Search (46 results, page 1 of 3)

  • × type_ss:"a"
  • × theme_ss:"Semantic Web"
  1. Shoffner, M.; Greenberg, J.; Kramer-Duffield, J.; Woodbury, D.: Web 2.0 semantic systems : collaborative learning in science (2008) 0.02
    0.016571786 = product of:
      0.049715355 = sum of:
        0.049715355 = sum of:
          0.023908794 = weight(_text_:management in 2661) [ClassicSimilarity], result of:
            0.023908794 = score(doc=2661,freq=2.0), product of:
              0.16050325 = queryWeight, product of:
                3.3706124 = idf(docFreq=4130, maxDocs=44218)
                0.047618426 = queryNorm
              0.14896142 = fieldWeight in 2661, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                3.3706124 = idf(docFreq=4130, maxDocs=44218)
                0.03125 = fieldNorm(doc=2661)
          0.02580656 = weight(_text_:22 in 2661) [ClassicSimilarity], result of:
            0.02580656 = score(doc=2661,freq=2.0), product of:
              0.16675162 = queryWeight, product of:
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.047618426 = queryNorm
              0.15476047 = fieldWeight in 2661, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.03125 = fieldNorm(doc=2661)
      0.33333334 = coord(1/3)
    
    Abstract
    The basic goal of education within a discipline is to transform a novice into an expert. This entails moving the novice toward the "semantic space" that the expert inhabits-the space of concepts, meanings, vocabularies, and other intellectual constructs that comprise the discipline. Metadata is significant to this goal in digitally mediated education environments. Encoding the experts' semantic space not only enables the sharing of semantics among discipline scientists, but also creates an environment that bridges the semantic gap between the common vocabulary of the novice and the granular descriptive language of the seasoned scientist (Greenberg, et al, 2005). Developments underlying the Semantic Web, where vocabularies are formalized in the Web Ontology Language (OWL), and Web 2.0 approaches of user-generated folksonomies provide an infrastructure for linking vocabulary systems and promoting group learning via metadata literacy. Group learning is a pedagogical approach to teaching that harnesses the phenomenon of "collective intelligence" to increase learning by means of collaboration. Learning a new semantic system can be daunting for a novice, and yet it is integral to advance one's knowledge in a discipline and retain interest. These ideas are key to the "BOT 2.0: Botany through Web 2.0, the Memex and Social Learning" project (Bot 2.0).72 Bot 2.0 is a collaboration involving the North Carolina Botanical Garden, the UNC SILS Metadata Research center, and the Renaissance Computing Institute (RENCI). Bot 2.0 presents a curriculum utilizing a memex as a way for students to link and share digital information, working asynchronously in an environment beyond the traditional classroom. Our conception of a memex is not a centralized black box but rather a flexible, distributed framework that uses the most salient and easiest-to-use collaborative platforms (e.g., Facebook, Flickr, wiki and blog technology) for personal information management. By meeting students "where they live" digitally, we hope to attract students to the study of botanical science. A key aspect is to teach students scientific terminology and about the value of metadata, an inherent function in several of the technologies and in the instructional approach we are utilizing. This poster will report on a study examining the value of both folksonomies and taxonomies for post-secondary college students learning plant identification. Our data is drawn from a curriculum involving a virtual independent learning portion and a "BotCamp" weekend at UNC, where students work with digital plan specimens that they have captured. Results provide some insight into the importance of collaboration and shared vocabulary for gaining confidence and for student progression from novice to expert in botany.
    Source
    Metadata for semantic and social applications : proceedings of the International Conference on Dublin Core and Metadata Applications, Berlin, 22 - 26 September 2008, DC 2008: Berlin, Germany / ed. by Jane Greenberg and Wolfgang Klas
  2. Brunetti, J.M.; Roberto García, R.: User-centered design and evaluation of overview components for semantic data exploration (2014) 0.02
    0.016571786 = product of:
      0.049715355 = sum of:
        0.049715355 = sum of:
          0.023908794 = weight(_text_:management in 1626) [ClassicSimilarity], result of:
            0.023908794 = score(doc=1626,freq=2.0), product of:
              0.16050325 = queryWeight, product of:
                3.3706124 = idf(docFreq=4130, maxDocs=44218)
                0.047618426 = queryNorm
              0.14896142 = fieldWeight in 1626, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                3.3706124 = idf(docFreq=4130, maxDocs=44218)
                0.03125 = fieldNorm(doc=1626)
          0.02580656 = weight(_text_:22 in 1626) [ClassicSimilarity], result of:
            0.02580656 = score(doc=1626,freq=2.0), product of:
              0.16675162 = queryWeight, product of:
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.047618426 = queryNorm
              0.15476047 = fieldWeight in 1626, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.03125 = fieldNorm(doc=1626)
      0.33333334 = coord(1/3)
    
