Search (86 results, page 1 of 5)

  • × author_ss:"Leydesdorff, L."
  1. Leydesdorff, L.: Can networks of journal-journal citations be used as indicators of change in the social sciences? (2003) 0.02
    0.020656807 = product of:
      0.041313615 = sum of:
        0.022096837 = weight(_text_:for in 4460) [ClassicSimilarity], result of:
          0.022096837 = score(doc=4460,freq=8.0), product of:
            0.08876751 = queryWeight, product of:
              1.8775425 = idf(docFreq=18385, maxDocs=44218)
              0.047278564 = queryNorm
            0.24892932 = fieldWeight in 4460, product of:
              2.828427 = tf(freq=8.0), with freq of:
                8.0 = termFreq=8.0
              1.8775425 = idf(docFreq=18385, maxDocs=44218)
              0.046875 = fieldNorm(doc=4460)
        0.019216778 = product of:
          0.038433556 = sum of:
            0.038433556 = weight(_text_:22 in 4460) [ClassicSimilarity], result of:
              0.038433556 = score(doc=4460,freq=2.0), product of:
                0.16556148 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.047278564 = queryNorm
                0.23214069 = fieldWeight in 4460, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046875 = fieldNorm(doc=4460)
          0.5 = coord(1/2)
      0.5 = coord(2/4)
    
    Abstract
    Aggregated journal-journal citations can be used for mapping the intellectual organization of the sciences in terms of specialties because the latter can be considered as interreading communities. Can the journal-journal citations also be used as early indicators of change by comparing the files for two subsequent years? Probabilistic entropy measures enable us to analyze changes in large datasets at different levels of aggregation and in considerable detail. Compares Journal Citation Reports of the Social Science Citation Index for 1999 with similar data for 1998 and analyzes the differences using these measures. Compares the various indicators with similar developments in the Science Citation Index. Specialty formation seems a more important mechanism in the development of the social sciences than in the natural and life sciences, but the developments in the social sciences are volatile. The use of aggregate statistics based on the Science Citation Index is ill-advised in the case of the social sciences because of structural differences in the underlying dynamics.
    Date
    6.11.2005 19:02:22
  2. Leydesdorff, L.; Sun, Y.: National and international dimensions of the Triple Helix in Japan : university-industry-government versus international coauthorship relations (2009) 0.02
    0.0191766 = product of:
      0.0383532 = sum of:
        0.019136423 = weight(_text_:for in 2761) [ClassicSimilarity], result of:
          0.019136423 = score(doc=2761,freq=6.0), product of:
            0.08876751 = queryWeight, product of:
              1.8775425 = idf(docFreq=18385, maxDocs=44218)
              0.047278564 = queryNorm
            0.21557912 = fieldWeight in 2761, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              1.8775425 = idf(docFreq=18385, maxDocs=44218)
              0.046875 = fieldNorm(doc=2761)
        0.019216778 = product of:
          0.038433556 = sum of:
            0.038433556 = weight(_text_:22 in 2761) [ClassicSimilarity], result of:
              0.038433556 = score(doc=2761,freq=2.0), product of:
                0.16556148 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.047278564 = queryNorm
                0.23214069 = fieldWeight in 2761, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046875 = fieldNorm(doc=2761)
          0.5 = coord(1/2)
      0.5 = coord(2/4)
    
