 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.041294612 = queryNorm
            0.32610077 = fieldWeight in 3262, product of:
              10.677078 = tf(freq=114.0), with freq of:
                114.0 = termFreq=114.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.01953125 = fieldNorm(doc=3262)
        0.00477841 = product of:
          0.00955682 = sum of:
            0.00955682 = weight(_text_:on in 3262) [ClassicSimilarity], result of:
              0.00955682 = score(doc=3262,freq=6.0), product of:
                0.090823986 = queryWeight, product of:
                  2.199415 = idf(docFreq=13325, maxDocs=44218)
                  0.041294612 = queryNorm
                0.10522352 = fieldWeight in 3262, product of:
                  2.4494898 = tf(freq=6.0), with freq of:
                    6.0 = termFreq=6.0
                  2.199415 = idf(docFreq=13325, maxDocs=44218)
                  0.01953125 = fieldNorm(doc=3262)
          0.5 = coord(1/2)
      0.5 = coord(4/8)
    
    Footnote
    Rez. in: KO 36(2009) no.1, S.62-63 (K. La Barre): "This special issue of Axiomathes presents an ambitious dual agenda. It attempts to highlight aspects of facet analysis (as used in LIS) that are shared by cognate approaches in philosophy, psychology, linguistics and computer science. Secondarily, the issue aims to attract others to the study and use of facet analysis. The authors represent a blend of lifetime involvement with facet analysis, such as Vickery, Broughton, Beghtol, and Dahlberg; those with well developed research agendas such as Tudhope, and Priss; and relative newcomers such as Gnoli, Cheti and Paradisi, and Slavic. Omissions are inescapable, but a more balanced issue would have resulted from inclusion of at least one researcher from the Indian school of facet theory. Another valuable addition might have been a reaction to the issue by one of the chief critics of facet analysis. Potentially useful, but absent, is a comprehensive bibliography of resources for those wishing to engage in further study, that now lie scattered throughout the issue. Several of the papers assume relative familiarity with facet analytical concepts and definitions, some of which are contested even within LIS. Gnoli's introduction (p. 127-130) traces the trajectory, extensions and new developments of this analytico- synthetic approach to subject access, while providing a laundry list of cognate approaches that are similar to facet analysis. This brief essay and the article by Priss (p. 243-255) directly addresses this first part of Gnoli's agenda. Priss provides detailed discussion of facet-like structures in computer science (p. 245- 246), and outlines the similarity between Formal Concept Analysis and facets. This comparison is equally fruitful for researchers in computer science and library and information science. By bridging into a discussion of visualization challenges for facet display, further research is also invited. Many of the remaining papers comprehensively detail the intellectual heritage of facet analysis (Beghtol; Broughton, p. 195-198; Dahlberg; Tudhope and Binding, p. 213-215; Vickery). Beghtol's (p. 131-144) examination of the origins of facet theory through the lens of the textbooks written by Ranganathan's mentor W.C.B. Sayers (1881-1960), Manual of Classification (1926, 1944, 1955) and a textbook written by Mills A Modern Outline of Classification (1964), serves to reveal the deep intellectual heritage of the changes in classification theory over time, as well as Ranganathan's own influence on and debt to Sayers.
    Several of the papers are clearly written as primers and neatly address the second agenda item: attracting others to the study and use of facet analysis. The most valuable papers are written in clear, approachable language. Vickery's paper (p. 145-160) is a clarion call for faceted classification and facet analysis. The heart of the paper is a primer for central concepts and techniques. Vickery explains the value of using faceted classification in document retrieval. Also provided are potential solutions to thorny interface and display issues with facets. Vickery looks to complementary themes in knowledge organization, such as thesauri and ontologies as potential areas for extending the facet concept. Broughton (p. 193-210) describes a rigorous approach to the application of facet analysis in the creation of a compatible thesaurus from the schedules of the 2nd edition of the Bliss Classification (BC2). This discussion of exemplary faceted thesauri, recent standards work, and difficulties encountered in the