    Date
    20. 1.2015 18:30:22
    Source
    Aslib journal of information management. 66(2014) no.5, S.519-536
  3. Zhitomirsky-Geffet, M.; Bar-Ilan, J.: Towards maximal unification of semantically diverse ontologies for controversial domains (2014) 0.02
    0.016571786 = product of:
      0.049715355 = sum of:
        0.049715355 = sum of:
          0.023908794 = weight(_text_:management in 1634) [ClassicSimilarity], result of:
            0.023908794 = score(doc=1634,freq=2.0), product of:
              0.16050325 = queryWeight, product of:
                3.3706124 = idf(docFreq=4130, maxDocs=44218)
                0.047618426 = queryNorm
              0.14896142 = fieldWeight in 1634, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                3.3706124 = idf(docFreq=4130, maxDocs=44218)
                0.03125 = fieldNorm(doc=1634)
          0.02580656 = weight(_text_:22 in 1634) [ClassicSimilarity], result of:
            0.02580656 = score(doc=1634,freq=2.0), product of:
              0.16675162 = queryWeight, product of:
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.047618426 = queryNorm
              0.15476047 = fieldWeight in 1634, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.03125 = fieldNorm(doc=1634)
      0.33333334 = coord(1/3)
    
    Date
    20. 1.2015 18:30:22
    Source
    Aslib journal of information management. 66(2014) no.5, S.494-518
  4. Davies, J.; Fensel, D.; Harmelen, F. van: Conclusions: ontology-driven knowledge management : towards the Semantic Web? (2004) 0.02
    0.015939197 = product of:
      0.047817588 = sum of:
        0.047817588 = product of:
          0.095635176 = sum of:
            0.095635176 = weight(_text_:management in 4407) [ClassicSimilarity], result of:
              0.095635176 = score(doc=4407,freq=8.0), product of:
                0.16050325 = queryWeight, product of:
                  3.3706124 = idf(docFreq=4130, maxDocs=44218)
                  0.047618426 = queryNorm
                0.5958457 = fieldWeight in 4407, product of:
                  2.828427 = tf(freq=8.0), with freq of:
                    8.0 = termFreq=8.0
                  3.3706124 = idf(docFreq=4130, maxDocs=44218)
                  0.0625 = fieldNorm(doc=4407)
          0.5 = coord(1/2)
      0.33333334 = coord(1/3)
    
    Abstract
    The global economy is rapidly becoming more and more knowledge intensive. Knowledge is now widely recognized as the fourth production factor, on an equal footing with the traditional production factors of labour, capital and materials. Managing knowledge is as important as the traditional management of labour, capital and materials. In this book, we have shown how Semantic Web technology can make an important contribution to knowledge management.
    Source
    Towards the semantic Web: ontology-driven knowledge management. Eds.: J. Davies, u.a
  5. Fensel, D.; Staab, S.; Studer, R.; Harmelen, F. van; Davies, J.: ¬A future perspective : exploiting peer-to-peer and the Semantic Web for knowledge management (2004) 0.01
    0.013946797 = product of:
      0.04184039 = sum of:
        0.04184039 = product of:
          0.08368078 = sum of:
            0.08368078 = weight(_text_:management in 2262) [ClassicSimilarity], result of:
              0.08368078 = score(doc=2262,freq=8.0), product of:
                0.16050325 = queryWeight, product of:
                  3.3706124 = idf(docFreq=4130, maxDocs=44218)
                  0.047618426 = queryNorm
                0.521365 = fieldWeight in 2262, product of:
                  2.828427 = tf(freq=8.0), with freq of:
                    8.0 = termFreq=8.0
                  3.3706124 = idf(docFreq=4130, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=2262)
          0.5 = coord(1/2)
      0.33333334 = coord(1/3)
    