    Abstract
    International co-authorship relations and university-industry-government (Triple Helix) relations have hitherto been studied separately. Using Japanese publication data for the 1981-2004 period, we were able to study both kinds of relations in a single design. In the Japanese file, 1,277,030 articles with at least one Japanese address were attributed to the three sectors, and we know additionally whether these papers were coauthored internationally. Using the mutual information in three and four dimensions, respectively, we show that the Japanese Triple-Helix system has been continuously eroded at the national level. However, since the mid-1990s, international coauthorship relations have contributed to a reduction of the uncertainty at the national level. In other words, the national publication system of Japan has developed a capacity to retain surplus value generated internationally. In a final section, we compare these results with an analysis based on similar data for Canada. A relative uncoupling of national university-industry-government relations because of international collaborations is indicated in both countries.
    Date
    22. 3.2009 19:07:20
    Source
    Journal of the American Society for Information Science and Technology. 60(2009) no.4, S.778-788
  3. Leydesdorff, L.; Bornmann, L.; Wagner, C.S.: ¬The relative influences of government funding and international collaboration on citation impact (2019) 0.02
    0.0191766 = product of:
      0.0383532 = sum of:
        0.019136423 = weight(_text_:for in 4681) [ClassicSimilarity], result of:
          0.019136423 = score(doc=4681,freq=6.0), product of:
            0.08876751 = queryWeight, product of:
              1.8775425 = idf(docFreq=18385, maxDocs=44218)
              0.047278564 = queryNorm
            0.21557912 = fieldWeight in 4681, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              1.8775425 = idf(docFreq=18385, maxDocs=44218)
              0.046875 = fieldNorm(doc=4681)
        0.019216778 = product of:
          0.038433556 = sum of:
            0.038433556 = weight(_text_:22 in 4681) [ClassicSimilarity], result of:
              0.038433556 = score(doc=4681,freq=2.0), product of:
                0.16556148 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.047278564 = queryNorm
                0.23214069 = fieldWeight in 4681, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046875 = fieldNorm(doc=4681)
          0.5 = coord(1/2)
      0.5 = coord(2/4)
    
    Abstract
    A recent publication in Nature reports that public R&D funding is only weakly correlated with the citation impact of a nation's articles as measured by the field-weighted citation index (FWCI; defined by Scopus). On the basis of the supplementary data, we up-scaled the design using Web of Science data for the decade 2003-2013 and OECD funding data for the corresponding decade assuming a 2-year delay (2001-2011). Using negative binomial regression analysis, we found very small coefficients, but the effects of international collaboration are positive and statistically significant, whereas the effects of government funding are negative, an order of magnitude smaller, and statistically nonsignificant (in two of three analyses). In other words, international collaboration improves the impact of research articles, whereas more government funding tends to have a small adverse effect when comparing OECD countries.
    Date
    8. 1.2019 18:22:45
    Source
    Journal of the Association for Information Science and Technology. 70(2019) no.2, S.198-201
  4. Leydesdorff, L.; Bornmann, L.: How fractional counting of citations affects the impact factor : normalization in terms of differences in citation potentials among fields of science (2011) 0.02
    0.01830075 = product of:
      0.0366015 = sum of:
        0.020587513 = weight(_text_:for in 4186) [ClassicSimilarity], result of:
          0.020587513 = score(doc=4186,freq=10.0), product of:
            0.08876751 = queryWeight, product of:
              1.8775425 = idf(docFreq=18385, maxDocs=44218)
              0.047278564 = queryNorm
            0.2319262 = fieldWeight in 4186, product of:
              3.1622777 = tf(freq=10.0), with freq of:
                10.0 = termFreq=10.0
              1.8775425 = idf(docFreq=18385, maxDocs=44218)
              0.0390625 = fieldNorm(doc=4186)
        0.016013984 = product of:
          0.032027967 = sum of:
            0.032027967 = weight(_text_:22 in 4186) [ClassicSimilarity], result of:
              0.032027967 = score(doc=4186,freq=2.0), product of:
                0.16556148 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.047278564 = queryNorm
                0.19345059 = fieldWeight in 4186, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=4186)
          0.5 = coord(1/2)
      0.5 = coord(2/4)
    
