Search (27 results, page 1 of 2)

  • × theme_ss:"Formale Begriffsanalyse"
  1. Ganter, B.: Computing with conceptual structures (2000) 0.06
    0.055760533 = product of:
      0.111521065 = sum of:
        0.015624823 = weight(_text_:for in 5088) [ClassicSimilarity], result of:
          0.015624823 = score(doc=5088,freq=4.0), product of:
            0.08876751 = queryWeight, product of:
              1.8775425 = idf(docFreq=18385, maxDocs=44218)
              0.047278564 = queryNorm
            0.17601961 = fieldWeight in 5088, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              1.8775425 = idf(docFreq=18385, maxDocs=44218)
              0.046875 = fieldNorm(doc=5088)
        0.095896244 = weight(_text_:computing in 5088) [ClassicSimilarity], result of:
          0.095896244 = score(doc=5088,freq=2.0), product of:
            0.26151994 = queryWeight, product of:
              5.5314693 = idf(docFreq=475, maxDocs=44218)
              0.047278564 = queryNorm
            0.36668807 = fieldWeight in 5088, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              5.5314693 = idf(docFreq=475, maxDocs=44218)
              0.046875 = fieldNorm(doc=5088)
      0.5 = coord(2/4)
    
    Abstract
    We give an overview over the computational tools for conceptional structures that have emerged from the theory of Formal Concept Analysis, with emphasis on basic ideas rather than technical details. We describe what we mean by conceptual computations, and try to convince the reader that an elaborate formalization is a necessary precondition. Claiming that Formal Concept Analysis provides such a formal background, we present as examples two well known algorithms in very simple pseudo code. These earl be used for navigating in a lattice, thereby supporting some prototypical tasks of conceptual computation. We refer to some of the many more advanced methods, discuss how to compute with limited precision and explain why in the case of incomplete knowledge the conceptual approach is more efficient than a combinatorial one. Utilizing this efficiency requires skillful use of the formalism. We present two results that lead in this direction
  2. Conceptual structures : logical, linguistic, and computational issues. 8th International Conference on Conceptual Structures, ICCS 2000, Darmstadt, Germany, August 14-18, 2000 (2000) 0.04
    0.041212283 = product of:
      0.082424566 = sum of:
        0.014615684 = weight(_text_:for in 691) [ClassicSimilarity], result of:
          0.014615684 = score(doc=691,freq=14.0), product of:
            0.08876751 = queryWeight, product of:
              1.8775425 = idf(docFreq=18385, maxDocs=44218)
              0.047278564 = queryNorm
            0.16465127 = fieldWeight in 691, product of:
              3.7416575 = tf(freq=14.0), with freq of:
                14.0 = termFreq=14.0
              1.8775425 = idf(docFreq=18385, maxDocs=44218)
              0.0234375 = fieldNorm(doc=691)
        0.06780888 = weight(_text_:computing in 691) [ClassicSimilarity], result of:
          0.06780888 = score(doc=691,freq=4.0), product of:
            0.26151994 = queryWeight, product of:
              5.5314693 = idf(docFreq=475, maxDocs=44218)
              0.047278564 = queryNorm
            0.25928763 = fieldWeight in 691, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              5.5314693 = idf(docFreq=475, maxDocs=44218)
              0.0234375 = fieldNorm(doc=691)
      0.5 = coord(2/4)
    