    Abstract
    Over the past few years, we have seen a growing interest in the potential of both peer-to-peer (P2P) computing and the use of more formal approaches to knowledge management, involving the development of ontologies. This penultimate chapter discusses possibilities that both approaches may offer for more effective and efficient knowledge management. In particular, we investigate how the two paradigms may be combined. In this chapter, we describe our vision in terms of a set of future steps that need to be taken to bring the results described in earlier chapters to their full potential.
    Source
    Towards the semantic Web: ontology-driven knowledge management. Eds.: J. Davies, u.a
  6. Papadakis, I. et al.: Highlighting timely information in libraries through social and semantic Web technologies (2016) 0.01
    0.010752733 = product of:
      0.032258198 = sum of:
        0.032258198 = product of:
          0.064516395 = sum of:
            0.064516395 = weight(_text_:22 in 2090) [ClassicSimilarity], result of:
              0.064516395 = score(doc=2090,freq=2.0), product of:
                0.16675162 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.047618426 = queryNorm
                0.38690117 = fieldWeight in 2090, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.078125 = fieldNorm(doc=2090)
          0.5 = coord(1/2)
      0.33333334 = coord(1/3)
    
    Source
    Metadata and semantics research: 10th International Conference, MTSR 2016, Göttingen, Germany, November 22-25, 2016, Proceedings. Eds.: E. Garoufallou
  7. Uren, V.; Cimiano, P.; Iria, J.; Handschuh, S.; Vargas-Vera, M.; Motta, E.; Ciravegnac, F.: Semantic annotation for knowledge management : requirements and a survey of the state of the art (2006) 0.01
    0.010352813 = product of:
      0.031058436 = sum of:
        0.031058436 = product of:
          0.062116873 = sum of:
            0.062116873 = weight(_text_:management in 229) [ClassicSimilarity], result of:
              0.062116873 = score(doc=229,freq=6.0), product of:
                0.16050325 = queryWeight, product of:
                  3.3706124 = idf(docFreq=4130, maxDocs=44218)
                  0.047618426 = queryNorm
                0.38701317 = fieldWeight in 229, product of:
                  2.4494898 = tf(freq=6.0), with freq of:
                    6.0 = termFreq=6.0
                  3.3706124 = idf(docFreq=4130, maxDocs=44218)
                  0.046875 = fieldNorm(doc=229)
          0.5 = coord(1/2)
      0.33333334 = coord(1/3)
    
    Abstract
    While much of a company's knowledge can be found in text repositories, current content management systems have limited capabilities for structuring and interpreting documents. In the emerging Semantic Web, search, interpretation and aggregation can be addressed by ontology-based semantic mark-up. In this paper, we examine semantic annotation, identify a number of requirements, and review the current generation of semantic annotation systems. This analysis shows that, while there is still some way to go before semantic annotation tools will be able to address fully all the knowledge management needs, research in the area is active and making good progress.
  8. Davies, J.; Duke, A.; Stonkus, A.: OntoShare: evolving ontologies in a knowledge sharing system (2004) 0.01
    0.009224939 = product of:
      0.027674817 = sum of:
        0.027674817 = product of:
          0.055349633 = sum of:
            0.055349633 = weight(_text_:management in 4409) [ClassicSimilarity], result of:
              0.055349633 = score(doc=4409,freq=14.0), product of:
                0.16050325 = queryWeight, product of:
                  3.3706124 = idf(docFreq=4130, maxDocs=44218)
                  0.047618426 = queryNorm
                0.34485054 = fieldWeight in 4409, product of:
                  3.7416575 = tf(freq=14.0), with freq of:
                    14.0 = termFreq=14.0
                  3.3706124 = idf(docFreq=4130, maxDocs=44218)
                  0.02734375 = fieldNorm(doc=4409)
          0.5 = coord(1/2)
      0.33333334 = coord(1/3)
    
