Search (9 results, page 1 of 1)

  • × theme_ss:"Elektronisches Publizieren"
  • × theme_ss:"Informetrie"
  1. Ortega, J.L.: ¬The presence of academic journals on Twitter and its relationship with dissemination (tweets) and research impact (citations) (2017) 0.02
    0.015303934 = product of:
      0.061215736 = sum of:
        0.061215736 = sum of:
          0.029439485 = weight(_text_:management in 4410) [ClassicSimilarity], result of:
            0.029439485 = score(doc=4410,freq=2.0), product of:
              0.15810528 = queryWeight, product of:
                3.3706124 = idf(docFreq=4130, maxDocs=44218)
                0.046906993 = queryNorm
              0.18620178 = fieldWeight in 4410, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                3.3706124 = idf(docFreq=4130, maxDocs=44218)
                0.0390625 = fieldNorm(doc=4410)
          0.03177625 = weight(_text_:22 in 4410) [ClassicSimilarity], result of:
            0.03177625 = score(doc=4410,freq=2.0), product of:
              0.1642603 = queryWeight, product of:
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.046906993 = queryNorm
              0.19345059 = fieldWeight in 4410, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.0390625 = fieldNorm(doc=4410)
      0.25 = coord(1/4)
    
    Date
    20. 1.2015 18:30:22
    Source
    Aslib journal of information management. 69(2017) no.6, S.674-687
  2. Lawrence, S.: Online or Invisible? (2001) 0.01
    0.013971052 = product of:
      0.05588421 = sum of:
        0.05588421 = weight(_text_:services in 1063) [ClassicSimilarity], result of:
          0.05588421 = score(doc=1063,freq=8.0), product of:
            0.17221296 = queryWeight, product of:
              3.6713707 = idf(docFreq=3057, maxDocs=44218)
              0.046906993 = queryNorm
            0.3245064 = fieldWeight in 1063, product of:
              2.828427 = tf(freq=8.0), with freq of:
                8.0 = termFreq=8.0
              3.6713707 = idf(docFreq=3057, maxDocs=44218)
              0.03125 = fieldNorm(doc=1063)
      0.25 = coord(1/4)
    
    Content
    The volume of scientific literature typically far exceeds the ability of scientists to identify and utilize all relevant information in their research. Improvements to the accessibility of scientific literature, allowing scientists to locate more relevant research within a given time, have the potential to dramatically improve communication and progress in science. With the web, scientists now have very convenient access to an increasing amount of literature that previously required trips to the library, inter-library loan delays, or substantial effort in locating the source. Evidence shows that usage increases when access is more convenient, and maximizing the usage of the scientific record benefits all of society. Although availability varies greatly by discipline, over a million research articles are freely available on the web. Some journals and conferences provide free access online, others allow authors to post articles on the web, and others allow authors to purchase the right to post their articles on the web. In this article we investigate the impact of free online availability by analyzing citation rates. We do not discuss methods of creating free online availability, such as time-delayed release or publication/membership/conference charges. Online availability of an article may not be expected to greatly improve access and impact by itself. For example, efficient means of locating articles via web search engines or specialized search services is required, and a substantial percentage of the literature needs to be indexed by these search services before it is worthwhile for many scientists to use them. Computer science is a forerunner in web availability -- a substantial percentage of the literature is online and available through search engines such as Google (google.com), or specialized services such as ResearchIndex (researchindex.org). Even so, the greatest impact of the online availability of computer science literature is likely yet to come, because comprehensive search services and more powerful search methods have only become available recently. We analyzed 119,924 conference articles in computer science and related disciplines, obtained from DBLP (dblp.uni-trier.de). In computer science, conference articles are typically formal publications and are often more prestigious than journal articles, with acceptance rates at some conferences below 10%. Citation counts and online availability were estimated using ResearchIndex. The analysis excludes self-citations, where a citation is considered to be a self-citation if one or more of the citing and cited authors match.
  3. Costas, R.; Perianes-Rodríguez, A.; Ruiz-Castillo, J.: On the quest for currencies of science : field "exchange rates" for citations and Mendeley readership (2017) 0.01
    0.012243148 = product of:
      0.04897259 = sum of:
        0.04897259 = sum of:
          0.023551589 = weight(_text_:management in 4051) [ClassicSimilarity], result of:
            0.023551589 = score(doc=4051,freq=2.0), product of:
              0.15810528 = queryWeight, product of:
                3.3706124 = idf(docFreq=4130, maxDocs=44218)
                0.046906993 = queryNorm
              0.14896142 = fieldWeight in 4051, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                3.3706124 = idf(docFreq=4130, maxDocs=44218)
                0.03125 = fieldNorm(doc=4051)
          0.025421001 = weight(_text_:22 in 4051) [ClassicSimilarity], result of:
            0.025421001 = score(doc=4051,freq=2.0), product of:
              0.1642603 = queryWeight, product of:
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.046906993 = queryNorm
              0.15476047 = fieldWeight in 4051, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.03125 = fieldNorm(doc=4051)
      0.25 = coord(1/4)
    