project will provide valuable guidance for future research in this area. Slavic (p. 257-271) provides a challenge to make faceted classification come 'alive' through promoting the use of machine-readable formats for use and exchange in applications such as Topic Maps and SKOS (Simple Knowledge Organization Systems), and as supported by the standard BS8723 (2005) Structured Vocabulary for Information Retrieval. She also urges designers of faceted classifications to get involved in standards work. Cheti and Paradisi (p. 223-241) outline a basic approach to converting an existing subject indexing tool, the Nuovo Soggetario, into a faceted thesaurus through the use of facet analysis. This discussion, well grounded in the canonical literature, may well serve as a primer for future efforts. Also useful for those who wish to construct faceted thesauri is the article by Tudhope and Binding (p. 211-222). This contains an outline of basic elements to be found in exemplar faceted thesauri, and a discussion of project FACET (Faceted Access to Cultural heritage Terminology) with algorithmically-based semantic query expansion in a dataset composed of items from the National Museum of Science and Industry indexed with AAT (Art and Architecture Thesaurus). This paper looks to the future hybridization of ontologies and facets through standards developments such as SKOS because of the "lightweight semantics" inherent in facets.
    Two of the papers revisit the interaction of facets with the theory of integrative levels, which posits that the organization of the natural world reflects increasingly interdependent complexity. This approach was tested as a basis for the creation of faceted classifications in the 1960s. These contemporary treatments of integrative levels are not discipline-driven as were the early approaches, but instead are ontological and phenomenological in focus. Dahlberg (p. 161-172) outlines the creation of the ICC (Information Coding System) and the application of the Systematifier in the generation of facets and the creation of a fully faceted classification. Gnoli (p. 177-192) proposes the use of fundamental categories as a way to redefine facets and fundamental categories in "more universal and level-independent ways" (p. 192). Given that Axiomathes has a stated focus on "contemporary issues in cognition and ontology" and the following thesis: "that real advances in contemporary science may depend upon a consideration of the origins and intellectual history of ideas at the forefront of current research," this venue seems well suited for the implementation of the stated agenda, to illustrate complementary approaches and to stimulate research. As situated, this special issue may well serve as a bridge to a more interdisciplinary dialogue about facet analysis than has previously been the case."
  8. Broughton, V.: Bliss Bibliographic Classification Second Edition (2009) 0.03
    0.026766382 = product of:
      0.07137702 = sum of:
        0.03422346 = weight(_text_:use in 3755) [ClassicSimilarity], result of:
          0.03422346 = score(doc=3755,freq=2.0), product of:
            0.12644777 = queryWeight, product of:
              3.0620887 = idf(docFreq=5623, maxDocs=44218)
              0.041294612 = queryNorm
            0.27065295 = fieldWeight in 3755, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.0620887 = idf(docFreq=5623, maxDocs=44218)
              0.0625 = fieldNorm(doc=3755)
        0.021862645 = weight(_text_:of in 3755) [ClassicSimilarity], result of:
          0.021862645 = score(doc=3755,freq=12.0), product of:
            0.06457475 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.041294612 = queryNorm
            0.33856338 = fieldWeight in 3755, product of:
              3.4641016 = tf(freq=12.0), with freq of:
                12.0 = termFreq=12.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.0625 = fieldNorm(doc=3755)
        0.015290912 = product of:
          0.030581824 = sum of:
            0.030581824 = weight(_text_:on in 3755) [ClassicSimilarity], result of:
              0.030581824 = score(doc=3755,freq=6.0), product of:
                0.090823986 = queryWeight, product of:
                  2.199415 = idf(docFreq=13325, maxDocs=44218)
                  0.041294612 = queryNorm
                0.33671528 = fieldWeight in 3755, product of:
                  2.4494898 = tf(freq=6.0), with freq of:
                    6.0 = termFreq=6.0
                  2.199415 = idf(docFreq=13325, maxDocs=44218)
                  0.0625 = fieldNorm(doc=3755)
          0.5 = coord(1/2)
      0.375 = coord(3/8)
    