    Abstract
    We saw in the introduction how the Semantic Web makes possible a new generation of knowledge management tools. We now turn our attention more specifically to Semantic Web based support for virtual communities of practice. The notion of communities of practice has attracted much attention in the field of knowledge management. Communities of practice are groups within (or sometimes across) organizations who share a common set of information needs or problems. They are typically not a formal organizational unit but an informal network, each sharing in part a common agenda and shared interests or issues. In one example it was found that a lot of knowledge sharing among copier engineers took place through informal exchanges, often around a water cooler. As well as local, geographically based communities, trends towards flexible working and globalisation have led to interest in supporting dispersed communities using Internet technology. The challenge for organizations is to support such communities and make them effective. Provided with an ontology meeting the needs of a particular community of practice, knowledge management tools can arrange knowledge assets into the predefined conceptual classes of the ontology, allowing more natural and intuitive access to knowledge. Knowledge management tools must give users the ability to organize information into a controllable asset. Building an intranet-based store of information is not sufficient for knowledge management; the relationships within the stored information are vital. These relationships cover such diverse issues as relative importance, context, sequence, significance, causality and association. The potential for knowledge management tools is vast; not only can they make better use of the raw information already available, but they can sift, abstract and help to share new information, and present it to users in new and compelling ways.
    Source
    Towards the semantic Web: ontology-driven knowledge management. Eds.: J. Davies, u.a
  9. Synak, M.; Dabrowski, M.; Kruk, S.R.: Semantic Web and ontologies (2009) 0.01
    0.008602187 = product of:
      0.02580656 = sum of:
        0.02580656 = product of:
          0.05161312 = sum of:
            0.05161312 = weight(_text_:22 in 3376) [ClassicSimilarity], result of:
              0.05161312 = score(doc=3376,freq=2.0), product of:
                0.16675162 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.047618426 = queryNorm
                0.30952093 = fieldWeight in 3376, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0625 = fieldNorm(doc=3376)
          0.5 = coord(1/2)
      0.33333334 = coord(1/3)
    
    Date
    31. 7.2010 16:58:22
  10. Iosif, V.; Mika, P.; Larsson, R.; Akkermans, H.: Field experimenting with Semantic Web tools in a virtual organization (2004) 0.01
    0.008453036 = product of:
      0.025359105 = sum of:
        0.025359105 = product of:
          0.05071821 = sum of:
            0.05071821 = weight(_text_:management in 4412) [ClassicSimilarity], result of:
              0.05071821 = score(doc=4412,freq=4.0), product of:
                0.16050325 = queryWeight, product of:
                  3.3706124 = idf(docFreq=4130, maxDocs=44218)
                  0.047618426 = queryNorm
                0.31599492 = fieldWeight in 4412, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  3.3706124 = idf(docFreq=4130, maxDocs=44218)
                  0.046875 = fieldNorm(doc=4412)
          0.5 = coord(1/2)
      0.33333334 = coord(1/3)
    