    Abstract
    Computer scientists create models of a perceived reality. Through AI techniques, these models aim at providing the basic support for emulating cognitive behavior such as reasoning and learning, which is one of the main goals of the Al research effort. Such computer models are formed through the interaction of various acquisition and inference mechanisms: perception, concept learning, conceptual clustering, hypothesis testing, probabilistic inference, etc., and are represented using different paradigms tightly linked to the processes that use them. Among these paradigms let us cite: biological models (neural nets, genetic programming), logic-based models (first-order logic, modal logic, rule-based systems), virtual reality models (object systems, agent systems), probabilistic models (Bayesian nets, fuzzy logic), linguistic models (conceptual dependency graphs, language-based rep resentations), etc. One of the strengths of the Conceptual Graph (CG) theory is its versatility in terms of the representation paradigms under which it falls. It can be viewed and therefore used, under different representation paradigms, which makes it a popular choice for a wealth of applications. Its full coupling with different cognitive processes lead to the opening of the field toward related research communities such as the Description Logic, Formal Concept Analysis, and Computational Linguistic communities. We now see more and more research results from one community enrich the other, laying the foundations of common philosophical grounds from which a successful synergy can emerge. ICCS 2000 embodies this spirit of research collaboration. It presents a set of papers that we believe, by their exposure, will benefit the whole community. For instance, the technical program proposes tracks on Conceptual Ontologies, Language, Formal Concept Analysis, Computational Aspects of Conceptual Structures, and Formal Semantics, with some papers on pragmatism and human related aspects of computing. Never before was the program of ICCS formed by so heterogeneously rooted theories of knowledge representation and use. We hope that this swirl of ideas will benefit you as much as it already has benefited us while putting together this program
    Content
    Concepts and Language: The Role of Conceptual Structure in Human Evolution (Keith Devlin) - Concepts in Linguistics - Concepts in Natural Language (Gisela Harras) - Patterns, Schemata, and Types: Author Support through Formalized Experience (Felix H. Gatzemeier) - Conventions and Notations for Knowledge Representation and Retrieval (Philippe Martin) - Conceptual Ontology: Ontology, Metadata, and Semiotics (John F. Sowa) - Pragmatically Yours (Mary Keeler) - Conceptual Modeling for Distributed Ontology Environments (Deborah L. McGuinness) - Discovery of Class Relations in Exception Structured Knowledge Bases (Hendra Suryanto, Paul Compton) - Conceptual Graphs: Perspectives: CGs Applications: Where Are We 7 Years after the First ICCS ? (Michel Chein, David Genest) - The Engineering of a CC-Based System: Fundamental Issues (Guy W. Mineau) - Conceptual Graphs, Metamodeling, and Notation of Concepts (Olivier Gerbé, Guy W. Mineau, Rudolf K. Keller) - Knowledge Representation and Reasonings: Based on Graph Homomorphism (Marie-Laure Mugnier) - User Modeling Using Conceptual Graphs for Intelligent Agents (James F. Baldwin, Trevor P. Martin, Aimilia Tzanavari) - Towards a Unified Querying System of Both Structured and Semi-structured Imprecise Data Using Fuzzy View (Patrice Buche, Ollivier Haemmerlé) - Formal Semantics of Conceptual Structures: The Extensional Semantics of the Conceptual Graph Formalism (Guy W. Mineau) - Semantics of Attribute Relations in Conceptual Graphs (Pavel Kocura) - Nested Concept Graphs and Triadic Power Context Families (Susanne Prediger) - Negations in Simple Concept Graphs (Frithjof Dau) - Extending the CG Model by Simulations (Jean-François Baget) - Contextual Logic and Formal Concept Analysis: Building and Structuring Description Logic Knowledge Bases: Using Least Common Subsumers and Concept Analysis (Franz Baader, Ralf Molitor) - On the Contextual Logic of Ordinal Data (Silke Pollandt, Rudolf Wille) - Boolean Concept Logic (Rudolf Wille) - Lattices of Triadic Concept Graphs (Bernd Groh, Rudolf Wille) - Formalizing Hypotheses with Concepts (Bernhard Ganter, Sergei 0. Kuznetsov) - Generalized Formal Concept Analysis (Laurent Chaudron, Nicolas Maille) - A Logical Generalization of Formal Concept Analysis (Sébastien Ferré, Olivier Ridoux) - On the Treatment of Incomplete Knowledge in Formal Concept Analysis (Peter Burmeister, Richard Holzer) - Conceptual Structures in Practice: Logic-Based Networks: Concept Graphs and Conceptual Structures (Peter W. Eklund) - Conceptual Knowledge Discovery and Data Analysis (Joachim Hereth, Gerd Stumme, Rudolf Wille, Uta Wille) - CEM - A Conceptual Email Manager (Richard Cole, Gerd Stumme) - A Contextual-Logic Extension of TOSCANA (Peter Eklund, Bernd Groh, Gerd Stumme, Rudolf Wille) - A Conceptual Graph Model for W3C Resource Description Framework (Olivier Corby, Rose Dieng, Cédric Hébert) - Computational Aspects of Conceptual Structures: Computing with Conceptual Structures (Bernhard Ganter) - Symmetry and the Computation of Conceptual Structures (Robert Levinson) An Introduction to SNePS 3 (Stuart C. Shapiro) - Composition Norm Dynamics Calculation with Conceptual Graphs (Aldo de Moor) - From PROLOG++ to PROLOG+CG: A CG Object-Oriented Logic Programming Language (Adil Kabbaj, Martin Janta-Polczynski) - A Cost-Bounded Algorithm to Control Events Generalization (Gaël de Chalendar, Brigitte Grau, Olivier Ferret)
  3. Vogt, F.; Wille, R.: TOSCANA - a graphical tool for analyzing and exploring data (1995) 0.02
    0.023227734 = product of:
      0.04645547 = sum of:
        0.020833097 = weight(_text_:for in 1901) [ClassicSimilarity], result of:
          0.020833097 = score(doc=1901,freq=4.0), product of:
            0.08876751 = queryWeight, product of:
              1.8775425 = idf(docFreq=18385, maxDocs=44218)
              0.047278564 = queryNorm
            0.23469281 = fieldWeight in 1901, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              1.8775425 = idf(docFreq=18385, maxDocs=44218)
              0.0625 = fieldNorm(doc=1901)
        0.025622372 = product of:
          0.051244743 = sum of:
            0.051244743 = weight(_text_:22 in 1901) [ClassicSimilarity], result of:
              0.051244743 = score(doc=1901,freq=2.0), product of:
                0.16556148 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.047278564 = queryNorm
                0.30952093 = fieldWeight in 1901, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0625 = fieldNorm(doc=1901)
          0.5 = coord(1/2)
      0.5 = coord(2/4)
    