    Abstract
    This entry looks at the origins of the Bliss Bibliographic Classification 2nd edition and the theory on which it is built. The reasons for the decision to revise the classification are examined, as are the influences on classification theory of the mid-twentieth century. The process of revision and construction of schedules using facet analysis is described. The use of BC2 is considered along with some recent development work on thesaural and digital formats.
    Source
    Encyclopedia of library and information sciences. 3rd ed. Ed.: M.J. Bates
  9. Classification and information control : Papers representing the work of the Classification Research Group during 1960-1968 (1969) 0.03
    0.02501297 = product of:
      0.066701256 = sum of:
        0.036299463 = weight(_text_:use in 3402) [ClassicSimilarity], result of:
          0.036299463 = score(doc=3402,freq=4.0), product of:
            0.12644777 = queryWeight, product of:
              3.0620887 = idf(docFreq=5623, maxDocs=44218)
              0.041294612 = queryNorm
            0.2870708 = fieldWeight in 3402, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              3.0620887 = idf(docFreq=5623, maxDocs=44218)
              0.046875 = fieldNorm(doc=3402)
        0.018933605 = weight(_text_:of in 3402) [ClassicSimilarity], result of:
          0.018933605 = score(doc=3402,freq=16.0), product of:
            0.06457475 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.041294612 = queryNorm
            0.2932045 = fieldWeight in 3402, product of:
              4.0 = tf(freq=16.0), with freq of:
                16.0 = termFreq=16.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.046875 = fieldNorm(doc=3402)
        0.011468184 = product of:
          0.022936368 = sum of:
            0.022936368 = weight(_text_:on in 3402) [ClassicSimilarity], result of:
              0.022936368 = score(doc=3402,freq=6.0), product of:
                0.090823986 = queryWeight, product of:
                  2.199415 = idf(docFreq=13325, maxDocs=44218)
                  0.041294612 = queryNorm
                0.25253648 = fieldWeight in 3402, product of:
                  2.4494898 = tf(freq=6.0), with freq of:
                    6.0 = termFreq=6.0
                  2.199415 = idf(docFreq=13325, maxDocs=44218)
                  0.046875 = fieldNorm(doc=3402)
          0.5 = coord(1/2)
      0.375 = coord(3/8)
    
    Content
    Enthält die Beiträge: FAIRTHORNE, R.A.: 'Browsing' schemes and 'specialist' schemes; KYLE, B.R.F.: Lessons learned from experience in drafting the Kyle classification; MILLS, J.: Inadequacies of exing general classification schemes; COATES, E.J.: CRG proposals for a new general classification; TOMLINSON, H.: Notes on initial work for NATO classification; TOMLINSON, H.: Report on work for new general classification scheme; TOMLINSON, H.: Expansion of categories using mining terms; TOMLINSON, H.: Relationship between geology and mining; TOMLINSON, H.: Use of categories for sculpture; TOMLINSON, H.: Expansion of categories using terms from physics; TOMLINSON, H.: The distinction between physical and chemical entities; TOMLINSON, H.: Concepts within politics; TOMLINSON, H.: Problems arising from first GCS papers; AUSTIN, D.: The theory of integrative levels reconsidered as the basis of a general classification; AUSTIN, D.: Demonstration: provisional scheme for naturally occuring entities; AUSTIN, D.: Stages in classing and exercises; AUSTIN, D.: Report to the Library Association Research Committee on the use of the NATO grant
  10. Austin, D.: Differences between library classifications and machine-based subject retrieval systems : some inferences drawn from research in Britain, 1963-1973 (1979) 0.02
    0.023977108 = product of:
      0.06393895 = sum of:
        0.04174695 = weight(_text_:retrieval in 2564) [ClassicSimilarity], result of:
          0.04174695 = score(doc=2564,freq=2.0), product of:
            0.124912694 = queryWeight, product of:
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.041294612 = queryNorm
            0.33420905 = fieldWeight in 2564, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.078125 = fieldNorm(doc=2564)
        0.011156735 = weight(_text_:of in 2564) [ClassicSimilarity], result of:
          0.011156735 = score(doc=2564,freq=2.0), product of:
            0.06457475 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.041294612 = queryNorm
            0.17277241 = fieldWeight in 2564, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.078125 = fieldNorm(doc=2564)
        0.0110352645 = product of:
          0.022070529 = sum of:
            0.022070529 = weight(_text_:on in 2564) [ClassicSimilarity], result of:
              0.022070529 = score(doc=2564,freq=2.0), product of:
                0.090823986 = queryWeight, product of:
                  2.199415 = idf(docFreq=13325, maxDocs=44218)
                  0.041294612 = queryNorm
                0.24300331 = fieldWeight in 2564, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  2.199415 = idf(docFreq=13325, maxDocs=44218)
                  0.078125 = fieldNorm(doc=2564)
          0.5 = coord(1/2)
      0.375 = coord(3/8)
    