    Abstract
    The Impact Factors (IFs) of the Institute for Scientific Information suffer from a number of drawbacks, among them the statistics-Why should one use the mean and not the median?-and the incomparability among fields of science because of systematic differences in citation behavior among fields. Can these drawbacks be counteracted by fractionally counting citation weights instead of using whole numbers in the numerators? (a) Fractional citation counts are normalized in terms of the citing sources and thus would take into account differences in citation behavior among fields of science. (b) Differences in the resulting distributions can be tested statistically for their significance at different levels of aggregation. (c) Fractional counting can be generalized to any document set including journals or groups of journals, and thus the significance of differences among both small and large sets can be tested. A list of fractionally counted IFs for 2008 is available online at http:www.leydesdorff.net/weighted_if/weighted_if.xls The between-group variance among the 13 fields of science identified in the U.S. Science and Engineering Indicators is no longer statistically significant after this normalization. Although citation behavior differs largely between disciplines, the reflection of these differences in fractionally counted citation distributions can not be used as a reliable instrument for the classification.
    Date
    22. 1.2011 12:51:07
    Source
    Journal of the American Society for Information Science and Technology. 62(2011) no.2, S.217-229
  5. Hellsten, I.; Leydesdorff, L.: ¬The construction of interdisciplinarity : the development of the knowledge base and programmatic focus of the journal Climatic Change, 1977-2013 (2016) 0.01
    0.014517335 = product of:
      0.02903467 = sum of:
        0.013020686 = weight(_text_:for in 3089) [ClassicSimilarity], result of:
          0.013020686 = score(doc=3089,freq=4.0), product of:
            0.08876751 = queryWeight, product of:
              1.8775425 = idf(docFreq=18385, maxDocs=44218)
              0.047278564 = queryNorm
            0.14668301 = fieldWeight in 3089, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              1.8775425 = idf(docFreq=18385, maxDocs=44218)
              0.0390625 = fieldNorm(doc=3089)
        0.016013984 = product of:
          0.032027967 = sum of:
            0.032027967 = weight(_text_:22 in 3089) [ClassicSimilarity], result of:
              0.032027967 = score(doc=3089,freq=2.0), product of:
                0.16556148 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.047278564 = queryNorm
                0.19345059 = fieldWeight in 3089, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=3089)
          0.5 = coord(1/2)
      0.5 = coord(2/4)
    
    Abstract
    Climate change as a complex physical and social issue has gained increasing attention in the natural as well as the social sciences. Climate change research has become more interdisciplinary and even transdisciplinary as a typical Mode-2 science that is also dependent on an application context for its further development. We propose to approach interdisciplinarity as a co-construction of the knowledge base in the reference patterns and the programmatic focus in the editorials in the core journal of the climate-change sciences-Climatic Change-during the period 1977-2013. First, we analyze the knowledge base of the journal and map journal-journal relations on the basis of the references in the articles. Second, we follow the development of the programmatic focus by analyzing the semantics in the editorials. We argue that interdisciplinarity is a result of the co-construction between different agendas: The selection of publications into the knowledge base of the journal, and the adjustment of the programmatic focus to the political context in the editorials. Our results show a widening of the knowledge base from referencing the multidisciplinary journals Nature and Science to citing journals from specialist fields. The programmatic focus follows policy-oriented issues and incorporates public metaphors.
    Date
    24. 8.2016 17:53:22
    Source
    Journal of the Association for Information Science and Technology. 67(2016) no.9, S.2181-2193
  6. Leydesdorff, L.; Johnson, M.W.; Ivanova, I.: Toward a calculus of redundancy : signification, codification, and anticipation in cultural evolution (2018) 0.01
    0.014517335 = product of:
      0.02903467 = sum of:
        0.013020686 = weight(_text_:for in 4463) [ClassicSimilarity], result of:
          0.013020686 = score(doc=4463,freq=4.0), product of:
            0.08876751 = queryWeight, product of:
              1.8775425 = idf(docFreq=18385, maxDocs=44218)
              0.047278564 = queryNorm
            0.14668301 = fieldWeight in 4463, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              1.8775425 = idf(docFreq=18385, maxDocs=44218)
              0.0390625 = fieldNorm(doc=4463)
        0.016013984 = product of:
          0.032027967 = sum of:
            0.032027967 = weight(_text_:22 in 4463) [ClassicSimilarity], result of:
              0.032027967 = score(doc=4463,freq=2.0), product of:
                0.16556148 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.047278564 = queryNorm
                0.19345059 = fieldWeight in 4463, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=4463)
          0.5 = coord(1/2)
      0.5 = coord(2/4)
    