    Abstract
    TOSCANA is a computer program which allows an online interaction with larger data bases to analyse and explore data conceptually. It uses labelled line diagrams of concept lattices to communicate knowledge coded in given data. The basic problem to create online presentations of concept lattices is solved by composing prepared diagrams to nested line diagrams. A larger number of applications in different areas have already shown that TOSCANA is a useful tool for many purposes
    Source
    Knowledge organization. 22(1995) no.2, S.78-81
  4. Priss, U.: Faceted information representation (2000) 0.02
    0.017654698 = product of:
      0.035309397 = sum of:
        0.012889821 = weight(_text_:for in 5095) [ClassicSimilarity], result of:
          0.012889821 = score(doc=5095,freq=2.0), product of:
            0.08876751 = queryWeight, product of:
              1.8775425 = idf(docFreq=18385, maxDocs=44218)
              0.047278564 = queryNorm
            0.14520876 = fieldWeight in 5095, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.8775425 = idf(docFreq=18385, maxDocs=44218)
              0.0546875 = fieldNorm(doc=5095)
        0.022419576 = product of:
          0.04483915 = sum of:
            0.04483915 = weight(_text_:22 in 5095) [ClassicSimilarity], result of:
              0.04483915 = score(doc=5095,freq=2.0), product of:
                0.16556148 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.047278564 = queryNorm
                0.2708308 = fieldWeight in 5095, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=5095)
          0.5 = coord(1/2)
      0.5 = coord(2/4)
    
    Abstract
    This paper presents an abstract formalization of the notion of "facets". Facets are relational structures of units, relations and other facets selected for a certain purpose. Facets can be used to structure large knowledge representation systems into a hierarchical arrangement of consistent and independent subsystems (facets) that facilitate flexibility and combinations of different viewpoints or aspects. This paper describes the basic notions, facet characteristics and construction mechanisms. It then explicates the theory in an example of a faceted information retrieval system (FaIR)
    Date
    22. 1.2016 17:47:06
  5. Priss, U.: Faceted knowledge representation (1999) 0.02
    0.017654698 = product of:
      0.035309397 = sum of:
        0.012889821 = weight(_text_:for in 2654) [ClassicSimilarity], result of:
          0.012889821 = score(doc=2654,freq=2.0), product of:
            0.08876751 = queryWeight, product of:
              1.8775425 = idf(docFreq=18385, maxDocs=44218)
              0.047278564 = queryNorm
            0.14520876 = fieldWeight in 2654, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.8775425 = idf(docFreq=18385, maxDocs=44218)
              0.0546875 = fieldNorm(doc=2654)
        0.022419576 = product of:
          0.04483915 = sum of:
            0.04483915 = weight(_text_:22 in 2654) [ClassicSimilarity], result of:
              0.04483915 = score(doc=2654,freq=2.0), product of:
                0.16556148 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.047278564 = queryNorm
                0.2708308 = fieldWeight in 2654, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=2654)
          0.5 = coord(1/2)
      0.5 = coord(2/4)
    