    Source
    Ordering systems for global information networks. Proc. of the 3rd Int. Study Conf. on Classification Research, Bombay 1975. Ed. by A. Neelameghan
  11. Doria, O.D.: ¬The role of activities awareness in faceted classification development (2012) 0.02
    0.023609659 = product of:
      0.06295909 = sum of:
        0.029945528 = weight(_text_:use in 364) [ClassicSimilarity], result of:
          0.029945528 = score(doc=364,freq=2.0), product of:
            0.12644777 = queryWeight, product of:
              3.0620887 = idf(docFreq=5623, maxDocs=44218)
              0.041294612 = queryNorm
            0.23682132 = fieldWeight in 364, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.0620887 = idf(docFreq=5623, maxDocs=44218)
              0.0546875 = fieldNorm(doc=364)
        0.022089208 = weight(_text_:of in 364) [ClassicSimilarity], result of:
          0.022089208 = score(doc=364,freq=16.0), product of:
            0.06457475 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.041294612 = queryNorm
            0.34207192 = fieldWeight in 364, product of:
              4.0 = tf(freq=16.0), with freq of:
                16.0 = termFreq=16.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.0546875 = fieldNorm(doc=364)
        0.010924355 = product of:
          0.02184871 = sum of:
            0.02184871 = weight(_text_:on in 364) [ClassicSimilarity], result of:
              0.02184871 = score(doc=364,freq=4.0), product of:
                0.090823986 = queryWeight, product of:
                  2.199415 = idf(docFreq=13325, maxDocs=44218)
                  0.041294612 = queryNorm
                0.24056101 = fieldWeight in 364, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  2.199415 = idf(docFreq=13325, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=364)
          0.5 = coord(1/2)
      0.375 = coord(3/8)
    
    Abstract
    In this paper, we propose a part of the methodological work to accompanying the development of a new type of Knowledge Organization System (KOS) based on faceted classification. Our approach to faceted classification differs from its traditional use. We develop a theoretical typology of professional documents based on their uses. Then we correlate these types of documents to specific types of KOS according to their degree of structural constraint and activities they aim to serve.
  12. Dahlberg, I.: ¬The Information Coding Classification (ICC) : a modern, theory-based fully-faceted, universal system of knowledge fields (2008) 0.02
    0.023294942 = product of:
      0.062119845 = sum of:
        0.030249555 = weight(_text_:use in 1854) [ClassicSimilarity], result of:
          0.030249555 = score(doc=1854,freq=4.0), product of:
            0.12644777 = queryWeight, product of:
              3.0620887 = idf(docFreq=5623, maxDocs=44218)
              0.041294612 = queryNorm
            0.23922569 = fieldWeight in 1854, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              3.0620887 = idf(docFreq=5623, maxDocs=44218)
              0.0390625 = fieldNorm(doc=1854)
        0.02231347 = weight(_text_:of in 1854) [ClassicSimilarity], result of:
          0.02231347 = score(doc=1854,freq=32.0), product of:
            0.06457475 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.041294612 = queryNorm
            0.34554482 = fieldWeight in 1854, product of:
              5.656854 = tf(freq=32.0), with freq of:
                32.0 = termFreq=32.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.0390625 = fieldNorm(doc=1854)
        0.00955682 = product of:
          0.01911364 = sum of:
            0.01911364 = weight(_text_:on in 1854) [ClassicSimilarity], result of:
              0.01911364 = score(doc=1854,freq=6.0), product of:
                0.090823986 = queryWeight, product of:
                  2.199415 = idf(docFreq=13325, maxDocs=44218)
                  0.041294612 = queryNorm
                0.21044704 = fieldWeight in 1854, product of:
                  2.4494898 = tf(freq=6.0), with freq of:
                    6.0 = termFreq=6.0
                  2.199415 = idf(docFreq=13325, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=1854)
          0.5 = coord(1/2)
      0.375 = coord(3/8)
    