    Abstract
    This article considers the relationships among meaning generation, selection, and the dynamics of discourse from a variety of perspectives ranging from information theory and biology to sociology. Following Husserl's idea of a horizon of meanings in intersubjective communication, we propose a way in which, using Shannon's equations, the generation and selection of meanings from a horizon of possibilities can be considered probabilistically. The information-theoretical dynamics we articulate considers a process of meaning generation within cultural evolution: information is imbued with meaning, and through this process, the number of options for the selection of meaning in discourse proliferates. The redundancy of possible meanings contributes to a codification of expectations within the discourse. Unlike hardwired DNA, the codes of nonbiological systems can coevolve with the variations. Spanning horizons of meaning, the codes structure the communications as selection environments that shape discourses. Discursive knowledge can be considered as meta-coded communication that enables us to translate among differently coded communications. The dynamics of discursive knowledge production can thus infuse the historical dynamics with a cultural evolution by adding options, that is, by increasing redundancy. A calculus of redundancy is presented as an indicator whereby these dynamics of discourse and meaning may be explored empirically.
    Date
    29. 9.2018 11:22:09
    Source
    Journal of the Association for Information Science and Technology. 69(2018) no.10, S.1181-1192
  7. Leydesdorff, L.: Accounting for the uncertainty in the evaluation of percentile ranks (2012) 0.01
    0.0078124115 = product of:
      0.031249646 = sum of:
        0.031249646 = weight(_text_:for in 447) [ClassicSimilarity], result of:
          0.031249646 = score(doc=447,freq=4.0), product of:
            0.08876751 = queryWeight, product of:
              1.8775425 = idf(docFreq=18385, maxDocs=44218)
              0.047278564 = queryNorm
            0.35203922 = fieldWeight in 447, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              1.8775425 = idf(docFreq=18385, maxDocs=44218)
              0.09375 = fieldNorm(doc=447)
      0.25 = coord(1/4)
    
    Source
    Journal of the American Society for Information Science and Technology. 63(2012) no.11, S.2349-2350
  8. Leydesdorff, L.; Bornmann, L.: Mapping (USPTO) patent data using overlays to Google Maps (2012) 0.01
    0.007307842 = product of:
      0.029231368 = sum of:
        0.029231368 = weight(_text_:for in 288) [ClassicSimilarity], result of:
          0.029231368 = score(doc=288,freq=14.0), product of:
            0.08876751 = queryWeight, product of:
              1.8775425 = idf(docFreq=18385, maxDocs=44218)
              0.047278564 = queryNorm
            0.32930255 = fieldWeight in 288, product of:
              3.7416575 = tf(freq=14.0), with freq of:
                14.0 = termFreq=14.0
              1.8775425 = idf(docFreq=18385, maxDocs=44218)
              0.046875 = fieldNorm(doc=288)
      0.25 = coord(1/4)
    
    Abstract
    A technique is developed using patent information available online (at the U.S. Patent and Trademark Office) for the generation of Google Maps. The overlays indicate both the quantity and the quality of patents at the city level. This information is relevant for research questions in technology analysis, innovation studies, and evolutionary economics, as well as economic geography. The resulting maps can also be relevant for technological innovation policies and research and development management, because the U.S. market can be considered the leading market for patenting and patent competition. In addition to the maps, the routines provide quantitative data about the patents for statistical analysis. The cities on the map are colored according to the results of significance tests. The overlays are explored for the Netherlands as a "national system of innovations" and further elaborated in two cases of emerging technologies: ribonucleic acid interference (RNAi) and nanotechnology.
    Source
    Journal of the American Society for Information Science and Technology. 63(2012) no.7, S.1442-1458
  9. Leydesdorff, L.; Opthof, T.: Citation analysis with medical subject Headings (MeSH) using the Web of Knowledge : a new routine (2013) 0.01
    0.0067657465 = product of:
      0.027062986 = sum of:
        0.027062986 = weight(_text_:for in 943) [ClassicSimilarity], result of:
          0.027062986 = score(doc=943,freq=12.0), product of:
            0.08876751 = queryWeight, product of:
              1.8775425 = idf(docFreq=18385, maxDocs=44218)
              0.047278564 = queryNorm
            0.3048749 = fieldWeight in 943, product of:
              3.4641016 = tf(freq=12.0), with freq of:
                12.0 = termFreq=12.0
              1.8775425 = idf(docFreq=18385, maxDocs=44218)
              0.046875 = fieldNorm(doc=943)
      0.25 = coord(1/4)
    