    Abstract
    Faceted Knowledge Representation provides a formalism for implementing knowledge systems. The basic notions of faceted knowledge representation are "unit", "relation", "facet" and "interpretation". Units are atomic elements and can be abstract elements or refer to external objects in an application. Relations are sequences or matrices of 0 and 1's (binary matrices). Facets are relational structures that combine units and relations. Each facet represents an aspect or viewpoint of a knowledge system. Interpretations are mappings that can be used to translate between different representations. This paper introduces the basic notions of faceted knowledge representation. The formalism is applied here to an abstract modeling of a faceted thesaurus as used in information retrieval.
    Date
    22. 1.2016 17:30:31
  6. Prediger, S.: Kontextuelle Urteilslogik mit Begriffsgraphen : Ein Beitrag zur Restrukturierung der mathematischen Logik (1998) 0.01
    0.008006992 = product of:
      0.032027967 = sum of:
        0.032027967 = product of:
          0.064055935 = sum of:
            0.064055935 = weight(_text_:22 in 3142) [ClassicSimilarity], result of:
              0.064055935 = score(doc=3142,freq=2.0), product of:
                0.16556148 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.047278564 = queryNorm
                0.38690117 = fieldWeight in 3142, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.078125 = fieldNorm(doc=3142)
          0.5 = coord(1/2)
      0.25 = coord(1/4)
    
    Date
    26. 2.2008 15:58:22
  7. Vogt, F.; Wille, R.: TOSCANA - a graphical tool for analyzing and exploring data (1995) 0.01
    0.0064449105 = product of:
      0.025779642 = sum of:
        0.025779642 = weight(_text_:for in 595) [ClassicSimilarity], result of:
          0.025779642 = score(doc=595,freq=2.0), product of:
            0.08876751 = queryWeight, product of:
              1.8775425 = idf(docFreq=18385, maxDocs=44218)
              0.047278564 = queryNorm
            0.29041752 = fieldWeight in 595, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.8775425 = idf(docFreq=18385, maxDocs=44218)
              0.109375 = fieldNorm(doc=595)
      0.25 = coord(1/4)
    
  8. Working with conceptual structures : contributions to ICCS 2000. 8th International Conference on Conceptual Structures: Logical, Linguistic, and Computational Issues. Darmstadt, August 14-18, 2000 (2000) 0.01
    0.005809364 = product of:
      0.023237456 = sum of:
        0.023237456 = weight(_text_:for in 5089) [ClassicSimilarity], result of:
          0.023237456 = score(doc=5089,freq=26.0), product of:
            0.08876751 = queryWeight, product of:
              1.8775425 = idf(docFreq=18385, maxDocs=44218)
              0.047278564 = queryNorm
            0.26177883 = fieldWeight in 5089, product of:
              5.0990195 = tf(freq=26.0), with freq of:
                26.0 = termFreq=26.0
              1.8775425 = idf(docFreq=18385, maxDocs=44218)
              0.02734375 = fieldNorm(doc=5089)
      0.25 = coord(1/4)
    