    Abstract
    How do we test Semantic Web tools? How can we know that they perform better than current technologies for knowledge management? What does 'better' precisely mean? How can we operationalize and measure this? Some of these questions may be partially answered by simulations in lab experiments that for example look at the speed or scalability of algorithms. However, it is not clear in advance to what extent such laboratory results carry over to the real world. Quality is in the eye of the beholder, and so the quality of Semantic Web methods will very much depend on the perception of their usefulness as seen by tool users. This can only be tested by carefully designed field experiments. In this chapter, we discuss the design considerations and set-up of field experiments with Semantic Web tools, and illustrate these with case examples from a virtual organization in industrial research.
    Source
    Towards the semantic Web: ontology-driven knowledge management. Eds.: J. Davies, u.a
  11. Tennis, J.T.: Scheme versioning in the Semantic Web (2006) 0.01
    0.007969598 = product of:
      0.023908794 = sum of:
        0.023908794 = product of:
          0.047817588 = sum of:
            0.047817588 = weight(_text_:management in 4939) [ClassicSimilarity], result of:
              0.047817588 = score(doc=4939,freq=2.0), product of:
                0.16050325 = queryWeight, product of:
                  3.3706124 = idf(docFreq=4130, maxDocs=44218)
                  0.047618426 = queryNorm
                0.29792285 = fieldWeight in 4939, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.3706124 = idf(docFreq=4130, maxDocs=44218)
                  0.0625 = fieldNorm(doc=4939)
          0.5 = coord(1/2)
      0.33333334 = coord(1/3)
    
    Abstract
    This paper describes a conceptual framework and methodology for managing scheme versioning for the Semantic Web. The first part of the paper introduces the concept of vocabulary encoding schemes, distinguished from metadata schemas, and discusses the characteristics of changes in schemes. The paper then presents a proposal to use a value record-similar to a term record in thesaurus management techniques-to manage scheme versioning challenges for the Semantic Web. The conclusion identifies future research directions.
  12. Graves, M.; Constabaris, A.; Brickley, D.: FOAF: connecting people on the Semantic Web (2006) 0.01
    0.007969598 = product of:
      0.023908794 = sum of:
        0.023908794 = product of:
          0.047817588 = sum of:
            0.047817588 = weight(_text_:management in 248) [ClassicSimilarity], result of:
              0.047817588 = score(doc=248,freq=2.0), product of:
                0.16050325 = queryWeight, product of:
                  3.3706124 = idf(docFreq=4130, maxDocs=44218)
                  0.047618426 = queryNorm
                0.29792285 = fieldWeight in 248, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.3706124 = idf(docFreq=4130, maxDocs=44218)
                  0.0625 = fieldNorm(doc=248)
          0.5 = coord(1/2)
      0.33333334 = coord(1/3)
    
    Abstract
    This article introduces the Friend of a Friend (FOAF) vocabulary specification as an example of a Semantic Web technology. A real world case study is presented in which FOAF is used to solve some specific problems of identity management. The main goal is to provide some basic theory behind the Semantic Web and then attempt to ground that theory in a practical solution.
  13. Faaborg, A.; Lagoze, C.: Semantic browsing (2003) 0.01
    0.007526913 = product of:
      0.02258074 = sum of:
        0.02258074 = product of:
          0.04516148 = sum of:
            0.04516148 = weight(_text_:22 in 1026) [ClassicSimilarity], result of:
              0.04516148 = score(doc=1026,freq=2.0), product of:
                0.16675162 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.047618426 = queryNorm
                0.2708308 = fieldWeight in 1026, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=1026)
          0.5 = coord(1/2)
      0.33333334 = coord(1/3)
    
    Source
    Research and advanced technology for digital libraries : 7th European Conference, proceedings / ECDL 2003, Trondheim, Norway, August 17-22, 2003
  14. Malmsten, M.: Making a library catalogue part of the Semantic Web (2008) 0.01
    0.007526913 = product of:
      0.02258074 = sum of:
        0.02258074 = product of:
          0.04516148 = sum of:
            0.04516148 = weight(_text_:22 in 2640) [ClassicSimilarity], result of:
              0.04516148 = score(doc=2640,freq=2.0), product of:
                0.16675162 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.047618426 = queryNorm
                0.2708308 = fieldWeight in 2640, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=2640)
          0.5 = coord(1/2)
      0.33333334 = coord(1/3)
    