    Abstract
    Introduction into the structure, contents and specifications (especially the Systematifier) of the Information Coding Classification, developed in the seventies and used in many ways by the author and a few others following its publication in 1982. Its theoretical basis is explained consisting in (1) the Integrative Level Theory, following an evolutionary approach of ontical areas, and integrating also on each level the aspects contained in the sequence of the levels, (2) the distinction between categories of form and categories of being, (3) the application of a feature of Systems Theory (namely the element position plan) and (4) the inclusion of a concept theory, distinguishing four kinds of relationships, originated by the kinds of characteristics (which are the elements of concepts to be derived from the statements on the properties of referents of concepts). Its special Subject Groups on each of its nine levels are outlined and the combinatory facilities at certain positions of the Systematifier are shown. Further elaboration and use have been suggested, be it only as a switching language between the six existing universal classification systems at present in use internationally.
  13. Dimensions of knowledge : facets for knowledge organization (2017) 0.02
    0.022767901 = product of:
      0.0607144 = sum of:
        0.030249555 = weight(_text_:use in 4154) [ClassicSimilarity], result of:
          0.030249555 = score(doc=4154,freq=4.0), product of:
            0.12644777 = queryWeight, product of:
              3.0620887 = idf(docFreq=5623, maxDocs=44218)
              0.041294612 = queryNorm
            0.23922569 = fieldWeight in 4154, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              3.0620887 = idf(docFreq=5623, maxDocs=44218)
              0.0390625 = fieldNorm(doc=4154)
        0.024947217 = weight(_text_:of in 4154) [ClassicSimilarity], result of:
          0.024947217 = score(doc=4154,freq=40.0), product of:
            0.06457475 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.041294612 = queryNorm
            0.38633084 = fieldWeight in 4154, product of:
              6.3245554 = tf(freq=40.0), with freq of:
                40.0 = termFreq=40.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.0390625 = fieldNorm(doc=4154)
        0.0055176322 = product of:
          0.0110352645 = sum of:
            0.0110352645 = weight(_text_:on in 4154) [ClassicSimilarity], result of:
              0.0110352645 = score(doc=4154,freq=2.0), product of:
                0.090823986 = queryWeight, product of:
                  2.199415 = idf(docFreq=13325, maxDocs=44218)
                  0.041294612 = queryNorm
                0.121501654 = fieldWeight in 4154, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  2.199415 = idf(docFreq=13325, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=4154)
          0.5 = coord(1/2)
      0.375 = coord(3/8)
    
    Abstract
    The identification and contextual definition of concepts is the core of knowledge organization. The full expression of comprehension is accomplished through the use of an extension device called the facet. A facet is a category of dimensional characteristics that cross the hierarchical array of concepts to provide extension, or breadth, to the contexts in which they are discovered or expressed in knowledge organization systems. The use of the facet in knowledge organization has a rich history arising in the mid-nineteenth century. As it has matured through more than a century of application, the notion of the facet in knowledge organization has taken on a variety of meanings, from that of simple categories used in web search engines to the more sophisticated idea of intersecting dimensions of knowledge. This book describes the state of the art of the understanding of facets in knowledge organization today.
    Content
    Inhalt: Richard P. Smiraglia: A Brief Introduction to Facets in Knowledge Organization / Kathryn La Barre: Interrogating Facet Theory: Decolonizing Knowledge Organization / Joseph T. Tennis: Never Facets Alone: The Evolving Thought and Persistent Problems in Ranganathan's Theories of Classification / M. P. Satija and Dong-Guen Oh: The DDC and the Knowledge Categories: Dewey did Faceting without Knowing It / Claudio Gnoli: Classifying Phenomena Part 3: Facets / Rick Szostak: Facet Analysis Without Facet Indicators / Elizabeth Milonas: An Examination of Facets within Search Engine Result Pages / Richard P. Smiraglia: Facets for Clustering and Disambiguation: The Domain Discourse of Facets in Knowledge Organization
  14. Sharada, B.A.: Ranganathan's Colon Classification : Kannada-English Version 'dwibindu vargiikaraNa' (2012) 0.02
    0.022138784 = product of:
      0.059036758 = sum of:
        0.029222867 = weight(_text_:retrieval in 827) [ClassicSimilarity], result of:
          0.029222867 = score(doc=827,freq=2.0), product of:
            0.124912694 = queryWeight, product of:
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.041294612 = queryNorm
            0.23394634 = fieldWeight in 827, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.0546875 = fieldNorm(doc=827)
        0.022089208 = weight(_text_:of in 827) [ClassicSimilarity], result of:
          0.022089208 = score(doc=827,freq=16.0), product of:
            0.06457475 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.041294612 = queryNorm
            0.34207192 = fieldWeight in 827, product of:
              4.0 = tf(freq=16.0), with freq of:
                16.0 = termFreq=16.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.0546875 = fieldNorm(doc=827)
        0.007724685 = product of:
          0.01544937 = sum of:
            0.01544937 = weight(_text_:on in 827) [ClassicSimilarity], result of:
              0.01544937 = score(doc=827,freq=2.0), product of:
                0.090823986 = queryWeight, product of:
                  2.199415 = idf(docFreq=13325, maxDocs=44218)
                  0.041294612 = queryNorm
                0.17010231 = fieldWeight in 827, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  2.199415 = idf(docFreq=13325, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=827)
          0.5 = coord(1/2)
      0.375 = coord(3/8)
    