    Abstract
    The 8th International Conference on Conceptual Structures - Logical, Linguistic, and Computational Issues (ICCS 2000) brings together a wide range of researchers and practitioners working with conceptual structures. During the last few years, the ICCS conference series has considerably widened its scope on different kinds of conceptual structures, stimulating research across domain boundaries. We hope that this stimulation is further enhanced by ICCS 2000 joining the long tradition of conferences in Darmstadt with extensive, lively discussions. This volume consists of contributions presented at ICCS 2000, complementing the volume "Conceptual Structures: Logical, Linguistic, and Computational Issues" (B. Ganter, G.W. Mineau (Eds.), LNAI 1867, Springer, Berlin-Heidelberg 2000). It contains submissions reviewed by the program committee, and position papers. We wish to express our appreciation to all the authors of submitted papers, to the general chair, the program chair, the editorial board, the program committee, and to the additional reviewers for making ICCS 2000 a valuable contribution in the knowledge processing research field. Special thanks go to the local organizers for making the conference an enjoyable and inspiring event. We are grateful to Darmstadt University of Technology, the Ernst Schröder Center for Conceptual Knowledge Processing, the Center for Interdisciplinary Studies in Technology, the Deutsche Forschungsgemeinschaft, Land Hessen, and NaviCon GmbH for their generous support
    Content
    Concepts & Language: Knowledge organization by procedures of natural language processing. A case study using the method GABEK (J. Zelger, J. Gadner) - Computer aided narrative analysis using conceptual graphs (H. Schärfe, P. 0hrstrom) - Pragmatic representation of argumentative text: a challenge for the conceptual graph approach (H. Irandoust, B. Moulin) - Conceptual graphs as a knowledge representation core in a complex language learning environment (G. Angelova, A. Nenkova, S. Boycheva, T. Nikolov) - Conceptual Modeling and Ontologies: Relationships and actions in conceptual categories (Ch. Landauer, K.L. Bellman) - Concept approximations for formal concept analysis (J. Saquer, J.S. Deogun) - Faceted information representation (U. Priß) - Simple concept graphs with universal quantifiers (J. Tappe) - A framework for comparing methods for using or reusing multiple ontologies in an application (J. van ZyI, D. Corbett) - Designing task/method knowledge-based systems with conceptual graphs (M. Leclère, F.Trichet, Ch. Choquet) - A logical ontology (J. Farkas, J. Sarbo) - Algorithms and Tools: Fast concept analysis (Ch. Lindig) - A framework for conceptual graph unification (D. Corbett) - Visual CP representation of knowledge (H.D. Pfeiffer, R.T. Hartley) - Maximal isojoin for representing software textual specifications and detecting semantic anomalies (Th. Charnois) - Troika: using grids, lattices and graphs in knowledge acquisition (H.S. Delugach, B.E. Lampkin) - Open world theorem prover for conceptual graphs (J.E. Heaton, P. Kocura) - NetCare: a practical conceptual graphs software tool (S. Polovina, D. Strang) - CGWorld - a web based workbench for conceptual graphs management and applications (P. Dobrev, K. Toutanova) - Position papers: The edition project: Peirce's existential graphs (R. Mülller) - Mining association rules using formal concept analysis (N. Pasquier) - Contextual logic summary (R Wille) - Information channels and conceptual scaling (K.E. Wolff) - Spatial concepts - a rule exploration (S. Rudolph) - The TEXT-TO-ONTO learning environment (A. Mädche, St. Staab) - Controlling the semantics of metadata on audio-visual documents using ontologies (Th. Dechilly, B. Bachimont) - Building the ontological foundations of a terminology from natural language to conceptual graphs with Ribosome, a knowledge extraction system (Ch. Jacquelinet, A. Burgun) - CharGer: some lessons learned and new directions (H.S. Delugach) - Knowledge management using conceptual graphs (W.K. Pun)
  9. Priss, U.: ¬A graphical interface for conceptually navigating faceted thesauri (1998) 0.01
    0.0055814567 = product of:
      0.022325827 = sum of:
        0.022325827 = weight(_text_:for in 6658) [ClassicSimilarity], result of:
          0.022325827 = score(doc=6658,freq=6.0), product of:
            0.08876751 = queryWeight, product of:
              1.8775425 = idf(docFreq=18385, maxDocs=44218)
              0.047278564 = queryNorm
            0.25150898 = fieldWeight in 6658, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              1.8775425 = idf(docFreq=18385, maxDocs=44218)
              0.0546875 = fieldNorm(doc=6658)
      0.25 = coord(1/4)
    
    Abstract
    This paper describes a graphical interface for the navigation and construction of faceted thesauri that is based on formal concept analysis. Each facet of a thesaurus is represented as a mathematical lattice that is further subdivided into components. Users can graphically navigate through the Java implementation of the interface by clicking on terms that connect facets and components. Since there are many applications for thesauri in the knowledge representation field, such a graphical interface has the potential of being very useful
  10. Ganter, B.; Wille, R.: Formal concept analysis : mathematical foundations (1998) 0.01
    0.0055242092 = product of:
      0.022096837 = sum of:
        0.022096837 = weight(_text_:for in 5061) [ClassicSimilarity], result of:
          0.022096837 = score(doc=5061,freq=8.0), product of:
            0.08876751 = queryWeight, product of:
              1.8775425 = idf(docFreq=18385, maxDocs=44218)
              0.047278564 = queryNorm
            0.24892932 = fieldWeight in 5061, product of:
              2.828427 = tf(freq=8.0), with freq of:
                8.0 = termFreq=8.0
              1.8775425 = idf(docFreq=18385, maxDocs=44218)
              0.046875 = fieldNorm(doc=5061)
      0.25 = coord(1/4)
    