    Abstract
    Citation analysis of documents retrieved from the Medline database (at the Web of Knowledge) has been possible only on a case-by-case basis. A technique is presented here for citation analysis in batch mode using both Medical Subject Headings (MeSH) at the Web of Knowledge and the Science Citation Index at the Web of Science (WoS). This freeware routine is applied to the case of "Brugada Syndrome," a specific disease and field of research (since 1992). The journals containing these publications, for example, are attributed to WoS categories other than "cardiac and cardiovascular systems", perhaps because of the possibility of genetic testing for this syndrome in the clinic. With this routine, all the instruments available for citation analysis can now be used on the basis of MeSH terms. Other options for crossing between Medline, WoS, and Scopus are also reviewed.
    Source
    Journal of the American Society for Information Science and Technology. 64(2013) no.5, S.1076-1080
  10. Leydesdorff, L.; Salah, A.A.A.: Maps on the basis of the Arts & Humanities Citation Index : the journals Leonardo and Art Journal versus "digital humanities" as a topic (2010) 0.01
    0.0061762533 = product of:
      0.024705013 = sum of:
        0.024705013 = weight(_text_:for in 3436) [ClassicSimilarity], result of:
          0.024705013 = score(doc=3436,freq=10.0), product of:
            0.08876751 = queryWeight, product of:
              1.8775425 = idf(docFreq=18385, maxDocs=44218)
              0.047278564 = queryNorm
            0.27831143 = fieldWeight in 3436, product of:
              3.1622777 = tf(freq=10.0), with freq of:
                10.0 = termFreq=10.0
              1.8775425 = idf(docFreq=18385, maxDocs=44218)
              0.046875 = fieldNorm(doc=3436)
      0.25 = coord(1/4)
    
    Abstract
    The possibilities of using the Arts & Humanities Citation Index (A&HCI) for journal mapping have not been sufficiently recognized because of the absence of a Journal Citations Report (JCR) for this database. A quasi-JCR for the A&HCI ([2008]) was constructed from the data contained in the Web of Science and is used for the evaluation of two journals as examples: Leonardo and Art Journal. The maps on the basis of the aggregated journal-journal citations within this domain can be compared with maps including references to journals in the Science Citation Index and Social Science Citation Index. Art journals are cited by (social) science journals more than by other art journals, but these journals draw upon one another in terms of their own references. This cultural impact in terms of being cited is not found when documents with a topic such as digital humanities are analyzed. This community of practice functions more as an intellectual organizer than a journal.
    Source
    Journal of the American Society for Information Science and Technology. 61(2010) no.4, S.787-801
  11. Bornmann, L.; Leydesdorff, L.: Which cities produce more excellent papers than can be expected? : a new mapping approach, using Google Maps, based on statistical significance testing (2011) 0.01
    0.0061762533 = product of:
      0.024705013 = sum of:
        0.024705013 = weight(_text_:for in 4767) [ClassicSimilarity], result of:
          0.024705013 = score(doc=4767,freq=10.0), product of:
            0.08876751 = queryWeight, product of:
              1.8775425 = idf(docFreq=18385, maxDocs=44218)
              0.047278564 = queryNorm
            0.27831143 = fieldWeight in 4767, product of:
              3.1622777 = tf(freq=10.0), with freq of:
                10.0 = termFreq=10.0
              1.8775425 = idf(docFreq=18385, maxDocs=44218)
              0.046875 = fieldNorm(doc=4767)
      0.25 = coord(1/4)
    
    Abstract
    The methods presented in this paper allow for a statistical analysis revealing centers of excellence around the world using programs that are freely available. Based on Web of Science data (a fee-based database), field-specific excellence can be identified in cities where highly cited papers were published more frequently than can be expected. Compared to the mapping approaches published hitherto, our approach is more analytically oriented by allowing the assessment of an observed number of excellent papers for a city against the expected number. Top performers in output are cities in which authors are located who publish a statistically significant higher number of highly cited papers than can be expected for these cities. As sample data for physics, chemistry, and psychology show, these cities do not necessarily have a high output of highly cited papers.
    Source
    Journal of the American Society for Information Science and Technology. 62(2011) no.10, S.1954-1962
  12. Leydesdorff, L.; Radicchi, F.; Bornmann, L.; Castellano, C.; Nooy, W. de: Field-normalized impact factors (IFs) : a comparison of rescaling and fractionally counted IFs (2013) 0.01
    0.0061762533 = product of:
      0.024705013 = sum of:
        0.024705013 = weight(_text_:for in 1108) [ClassicSimilarity], result of:
          0.024705013 = score(doc=1108,freq=10.0), product of:
            0.08876751 = queryWeight, product of:
              1.8775425 = idf(docFreq=18385, maxDocs=44218)
              0.047278564 = queryNorm
            0.27831143 = fieldWeight in 1108, product of:
              3.1622777 = tf(freq=10.0), with freq of:
                10.0 = termFreq=10.0
              1.8775425 = idf(docFreq=18385, maxDocs=44218)
              0.046875 = fieldNorm(doc=1108)
      0.25 = coord(1/4)
    