    Source
    Metadata for semantic and social applications : proceedings of the International Conference on Dublin Core and Metadata Applications, Berlin, 22 - 26 September 2008, DC 2008: Berlin, Germany / ed. by Jane Greenberg and Wolfgang Klas
  15. Schneider, R.: Web 3.0 ante portas? : Integration von Social Web und Semantic Web (2008) 0.01
    0.007526913 = product of:
      0.02258074 = sum of:
        0.02258074 = product of:
          0.04516148 = sum of:
            0.04516148 = weight(_text_:22 in 4184) [ClassicSimilarity], result of:
              0.04516148 = score(doc=4184,freq=2.0), product of:
                0.16675162 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.047618426 = queryNorm
                0.2708308 = fieldWeight in 4184, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=4184)
          0.5 = coord(1/2)
      0.33333334 = coord(1/3)
    
    Date
    22. 1.2011 10:38:28
  16. Blumauer, A.; Pellegrini, T.: Semantic Web Revisited : Eine kurze Einführung in das Social Semantic Web (2009) 0.01
    0.007526913 = product of:
      0.02258074 = sum of:
        0.02258074 = product of:
          0.04516148 = sum of:
            0.04516148 = weight(_text_:22 in 4855) [ClassicSimilarity], result of:
              0.04516148 = score(doc=4855,freq=2.0), product of:
                0.16675162 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.047618426 = queryNorm
                0.2708308 = fieldWeight in 4855, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=4855)
          0.5 = coord(1/2)
      0.33333334 = coord(1/3)
    
    Pages
    S.3-22
  17. Heflin, J.; Hendler, J.: Semantic interoperability on the Web (2000) 0.01
    0.007526913 = product of:
      0.02258074 = sum of:
        0.02258074 = product of:
          0.04516148 = sum of:
            0.04516148 = weight(_text_:22 in 759) [ClassicSimilarity], result of:
              0.04516148 = score(doc=759,freq=2.0), product of:
                0.16675162 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.047618426 = queryNorm
                0.2708308 = fieldWeight in 759, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=759)
          0.5 = coord(1/2)
      0.33333334 = coord(1/3)
    
    Date
    11. 5.2013 19:22:18
  18. McGuinness, D.L.: Ontologies come of age (2003) 0.01
    0.007044196 = product of:
      0.021132588 = sum of:
        0.021132588 = product of:
          0.042265177 = sum of:
            0.042265177 = weight(_text_:management in 3084) [ClassicSimilarity], result of:
              0.042265177 = score(doc=3084,freq=4.0), product of:
                0.16050325 = queryWeight, product of:
                  3.3706124 = idf(docFreq=4130, maxDocs=44218)
                  0.047618426 = queryNorm
                0.2633291 = fieldWeight in 3084, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  3.3706124 = idf(docFreq=4130, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=3084)
          0.5 = coord(1/2)
      0.33333334 = coord(1/3)
    
    Abstract
    Ontologies have moved beyond the domains of library science, philosophy, and knowledge representation. They are now the concerns of marketing departments, CEOs, and mainstream business. Research analyst companies such as Forrester Research report on the critical roles of ontologies in support of browsing and search for e-commerce and in support of interoperability for facilitation of knowledge management and configuration. One now sees ontologies used as central controlled vocabularies that are integrated into catalogues, databases, web publications, knowledge management applications, etc. Large ontologies are essential components in many online applications including search (such as Yahoo and Lycos), e-commerce (such as Amazon and eBay), configuration (such as Dell and PC-Order), etc. One also sees ontologies that have long life spans, sometimes in multiple projects (such as UMLS, SIC codes, etc.). Such diverse usage generates many implications for ontology environments. In this paper, we will discuss ontologies and requirements in their current instantiations on the web today. We will describe some desirable properties of ontologies. We will also discuss how both simple and complex ontologies are being and may be used to support varied applications. We will conclude with a discussion of emerging trends in ontologies and their environments and briefly mention our evolving ontology evolution environment.
  19. Nagenborg, M..: Privacy im Social Semantic Web (2009) 0.01
    0.0069733984 = product of:
      0.020920195 = sum of:
        0.020920195 = product of:
          0.04184039 = sum of:
            0.04184039 = weight(_text_:management in 4876) [ClassicSimilarity], result of:
              0.04184039 = score(doc=4876,freq=2.0), product of:
                0.16050325 = queryWeight, product of:
                  3.3706124 = idf(docFreq=4130, maxDocs=44218)
                  0.047618426 = queryNorm
                0.2606825 = fieldWeight in 4876, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.3706124 = idf(docFreq=4130, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=4876)
          0.5 = coord(1/2)
      0.33333334 = coord(1/3)
    