    Abstract
    This is the first textbook on formal concept analysis. It gives a systematic presentation of the mathematical foundations and their relation to applications in computer science, especially data analysis and knowledge processing. Above all, it presents graphical methods for representing conceptual systems that have proved themselves in communicating knowledge. Theory and graphical representation are thus closely coupled together. The mathematical foundations are treated thouroughly and illuminated by means of numerous examples. Since computers are being used ever more widely for knowledge processing, formal methods for conceptual analysis are gaining in importance. This book makes the basic theory for such methods accessible in a compact form
  11. Priss, U.; Jacob, E.: Utilizing faceted structures for information systems design (1999) 0.01
    0.005524209 = product of:
      0.022096835 = sum of:
        0.022096835 = weight(_text_:for in 2470) [ClassicSimilarity], result of:
          0.022096835 = score(doc=2470,freq=18.0), product of:
            0.08876751 = queryWeight, product of:
              1.8775425 = idf(docFreq=18385, maxDocs=44218)
              0.047278564 = queryNorm
            0.2489293 = fieldWeight in 2470, product of:
              4.2426405 = tf(freq=18.0), with freq of:
                18.0 = termFreq=18.0
              1.8775425 = idf(docFreq=18385, maxDocs=44218)
              0.03125 = fieldNorm(doc=2470)
      0.25 = coord(1/4)
    
    Abstract
    Even for the experienced information professional, designing an efficient multi-purpose information access structure can be a very difficult task. This paper argues for the use of a faceted thesaurus as the basis for organizing a small-scale institutional website. We contend that a faceted approach to knowledge organization can make the process of organization less random and more manageable. We begin by reporting on an informal survey of three institutional websites. This study underscores the problems of organization that can impact access to information. We then formalize the terminology of faceted thesauri and demonstrate its application with several examples.
    The writers show that a faceted navigation structure makes web sites easier to use. They begin by analyzing the web sites of three library and information science faculties, and seeing if the sites easily provide the answers to five specific questions, e.g., how the school ranks in national evaluations. (It is worth noting that the web site of the Faculty of Information Studies and the University of Toronto, where this bibliography is being written, would fail on four of the five questions.) Using examples from LIS web site content, they show how facets can be related and constructed, and use concept diagrams for illustration. They briefly discuss constraints necessary when joining facets: for example, enrolled students can be full- or part-time, but prospective and alumni students cannot. It should not be possible to construct terms such as "part-time alumni" (see Yannis Tzitzikas et al, below in Background). They conclude that a faceted approach is best for web site navigation, because it can clearly show where the user is in the site, what the related pages are, and how to get to them. There is a short discussion of user interfaces, and the diagrams in the paper will be of interest to anyone making a facet-based web site. This paper is clearly written, informative, and thought-provoking. Uta Priss's web site lists her other publications, many of which are related and some of which are online: http://www.upriss.org.uk/top/research.html.
    Series
    Proceedings of the American Society for Information Science; vol.36
    Source
    Knowledge: creation, organization and use. Proceedings of the 62nd Annual Meeting of the American Society for Information Science, 31.10.-4.11.1999. Ed.: L. Woods
  12. Lex, W.: ¬A representation of concepts for their computerization (1987) 0.01
    0.0052082743 = product of:
      0.020833097 = sum of:
        0.020833097 = weight(_text_:for in 618) [ClassicSimilarity], result of:
          0.020833097 = score(doc=618,freq=4.0), product of:
            0.08876751 = queryWeight, product of:
              1.8775425 = idf(docFreq=18385, maxDocs=44218)
              0.047278564 = queryNorm
            0.23469281 = fieldWeight in 618, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              1.8775425 = idf(docFreq=18385, maxDocs=44218)
              0.0625 = fieldNorm(doc=618)
      0.25 = coord(1/4)
    
    Abstract
    A lattice theoretical description of concept hierarchies is developed using for attributes the terms "given", "negated", "open" and "impossible" as the truth-values of a four-valued logic. Similar to the theory of B. Ganter and R. Wille so does this framework permit a precise representation of the usual interdependences in a field of related concepts - such as superconcepts, subconcept, contrary concepts etc. -, whenever the concepts under consideration can be sufficiently described by the presence or absence of certain attributes ...
  13. Kent, R.E.: Implications and rules in thesauri (1994) 0.01
    0.0052082743 = product of:
      0.020833097 = sum of:
        0.020833097 = weight(_text_:for in 3457) [ClassicSimilarity], result of:
          0.020833097 = score(doc=3457,freq=4.0), product of:
            0.08876751 = queryWeight, product of:
              1.8775425 = idf(docFreq=18385, maxDocs=44218)
              0.047278564 = queryNorm
            0.23469281 = fieldWeight in 3457, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              1.8775425 = idf(docFreq=18385, maxDocs=44218)
              0.0625 = fieldNorm(doc=3457)
      0.25 = coord(1/4)
    