    Abstract
    Two methods for comparing impact factors and citation rates across fields of science are tested against each other using citations to the 3,705 journals in the Science Citation Index 2010 (CD-Rom version of SCI) and the 13 field categories used for the Science and Engineering Indicators of the U.S. National Science Board. We compare (a) normalization by counting citations in proportion to the length of the reference list (1/N of references) with (b) rescaling by dividing citation scores by the arithmetic mean of the citation rate of the cluster. Rescaling is analytical and therefore independent of the quality of the attribution to the sets, whereas fractional counting provides an empirical strategy for normalization among sets (by evaluating the between-group variance). By the fairness test of Radicchi and Castellano (), rescaling outperforms fractional counting of citations for reasons that we consider.
    Source
    Journal of the American Society for Information Science and Technology. 64(2013) no.11, S.2299-2309
  13. Leydesdorff, L.; Ivanova, I.: ¬The measurement of "interdisciplinarity" and "synergy" in scientific and extra-scientific collaborations (2021) 0.01
    0.006089868 = product of:
      0.024359472 = sum of:
        0.024359472 = weight(_text_:for in 208) [ClassicSimilarity], result of:
          0.024359472 = score(doc=208,freq=14.0), product of:
            0.08876751 = queryWeight, product of:
              1.8775425 = idf(docFreq=18385, maxDocs=44218)
              0.047278564 = queryNorm
            0.27441877 = fieldWeight in 208, product of:
              3.7416575 = tf(freq=14.0), with freq of:
                14.0 = termFreq=14.0
              1.8775425 = idf(docFreq=18385, maxDocs=44218)
              0.0390625 = fieldNorm(doc=208)
      0.25 = coord(1/4)
    
    Abstract
    Problem solving often requires crossing boundaries, such as those between disciplines. When policy-makers call for "interdisciplinarity," however, they often mean "synergy." Synergy is generated when the whole offers more possibilities than the sum of its parts. An increase in the number of options above the sum of the options in subsets can be measured as redundancy; that is, the number of not-yet-realized options. The number of options available to an innovation system for realization can be as decisive for the system's survival as the historically already-realized innovations. Unlike "interdisciplinarity," "synergy" can also be generated in sectorial or geographical collaborations. The measurement of "synergy," however, requires a methodology different from the measurement of "interdisciplinarity." In this study, we discuss recent advances in the operationalization and measurement of "interdisciplinarity," and propose a methodology for measuring "synergy" based on information theory. The sharing of meanings attributed to information from different perspectives can increase redundancy. Increasing redundancy reduces the relative uncertainty, for example, in niches. The operationalization of the two concepts-"interdisciplinarity" and "synergy"-as different and partly overlapping indicators allows for distinguishing between the effects and the effectiveness of science-policy interventions in research priorities.
    Source
    Journal of the Association for Information Science and Technology. 72(2021) no.4, S.387-402
  14. Rafols, I.; Leydesdorff, L.: Content-based and algorithmic classifications of journals : perspectives on the dynamics of scientific communication and indexer effects (2009) 0.01
    0.005638122 = product of:
      0.022552488 = sum of:
        0.022552488 = weight(_text_:for in 3095) [ClassicSimilarity], result of:
          0.022552488 = score(doc=3095,freq=12.0), product of:
            0.08876751 = queryWeight, product of:
              1.8775425 = idf(docFreq=18385, maxDocs=44218)
              0.047278564 = queryNorm
            0.2540624 = fieldWeight in 3095, product of:
              3.4641016 = tf(freq=12.0), with freq of:
                12.0 = termFreq=12.0
              1.8775425 = idf(docFreq=18385, maxDocs=44218)
              0.0390625 = fieldNorm(doc=3095)
      0.25 = coord(1/4)
    