    Abstract
    "dwibindu vargiikaraNa" is the Kannada rendering of the revised Colon Classification, 7th Edition, intended essentially for the classification of macro documents. This paper discusses the planning, preparation, and features of Colon Classification (CC) in Kannada, one of the major Indian languages as well as the Official Language of Karnataka, and uploading the CC on the web. Linguistic issues related to the Kannada rendering are discussed with possible solutions. It creates facilities in the field of Indexing Language (IL) to prepare products such as, Subject Heading List, Information Retrieval Thesaurus, and creation of subject glossaries or updating the available subject dictionaries in Kannada.
    Source
    Categories, contexts and relations in knowledge organization: Proceedings of the Twelfth International ISKO Conference 6-9 August 2012, Mysore, India. Eds.: Neelameghan, A. u. K.S. Raghavan
  15. Dahlberg, I.: Towards a future for knowledge organization (2006) 0.02
    0.021939356 = product of:
      0.058504947 = sum of:
        0.033397563 = weight(_text_:retrieval in 1476) [ClassicSimilarity], result of:
          0.033397563 = score(doc=1476,freq=2.0), product of:
            0.124912694 = queryWeight, product of:
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.041294612 = queryNorm
            0.26736724 = fieldWeight in 1476, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.0625 = fieldNorm(doc=1476)
        0.012622404 = weight(_text_:of in 1476) [ClassicSimilarity], result of:
          0.012622404 = score(doc=1476,freq=4.0), product of:
            0.06457475 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.041294612 = queryNorm
            0.19546966 = fieldWeight in 1476, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.0625 = fieldNorm(doc=1476)
        0.012484977 = product of:
          0.024969954 = sum of:
            0.024969954 = weight(_text_:on in 1476) [ClassicSimilarity], result of:
              0.024969954 = score(doc=1476,freq=4.0), product of:
                0.090823986 = queryWeight, product of:
                  2.199415 = idf(docFreq=13325, maxDocs=44218)
                  0.041294612 = queryNorm
                0.27492687 = fieldWeight in 1476, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  2.199415 = idf(docFreq=13325, maxDocs=44218)
                  0.0625 = fieldNorm(doc=1476)
          0.5 = coord(1/2)
      0.375 = coord(3/8)
    