    Abstract
    A central consideration in the study of whole language semantic space as encoded in thesauri is word sense comparability. Shows how word sense comparability can be adequately expressed by the logical implications and rules from Formal Concept Analysis. Formal concept analysis, a new approach to formal logic initiated by Rudolf Wille, has been used for data modelling, analysis and interpretation, and also for knowledge representation and knowledge discovery
  14. Priss, U.: Lattice-based information retrieval (2000) 0.00
    0.00455724 = product of:
      0.01822896 = sum of:
        0.01822896 = weight(_text_:for in 6055) [ClassicSimilarity], result of:
          0.01822896 = score(doc=6055,freq=4.0), product of:
            0.08876751 = queryWeight, product of:
              1.8775425 = idf(docFreq=18385, maxDocs=44218)
              0.047278564 = queryNorm
            0.20535621 = fieldWeight in 6055, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              1.8775425 = idf(docFreq=18385, maxDocs=44218)
              0.0546875 = fieldNorm(doc=6055)
      0.25 = coord(1/4)
    
    Abstract
    A lattice-based model for information retrieval was suggested in the 1960's but has been seen as a theoretical possibility hard to practically apply ever since. This paper attempts to revive the lattice model and demonstrate its applicability in an information retrieval system, FalR, that incorporates a graphical representation of a faceted thesaurus. It shows how Boolean queries can be lattice-theoretically related to the concepts of the thesaurus and visualized within the thesaurus display. An advantage of FaIR is that it allows for a high level of transparency of the system, which can be controlled by the user
  15. Kumar, C.A.; Radvansky, M.; Annapurna, J.: Analysis of Vector Space Model, Latent Semantic Indexing and Formal Concept Analysis for information retrieval (2012) 0.00
    0.00455724 = product of:
      0.01822896 = sum of:
        0.01822896 = weight(_text_:for in 2710) [ClassicSimilarity], result of:
          0.01822896 = score(doc=2710,freq=4.0), product of:
            0.08876751 = queryWeight, product of:
              1.8775425 = idf(docFreq=18385, maxDocs=44218)
              0.047278564 = queryNorm
            0.20535621 = fieldWeight in 2710, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              1.8775425 = idf(docFreq=18385, maxDocs=44218)
              0.0546875 = fieldNorm(doc=2710)
      0.25 = coord(1/4)
    
    Abstract
    Latent Semantic Indexing (LSI), a variant of classical Vector Space Model (VSM), is an Information Retrieval (IR) model that attempts to capture the latent semantic relationship between the data items. Mathematical lattices, under the framework of Formal Concept Analysis (FCA), represent conceptual hierarchies in data and retrieve the information. However both LSI and FCA uses the data represented in form of matrices. The objective of this paper is to systematically analyze VSM, LSI and FCA for the task of IR using the standard and real life datasets.
  16. Eklund, P.; Groh, B.; Stumme, G.; Wille, R.: ¬A conceptual-logic extension of TOSCANA (2000) 0.00
    0.0039062058 = product of:
      0.015624823 = sum of:
        0.015624823 = weight(_text_:for in 5082) [ClassicSimilarity], result of:
          0.015624823 = score(doc=5082,freq=4.0), product of:
            0.08876751 = queryWeight, product of:
              1.8775425 = idf(docFreq=18385, maxDocs=44218)
              0.047278564 = queryNorm
            0.17601961 = fieldWeight in 5082, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              1.8775425 = idf(docFreq=18385, maxDocs=44218)
              0.046875 = fieldNorm(doc=5082)
      0.25 = coord(1/4)
    