    Abstract
    The aggregated journal-journal citation matrix - based on the Journal Citation Reports (JCR) of the Science Citation Index - can be decomposed by indexers or algorithmically. In this study, we test the results of two recently available algorithms for the decomposition of large matrices against two content-based classifications of journals: the ISI Subject Categories and the field/subfield classification of Glänzel and Schubert (2003). The content-based schemes allow for the attribution of more than a single category to a journal, whereas the algorithms maximize the ratio of within-category citations over between-category citations in the aggregated category-category citation matrix. By adding categories, indexers generate between-category citations, which may enrich the database, for example, in the case of inter-disciplinary developments. Algorithmic decompositions, on the other hand, are more heavily skewed towards a relatively small number of categories, while this is deliberately counter-acted upon in the case of content-based classifications. Because of the indexer effects, science policy studies and the sociology of science should be careful when using content-based classifications, which are made for bibliographic disclosure, and not for the purpose of analyzing latent structures in scientific communications. Despite the large differences among them, the four classification schemes enable us to generate surprisingly similar maps of science at the global level. Erroneous classifications are cancelled as noise at the aggregate level, but may disturb the evaluation locally.
    Source
    Journal of the American Society for Information Science and Technology. 60(2009) no.9, S.1823-1835
  15. Leydesdorff, L.: ¬The generation of aggregated journal-journal citation maps on the basis of the CD-ROM version of the Science Citation Index (1994) 0.01
    0.0055814567 = product of:
      0.022325827 = sum of:
        0.022325827 = weight(_text_:for in 8281) [ClassicSimilarity], result of:
          0.022325827 = score(doc=8281,freq=6.0), product of:
            0.08876751 = queryWeight, product of:
              1.8775425 = idf(docFreq=18385, maxDocs=44218)
              0.047278564 = queryNorm
            0.25150898 = fieldWeight in 8281, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              1.8775425 = idf(docFreq=18385, maxDocs=44218)
              0.0546875 = fieldNorm(doc=8281)
      0.25 = coord(1/4)
    
    Abstract
    Describes a method for the generation of journal-journal citation maps on the basis of the CD-ROM version of the Science Citation Index. Discusses sources of potential error from this data. Offers strategies to counteract such errors. Analyzes a number of scientometric periodical mappings in relation to mappings from previous studies which have used tape data and/or data from ISI's Journal Citation Reports. Compares the quality of these mappings with the quality of those for previous years in order to demonstrate the use of such mappings as indicators for dynamic developments in the sciences
  16. Leydesdorff, L.: ¬A sociological theory of communication : the self-organization of the knowledge-based society (2001) 0.01
    0.0055242092 = product of:
      0.022096837 = sum of:
        0.022096837 = weight(_text_:for in 184) [ClassicSimilarity], result of:
          0.022096837 = score(doc=184,freq=8.0), product of:
            0.08876751 = queryWeight, product of:
              1.8775425 = idf(docFreq=18385, maxDocs=44218)
              0.047278564 = queryNorm
            0.24892932 = fieldWeight in 184, product of:
              2.828427 = tf(freq=8.0), with freq of:
                8.0 = termFreq=8.0
              1.8775425 = idf(docFreq=18385, maxDocs=44218)
              0.046875 = fieldNorm(doc=184)
      0.25 = coord(1/4)
    
    Footnote
    Rez. in: JASIST 53(2002) no.1, S.61-62 (E.G. Ackermann): "This brief summary cannot do justice to the intellectual depth, philosophical richness of the theoretical models, and their implications presented by Leydesdorff in his book. Next to this, the caveats presented earlier in this review are relatively minor. For all that, this book is not an "easy" read, nor is it for the theoretically or philosophically faint of heart. The content is certainly accessible to those with the interest and the stamina to see it through to the end, and would repay those who reread it with further insight and understanding. This book is recommended especially for the reader who is looking for a well-developed, general sociological theory of communication with a strong philosophical basis upon which to build a postmodern, deconstructionist research methodology"
  17. Leydesdorff, L.: ¬The university-industry knowledge relationship : analyzing patents and the science base of technologies (2004) 0.01
    0.0055242092 = product of:
      0.022096837 = sum of:
        0.022096837 = weight(_text_:for in 2887) [ClassicSimilarity], result of:
          0.022096837 = score(doc=2887,freq=8.0), product of:
            0.08876751 = queryWeight, product of:
              1.8775425 = idf(docFreq=18385, maxDocs=44218)
              0.047278564 = queryNorm
            0.24892932 = fieldWeight in 2887, product of:
              2.828427 = tf(freq=8.0), with freq of:
                8.0 = termFreq=8.0
              1.8775425 = idf(docFreq=18385, maxDocs=44218)
              0.046875 = fieldNorm(doc=2887)
      0.25 = coord(1/4)
    