    Abstract
    Der Schwerpunkt dieses Beitrages liegt auf dem Design von Infrastrukturen, welche es ermöglichen sollen, private Daten kontrolliert preiszugeben und auszutauschen. Zunächst wird daran erinnert, dass rechtliche und technische Maßnahmen zum Datenschutz stets auch dazu dienen, den Austausch von Daten zu ermöglichen. Die grundlegende Herausforderung besteht darin, der sozialen und politischen Bedeutung des Privaten Rechnung zu tragen. Privatheit wird aus der Perspektive der Informationsethik dabei als ein normatives, handlungsleitendes Konzept verstanden. Als Maßstab für die Gestaltung der entsprechenden Infrastrukturen wird auf Helen Nissenbaums Konzept der "privacy as contextual integrity" zurückgegriffen, um u. a. die Ansätze der "end-to-end information accountability" und des "Privacy Identity Management for Europe"- Projektes zu diskutieren.
  20. Sure, Y.; Erdmann, M.; Studer, R.: OntoEdit: collaborative engineering of ontologies (2004) 0.01
    0.0069018747 = product of:
      0.020705624 = sum of:
        0.020705624 = product of:
          0.041411247 = sum of:
            0.041411247 = weight(_text_:management in 4405) [ClassicSimilarity], result of:
              0.041411247 = score(doc=4405,freq=6.0), product of:
                0.16050325 = queryWeight, product of:
                  3.3706124 = idf(docFreq=4130, maxDocs=44218)
                  0.047618426 = queryNorm
                0.25800878 = fieldWeight in 4405, product of:
                  2.4494898 = tf(freq=6.0), with freq of:
                    6.0 = termFreq=6.0
                  3.3706124 = idf(docFreq=4130, maxDocs=44218)
                  0.03125 = fieldNorm(doc=4405)
          0.5 = coord(1/2)
      0.33333334 = coord(1/3)
    
    Abstract
    Developing ontologies is central to our vision of Semantic Web-based knowledge management. The methodology described in Chapter 3 guides the development of ontologies for different applications. However, because of the size of ontologies, their complexity, their formal underpinnings and the necessity to come towards a shared understanding within a group of people when defining an ontology, ontology construction is still far from being a well-understood process. Concerning the methodology, OntoEdit focuses on three of the main steps for ontology development (the methodology is described in Chapter 3), viz. the kick off, refinement, and evaluation. We describe the steps supported by OntoEdit and focus on collaborative aspects that occur during each of the step. First, all requirements of the envisaged ontology are collected during the kick off phase. Typically for ontology engineering, ontology engineers and domain experts are joined in a team that works together on a description of the domain and the goal of the ontology, design guidelines, available knowledge sources (e.g. re-usable ontologies and thesauri, etc.), potential users and use cases and applications supported by the ontology. The output of this phase is a semiformal description of the ontology. Second, during the refinement phase, the team extends the semi-formal description in several iterations and formalizes it in an appropriate representation language like RDF(S) or, more advanced, DAML1OIL. The output of this phase is a mature ontology (the 'target ontology'). Third, the target ontology needs to be evaluated according to the requirement specifications. Typically this phase serves as a proof for the usefulness of ontologies (and ontology-based applications) and may involve the engineering team as well as end users of the targeted application. The output of this phase is an evaluated ontology, ready for roll-out into a productive environment. Support for these collaborative development steps within the ontology development methodology is crucial in order to meet the conflicting needs for ease of use and construction of complex ontology structures. We now illustrate OntoEdit's support for each of the supported steps. The examples shown are taken from the Swiss Life case study on skills management (cf. Chapter 12).
    Source
    Towards the semantic Web: ontology-driven knowledge management. Eds.: J. Davies, u.a

Languages

  • e 40
  • d 6