    Abstract
    Discusses the origin and evolution of the Information Coding Classification (ICC); its theoretical basis, and structure and advantageous attributes for organizing knowledge. Pleads that the considerable work already done on the system should be taken up and developed by interested research groups through collaborative effort. Concludes with some thoughts on the future of knowledge organization for information retrieval and other applications
  16. Satija, M. P.: Use of Colon Classification (1986) 0.02
    0.021574423 = product of:
      0.08629769 = sum of:
        0.06844692 = weight(_text_:use in 101) [ClassicSimilarity], result of:
          0.06844692 = score(doc=101,freq=2.0), product of:
            0.12644777 = queryWeight, product of:
              3.0620887 = idf(docFreq=5623, maxDocs=44218)
              0.041294612 = queryNorm
            0.5413059 = fieldWeight in 101, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.0620887 = idf(docFreq=5623, maxDocs=44218)
              0.125 = fieldNorm(doc=101)
        0.017850775 = weight(_text_:of in 101) [ClassicSimilarity], result of:
          0.017850775 = score(doc=101,freq=2.0), product of:
            0.06457475 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.041294612 = queryNorm
            0.27643585 = fieldWeight in 101, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.125 = fieldNorm(doc=101)
      0.25 = coord(2/8)
    
  17. Aitchison, J.: ¬The thesaurofacet. A multipurpose retrieval language tool (1970) 0.02
    0.021161474 = product of:
      0.0846459 = sum of:
        0.066795126 = weight(_text_:retrieval in 460) [ClassicSimilarity], result of:
          0.066795126 = score(doc=460,freq=2.0), product of:
            0.124912694 = queryWeight, product of:
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.041294612 = queryNorm
            0.5347345 = fieldWeight in 460, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.125 = fieldNorm(doc=460)
        0.017850775 = weight(_text_:of in 460) [ClassicSimilarity], result of:
          0.017850775 = score(doc=460,freq=2.0), product of:
            0.06457475 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.041294612 = queryNorm
            0.27643585 = fieldWeight in 460, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.125 = fieldNorm(doc=460)
      0.25 = coord(2/8)
    
    Source
    Journal of documentation. 26(1970), S.187-203
  18. ¬The BSO manual : the development, rationale and use of the Broad System of Ordering (1979) 0.02
    0.020495066 = product of:
      0.081980266 = sum of:
        0.059891056 = weight(_text_:use in 1051) [ClassicSimilarity], result of:
          0.059891056 = score(doc=1051,freq=2.0), product of:
            0.12644777 = queryWeight, product of:
              3.0620887 = idf(docFreq=5623, maxDocs=44218)
              0.041294612 = queryNorm
            0.47364265 = fieldWeight in 1051, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.0620887 = idf(docFreq=5623, maxDocs=44218)
              0.109375 = fieldNorm(doc=1051)
        0.022089208 = weight(_text_:of in 1051) [ClassicSimilarity], result of:
          0.022089208 = score(doc=1051,freq=4.0), product of:
            0.06457475 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.041294612 = queryNorm
            0.34207192 = fieldWeight in 1051, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.109375 = fieldNorm(doc=1051)
      0.25 = coord(2/8)
    
  19. Szostak, R.: Facet analysis using grammar (2017) 0.02
    0.020027824 = product of:
      0.05340753 = sum of:
        0.030249555 = weight(_text_:use in 3866) [ClassicSimilarity], result of:
          0.030249555 = score(doc=3866,freq=4.0), product of:
            0.12644777 = queryWeight, product of:
              3.0620887 = idf(docFreq=5623, maxDocs=44218)
              0.041294612 = queryNorm
            0.23922569 = fieldWeight in 3866, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              3.0620887 = idf(docFreq=5623, maxDocs=44218)
              0.0390625 = fieldNorm(doc=3866)
        0.017640345 = weight(_text_:of in 3866) [ClassicSimilarity], result of:
          0.017640345 = score(doc=3866,freq=20.0), product of:
            0.06457475 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.041294612 = queryNorm
            0.27317715 = fieldWeight in 3866, product of:
              4.472136 = tf(freq=20.0), with freq of:
                20.0 = termFreq=20.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.0390625 = fieldNorm(doc=3866)
        0.0055176322 = product of:
          0.0110352645 = sum of:
            0.0110352645 = weight(_text_:on in 3866) [ClassicSimilarity], result of:
              0.0110352645 = score(doc=3866,freq=2.0), product of:
                0.090823986 = queryWeight, product of:
                  2.199415 = idf(docFreq=13325, maxDocs=44218)
                  0.041294612 = queryNorm
                0.121501654 = fieldWeight in 3866, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  2.199415 = idf(docFreq=13325, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=3866)
          0.5 = coord(1/2)
      0.375 = coord(3/8)
    