    Abstract
    The aim of this paper is to indicate how TOSCANA may be extended to allow graphical representations not only of concept lattices but also of concept graphs in the sense of Contextual Logic. The contextual- logic extension of TOSCANA requires the logical scaling of conceptual and relational scales for which we propose the Peircean Algebraic Logic as reconstructed by R. W. Burch. As graphical representations we recommend, besides labelled line diagrams of concept lattices and Sowa's diagrams of conceptual graphs, particular information maps for utilizing background knowledge as much as possible. Our considerations are illustrated by a small information system about the domestic flights in Austria
  17. Burmeister, P.; Holzer, R.: On the treatment of incomplete knowledge in formal concept analysis (2000) 0.00
    0.0039062058 = product of:
      0.015624823 = sum of:
        0.015624823 = weight(_text_:for in 5085) [ClassicSimilarity], result of:
          0.015624823 = score(doc=5085,freq=4.0), product of:
            0.08876751 = queryWeight, product of:
              1.8775425 = idf(docFreq=18385, maxDocs=44218)
              0.047278564 = queryNorm
            0.17601961 = fieldWeight in 5085, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              1.8775425 = idf(docFreq=18385, maxDocs=44218)
              0.046875 = fieldNorm(doc=5085)
      0.25 = coord(1/4)
    
    Abstract
    Some possible treatments of incomplete knowledge in conceptual data representation, data analysis and knowledge acquisition are presented. In particular, some ways of conceptual scalings as well as the role of the three-valued KLEENE-logic are briefly investigated. This logic is also one background in attribute exploration, a conceptual tool for knowledge acquisition. For this method a strategy is given to obtain as much of (attribute) implicational knowledge about a given "universe" as possible; and we show how to represent incomplete knowledge in order to be able to pin down the questions still to be answered in order to obtain complete knowledge in this situation
  18. Sedelow, S.Y.; Sedelow, W.A.: Thesauri and concept-lattice semantic nets (1994) 0.00
    0.0036828062 = product of:
      0.014731225 = sum of:
        0.014731225 = weight(_text_:for in 7733) [ClassicSimilarity], result of:
          0.014731225 = score(doc=7733,freq=2.0), product of:
            0.08876751 = queryWeight, product of:
              1.8775425 = idf(docFreq=18385, maxDocs=44218)
              0.047278564 = queryNorm
            0.16595288 = fieldWeight in 7733, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.8775425 = idf(docFreq=18385, maxDocs=44218)
              0.0625 = fieldNorm(doc=7733)
      0.25 = coord(1/4)
    
    Abstract
    Formal concept lattices are a promising vehicle for the construction of rigorous and empirically accurate semantic nets. Presented here are results of initial experiments with concept lattices as representations of semantic relationships in the implicit structure of a large database (e.g. Roget's thesaurus)
  19. Sedelow, W.A.: ¬The formal analysis of concepts (1993) 0.00
    0.0036828062 = product of:
      0.014731225 = sum of:
        0.014731225 = weight(_text_:for in 620) [ClassicSimilarity], result of:
          0.014731225 = score(doc=620,freq=2.0), product of:
            0.08876751 = queryWeight, product of:
              1.8775425 = idf(docFreq=18385, maxDocs=44218)
              0.047278564 = queryNorm
            0.16595288 = fieldWeight in 620, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.8775425 = idf(docFreq=18385, maxDocs=44218)
              0.0625 = fieldNorm(doc=620)
      0.25 = coord(1/4)
    
    Abstract
    The present paper focuses on the extraction, by means of a formal logical/mathematical methodology (i.e. automatically, exclusively by rule), of concept content, as in, for example, continuous discourse. The approach to a fully formal defintion of concept content ultimately is owing to a German government initiative to establish 'standards' regarding concepts, in conjunction with efforts to stipulate precisely (and then, derivatively, through computer prgrams) data and information needs according to work role in certain government offices
  20. Neuss, C.; Kent, R.E.: Conceptual analysis of resource meta-information (1995) 0.00
    0.0036828062 = product of:
      0.014731225 = sum of:
        0.014731225 = weight(_text_:for in 2204) [ClassicSimilarity], result of:
          0.014731225 = score(doc=2204,freq=2.0), product of:
            0.08876751 = queryWeight, product of:
              1.8775425 = idf(docFreq=18385, maxDocs=44218)
              0.047278564 = queryNorm
            0.16595288 = fieldWeight in 2204, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.8775425 = idf(docFreq=18385, maxDocs=44218)
              0.0625 = fieldNorm(doc=2204)
      0.25 = coord(1/4)
    
    Abstract
    With the continuously growing amount of Internet accessible information resources, locating relevant information in the WWW becomes increasingly difficult. Recent developments provide scalable mechanisms for maintaing indexes of network accessible information. In order to implement sophisticated retrieval engines, a means of automatic analysis and classification of document meta information has to be found. Proposes the use of methods from the mathematical theory of concept analysis to analyze and interactively explore the information space defined by wide area resource discovery services