    Date
    20. 1.2015 18:30:22
    Source
    Aslib journal of information management. 69(2017) no.5, S.557-575
  4. Youngen, G.K.: Citation patterns to traditional and electronic preprints in the published literature (1998) 0.01
    0.010478289 = product of:
      0.041913155 = sum of:
        0.041913155 = weight(_text_:services in 3360) [ClassicSimilarity], result of:
          0.041913155 = score(doc=3360,freq=2.0), product of:
            0.17221296 = queryWeight, product of:
              3.6713707 = idf(docFreq=3057, maxDocs=44218)
              0.046906993 = queryNorm
            0.2433798 = fieldWeight in 3360, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.6713707 = idf(docFreq=3057, maxDocs=44218)
              0.046875 = fieldNorm(doc=3360)
      0.25 = coord(1/4)
    
    Abstract
    The number of physics and astronomy preprints (manuscripts intended for publication but circulated for peer comment prior to submission) available electronically has increased dramatically over the past 5 years and Internet accessible preprint Web servers at the Stanford Accelerator Laboratory (SLAC) and the Los Alamos National Laboratoty (LANL) provide unrestricted access to citations and full text of many of these papers long before they appear in print. Includes data for periodicals ranked by number of citations to preprints and electronic preprints (e-prints). Identifies the growing importance of e-prints in the published literature and addresses areas of concern regarding their future role in scientific communication, including: inclusion of e-prints in abstracting and indexing services; connecting electronic periodicals with e-prints; guidelines for withdrawal and revision of e-prints; and maintaining the integritiy of the e-print servers
  5. Zhao, D.: Challenges of scholarly publications on the Web to the evaluation of science : a comparison of author visibility on the Web and in print journals (2005) 0.01
    0.00515191 = product of:
      0.02060764 = sum of:
        0.02060764 = product of:
          0.04121528 = sum of:
            0.04121528 = weight(_text_:management in 1065) [ClassicSimilarity], result of:
              0.04121528 = score(doc=1065,freq=2.0), product of:
                0.15810528 = queryWeight, product of:
                  3.3706124 = idf(docFreq=4130, maxDocs=44218)
                  0.046906993 = queryNorm
                0.2606825 = fieldWeight in 1065, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.3706124 = idf(docFreq=4130, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=1065)
          0.5 = coord(1/2)
      0.25 = coord(1/4)
    
    Source
    Information processing and management. 41(2005) no.6, S.1403-1418
  6. Frandsen, T.F.: ¬The integration of open access journals in the scholarly communication system : three science fields (2009) 0.00
    0.004415923 = product of:
      0.017663691 = sum of:
        0.017663691 = product of:
          0.035327382 = sum of:
            0.035327382 = weight(_text_:management in 4210) [ClassicSimilarity], result of:
              0.035327382 = score(doc=4210,freq=2.0), product of:
                0.15810528 = queryWeight, product of:
                  3.3706124 = idf(docFreq=4130, maxDocs=44218)
                  0.046906993 = queryNorm
                0.22344214 = fieldWeight in 4210, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.3706124 = idf(docFreq=4130, maxDocs=44218)
                  0.046875 = fieldNorm(doc=4210)
          0.5 = coord(1/2)
      0.25 = coord(1/4)
    