    Abstract
    Basic grammar can achieve most/all of the goals of facet analysis without requiring the use of facet indicators. Facet analysis is thus rendered far simpler for classificationist, classifier, and user. We compare facet analysis and grammar, and show how various facets can be represented grammatically. We then address potential challenges in employing grammar as subject classification. A detailed review of basic grammar supports the hypothesis that it is feasible to usefully employ grammatical construction in subject classification. A manageable - and programmable - set of adjustments is required as classifiers move fairly directly from sentences in a document (or object or idea) description to formulating a subject classification. The user likewise can move fairly quickly from a query to the identification of relevant works. A review of theories in linguistics indicates that a grammatical approach should reduce ambiguity while encouraging ease of use. This paper applies the recommended approach to a small sample of recently published books. It finds that the approach is feasible and results in a more precise subject description than the subject headings assigned at present. It then explores PRECIS, an indexing system developed in the 1970s. Though our approach differs from PRECIS in many important ways, the experience of PRECIS supports our conclusions regarding both feasibility and precision.
    Content
    Beitrag bei: NASKO 2017: Visualizing Knowledge Organization: Bringing Focus to Abstract Realities. The sixth North American Symposium on Knowledge Organization (NASKO 2017), June 15-16, 2017, in Champaign, IL, USA.
  20. Frické, M.: Faceted classification : orthogonal facets and graphs of foci? (2011) 0.02
    0.019986475 = product of:
      0.053297266 = sum of:
        0.021389665 = weight(_text_:use in 4850) [ClassicSimilarity], result of:
          0.021389665 = score(doc=4850,freq=2.0), product of:
            0.12644777 = queryWeight, product of:
              3.0620887 = idf(docFreq=5623, maxDocs=44218)
              0.041294612 = queryNorm
            0.1691581 = fieldWeight in 4850, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.0620887 = idf(docFreq=5623, maxDocs=44218)
              0.0390625 = fieldNorm(doc=4850)
        0.02087234 = weight(_text_:of in 4850) [ClassicSimilarity], result of:
          0.02087234 = score(doc=4850,freq=28.0), product of:
            0.06457475 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.041294612 = queryNorm
            0.32322758 = fieldWeight in 4850, product of:
              5.2915025 = tf(freq=28.0), with freq of:
                28.0 = termFreq=28.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.0390625 = fieldNorm(doc=4850)
        0.0110352645 = product of:
          0.022070529 = sum of:
            0.022070529 = weight(_text_:on in 4850) [ClassicSimilarity], result of:
              0.022070529 = score(doc=4850,freq=8.0), product of:
                0.090823986 = queryWeight, product of:
                  2.199415 = idf(docFreq=13325, maxDocs=44218)
                  0.041294612 = queryNorm
                0.24300331 = fieldWeight in 4850, product of:
                  2.828427 = tf(freq=8.0), with freq of:
                    8.0 = termFreq=8.0
                  2.199415 = idf(docFreq=13325, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=4850)
          0.5 = coord(1/2)
      0.375 = coord(3/8)
    
    Abstract
    Faceted classification is based on the core ideas that there are kinds or categories of concepts, and that compound, or non-elemental, concepts, which are ubiquitous in classification and subject annotation, are to be identified as being constructions of concepts of the different kinds. The categories of concepts are facets, and the individual concepts, which are instances of those facets, are foci. Usually, there are constraints on how the foci can be combined into the compound concepts. What is standard is that any combination of foci is permitted from kind-to-kind across facets, but that the foci within a facet are restricted in their use by virtue of being dependent on each other, either by being exclusive of each other or by bearing some kind of hierarchical relationship to each other. Thus faceted classification is typically considered to be a synthetic classification consisting of orthogonal facets which themselves are composed individually either of exclusive foci or of a hierarchy of foci. This paper addresses in particular this second exclusive-or-hierarchical foci condition. It evaluates the arguments for the condition and finds them not conclusive. It suggests that wider synthetic constructions should be allowed on foci within a facet.

Languages

  • e 101
  • d 2
  • chi 1
  • More… Less…

Types

  • a 86
  • el 10
  • m 10
  • s 4
  • b 2
  • More… Less…