    Abstract
    Via the Internet, information scientists can obtain costfree access to large databases in the "hidden" or "deep Web." These databases are often structured far more than the Internet domains themselves. The patent database of the U.S. Patent and Trade Office is used in this study to examine the science base of patents in terms of the literature references in these patents. Universitybased patents at the global level are compared with results when using the national economy of the Netherlands as a system of reference. Methods for accessing the online databases and for the visualization of the results are specified. The conclusion is that "biotechnology" has historically generated a model for theorizing about university-industry relations that cannot easily be generalized to other sectors and disciplines.
    Source
    Journal of the American Society for Information Science and Technology. 55(2004) no.11, S.991-1001
  18. Leydesdorff, L.: Should co-occurrence data be normalized : a rejoinder (2007) 0.01
    0.0055242092 = product of:
      0.022096837 = sum of:
        0.022096837 = weight(_text_:for in 627) [ClassicSimilarity], result of:
          0.022096837 = score(doc=627,freq=2.0), product of:
            0.08876751 = queryWeight, product of:
              1.8775425 = idf(docFreq=18385, maxDocs=44218)
              0.047278564 = queryNorm
            0.24892932 = fieldWeight in 627, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.8775425 = idf(docFreq=18385, maxDocs=44218)
              0.09375 = fieldNorm(doc=627)
      0.25 = coord(1/4)
    
    Source
    Journal of the American Society for Information Science and Technology. 58(2007) no.14, S.2411-2413
  19. Leydesdorff, L.; Bornmann, L.; Mutz, R.; Opthof, T.: Turning the tables on citation analysis one more time : principles for comparing sets of documents (2011) 0.01
    0.0055242092 = product of:
      0.022096837 = sum of:
        0.022096837 = weight(_text_:for in 4485) [ClassicSimilarity], result of:
          0.022096837 = score(doc=4485,freq=8.0), product of:
            0.08876751 = queryWeight, product of:
              1.8775425 = idf(docFreq=18385, maxDocs=44218)
              0.047278564 = queryNorm
            0.24892932 = fieldWeight in 4485, product of:
              2.828427 = tf(freq=8.0), with freq of:
                8.0 = termFreq=8.0
              1.8775425 = idf(docFreq=18385, maxDocs=44218)
              0.046875 = fieldNorm(doc=4485)
      0.25 = coord(1/4)
    
    Abstract
    We submit newly developed citation impact indicators based not on arithmetic averages of citations but on percentile ranks. Citation distributions are-as a rule-highly skewed and should not be arithmetically averaged. With percentile ranks, the citation score of each paper is rated in terms of its percentile in the citation distribution. The percentile ranks approach allows for the formulation of a more abstract indicator scheme that can be used to organize and/or schematize different impact indicators according to three degrees of freedom: the selection of the reference sets, the evaluation criteria, and the choice of whether or not to define the publication sets as independent. Bibliometric data of seven principal investigators (PIs) of the Academic Medical Center of the University of Amsterdam are used as an exemplary dataset. We demonstrate that the proposed family indicators [R(6), R(100), R(6, k), R(100, k)] are an improvement on averages-based indicators because one can account for the shape of the distributions of citations over papers.
    Source
    Journal of the American Society for Information Science and Technology. 62(2011) no.7, S.1370-1381
  20. Bornmann, L.; Leydesdorff, L.: Statistical tests and research assessments : a comment on Schneider (2012) (2013) 0.01
    0.0055242092 = product of:
      0.022096837 = sum of:
        0.022096837 = weight(_text_:for in 752) [ClassicSimilarity], result of:
          0.022096837 = score(doc=752,freq=2.0), product of:
            0.08876751 = queryWeight, product of:
              1.8775425 = idf(docFreq=18385, maxDocs=44218)
              0.047278564 = queryNorm
            0.24892932 = fieldWeight in 752, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.8775425 = idf(docFreq=18385, maxDocs=44218)
              0.09375 = fieldNorm(doc=752)
      0.25 = coord(1/4)
    
    Source
    Journal of the American Society for Information Science and Technology. 64(2013) no.6, S.1306-1308