    Source
    Information processing and management. 45(2009) no.1, S.131-141
  7. Walters, W.H.; Linvill, A.C.: Bibliographic index coverage of open-access journals in six subject areas (2011) 0.00
    0.003972031 = product of:
      0.015888125 = sum of:
        0.015888125 = product of:
          0.03177625 = sum of:
            0.03177625 = weight(_text_:22 in 4635) [ClassicSimilarity], result of:
              0.03177625 = score(doc=4635,freq=2.0), product of:
                0.1642603 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046906993 = queryNorm
                0.19345059 = fieldWeight in 4635, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=4635)
          0.5 = coord(1/2)
      0.25 = coord(1/4)
    
    Abstract
    We investigate the extent to which open-access (OA) journals and articles in biology, computer science, economics, history, medicine, and psychology are indexed in each of 11 bibliographic databases. We also look for variations in index coverage by journal subject, journal size, publisher type, publisher size, date of first OA issue, region of publication, language of publication, publication fee, and citation impact factor. Two databases, Biological Abstracts and PubMed, provide very good coverage of the OA journal literature, indexing 60 to 63% of all OA articles in their disciplines. Five databases provide moderately good coverage (22-41%), and four provide relatively poor coverage (0-12%). OA articles in biology journals, English-only journals, high-impact journals, and journals that charge publication fees of $1,000 or more are especially likely to be indexed. Conversely, articles from OA publishers in Africa, Asia, or Central/South America are especially unlikely to be indexed. Four of the 11 databases index commercially published articles at a substantially higher rate than articles published by universities, scholarly societies, nonprofit publishers, or governments. Finally, three databases-EBSCO Academic Search Complete, ProQuest Research Library, and Wilson OmniFile-provide less comprehensive coverage of OA articles than of articles in comparable subscription journals.
  8. Moed, H.F.; Halevi, G.: On full text download and citation distributions in scientific-scholarly journals (2016) 0.00
    0.003972031 = product of:
      0.015888125 = sum of:
        0.015888125 = product of:
          0.03177625 = sum of:
            0.03177625 = weight(_text_:22 in 2646) [ClassicSimilarity], result of:
              0.03177625 = score(doc=2646,freq=2.0), product of:
                0.1642603 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046906993 = queryNorm
                0.19345059 = fieldWeight in 2646, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=2646)
          0.5 = coord(1/2)
      0.25 = coord(1/4)
    
    Date
    22. 1.2016 14:11:17
  9. Abad-García, M.-F.; González-Teruel, A.; González-Llinares, J.: Effectiveness of OpenAIRE, BASE, Recolecta, and Google Scholar at finding spanish articles in repositories (2018) 0.00
    0.0036799356 = product of:
      0.014719742 = sum of:
        0.014719742 = product of:
          0.029439485 = sum of:
            0.029439485 = weight(_text_:management in 4185) [ClassicSimilarity], result of:
              0.029439485 = score(doc=4185,freq=2.0), product of:
                0.15810528 = queryWeight, product of:
                  3.3706124 = idf(docFreq=4130, maxDocs=44218)
                  0.046906993 = queryNorm
                0.18620178 = fieldWeight in 4185, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.3706124 = idf(docFreq=4130, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=4185)
          0.5 = coord(1/2)
      0.25 = coord(1/4)
    
    Abstract
    This paper explores the usefulness of OpenAIRE, BASE, Recolecta, and Google Scholar (GS) for evaluating open access (OA) policies that demand a deposit in a repository. A case study was designed focusing on 762 financed articles with a project of FIS-2012 of the Instituto de Salud Carlos III, the Spanish national health service's main management body for health research. Its finance is therefore subject to the Spanish Government OA mandate. A search was carried out for full-text OA copies of the 762 articles using the four tools being evaluated and with identification of the repository housing these items. Of the 762 articles concerned, 510 OA copies were found of 353 unique articles (46.3%) in 68 repositories. OA copies were found of 81.9% of the articles in PubMed Central and copies of 49.5% of the articles in an institutional repository (IR). BASE and GS identified 93.5% of the articles and OpenAIRE 86.7%. Recolecta identified just 62.2% of the articles deposited in a Spanish IR. BASE achieved the greatest success, by locating copies deposited in IR, while GS found those deposited in disciplinary repositories. None of the tools identified copies of all the articles, so they need to be used in a complementary way when evaluating OA policies.