Search (30 results, page 1 of 2)

  • × type_ss:"p"
  1. Noever, D.; Ciolino, M.: ¬The Turing deception (2022) 0.05
    0.045357857 = product of:
      0.090715714 = sum of:
        0.07509089 = product of:
          0.22527267 = sum of:
            0.22527267 = weight(_text_:3a in 862) [ClassicSimilarity], result of:
              0.22527267 = score(doc=862,freq=2.0), product of:
                0.40082818 = queryWeight, product of:
                  8.478011 = idf(docFreq=24, maxDocs=44218)
                  0.047278564 = queryNorm
                0.56201804 = fieldWeight in 862, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  8.478011 = idf(docFreq=24, maxDocs=44218)
                  0.046875 = fieldNorm(doc=862)
          0.33333334 = coord(1/3)
        0.015624823 = weight(_text_:for in 862) [ClassicSimilarity], result of:
          0.015624823 = score(doc=862,freq=4.0), product of:
            0.08876751 = queryWeight, product of:
              1.8775425 = idf(docFreq=18385, maxDocs=44218)
              0.047278564 = queryNorm
            0.17601961 = fieldWeight in 862, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              1.8775425 = idf(docFreq=18385, maxDocs=44218)
              0.046875 = fieldNorm(doc=862)
      0.5 = coord(2/4)
    
    Abstract
    This research revisits the classic Turing test and compares recent large language models such as ChatGPT for their abilities to reproduce human-level comprehension and compelling text generation. Two task challenges- summary and question answering- prompt ChatGPT to produce original content (98-99%) from a single text entry and sequential questions initially posed by Turing in 1950. We score the original and generated content against the OpenAI GPT-2 Output Detector from 2019, and establish multiple cases where the generated content proves original and undetectable (98%). The question of a machine fooling a human judge recedes in this work relative to the question of "how would one prove it?" The original contribution of the work presents a metric and simple grammatical set for understanding the writing mechanics of chatbots in evaluating their readability and statistical clarity, engagement, delivery, overall quality, and plagiarism risks. While Turing's original prose scores at least 14% below the machine-generated output, whether an algorithm displays hints of Turing's true initial thoughts (the "Lovelace 2.0" test) remains unanswerable.
    Source
    https%3A%2F%2Farxiv.org%2Fabs%2F2212.06721&usg=AOvVaw3i_9pZm9y_dQWoHi6uv0EN
  2. Luo, L.; Ju, J.; Li, Y.-F.; Haffari, G.; Xiong, B.; Pan, S.: ChatRule: mining logical rules with large language models for knowledge graph reasoning (2023) 0.02
    0.01830075 = product of:
      0.0366015 = sum of:
        0.020587513 = weight(_text_:for in 1171) [ClassicSimilarity], result of:
          0.020587513 = score(doc=1171,freq=10.0), product of:
            0.08876751 = queryWeight, product of:
              1.8775425 = idf(docFreq=18385, maxDocs=44218)
              0.047278564 = queryNorm
            0.2319262 = fieldWeight in 1171, product of:
              3.1622777 = tf(freq=10.0), with freq of:
                10.0 = termFreq=10.0
              1.8775425 = idf(docFreq=18385, maxDocs=44218)
              0.0390625 = fieldNorm(doc=1171)
        0.016013984 = product of:
          0.032027967 = sum of:
            0.032027967 = weight(_text_:22 in 1171) [ClassicSimilarity], result of:
              0.032027967 = score(doc=1171,freq=2.0), product of:
                0.16556148 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.047278564 = queryNorm
                0.19345059 = fieldWeight in 1171, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=1171)
          0.5 = coord(1/2)
      0.5 = coord(2/4)
    
    Abstract
    Logical rules are essential for uncovering the logical connections between relations, which could improve the reasoning performance and provide interpretable results on knowledge graphs (KGs). Although there have been many efforts to mine meaningful logical rules over KGs, existing methods suffer from the computationally intensive searches over the rule space and a lack of scalability for large-scale KGs. Besides, they often ignore the semantics of relations which is crucial for uncovering logical connections. Recently, large language models (LLMs) have shown impressive performance in the field of natural language processing and various applications, owing to their emergent ability and generalizability. In this paper, we propose a novel framework, ChatRule, unleashing the power of large language models for mining logical rules over knowledge graphs. Specifically, the framework is initiated with an LLM-based rule generator, leveraging both the semantic and structural information of KGs to prompt LLMs to generate logical rules. To refine the generated rules, a rule ranking module estimates the rule quality by incorporating facts from existing KGs. Last, a rule validator harnesses the reasoning ability of LLMs to validate the logical correctness of ranked rules through chain-of-thought reasoning. ChatRule is evaluated on four large-scale KGs, w.r.t. different rule quality metrics and downstream tasks, showing the effectiveness and scalability of our method.
    Date
    23.11.2023 19:07:22
  3. Großjohann, K.: Gathering-, Harvesting-, Suchmaschinen (1996) 0.01
    0.013588316 = product of:
      0.054353263 = sum of:
        0.054353263 = product of:
          0.10870653 = sum of:
            0.10870653 = weight(_text_:22 in 3227) [ClassicSimilarity], result of:
              0.10870653 = score(doc=3227,freq=4.0), product of:
                0.16556148 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.047278564 = queryNorm
                0.6565931 = fieldWeight in 3227, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.09375 = fieldNorm(doc=3227)
          0.5 = coord(1/2)
      0.25 = coord(1/4)
    
    Date
    7. 2.1996 22:38:41
    Pages
    22 S
  4. Wätjen, H.-J.: Mensch oder Maschine? : Auswahl und Erschließung vonm Informationsressourcen im Internet (1996) 0.01
    0.008006992 = product of:
      0.032027967 = sum of:
        0.032027967 = product of:
          0.064055935 = sum of:
            0.064055935 = weight(_text_:22 in 3161) [ClassicSimilarity], result of:
              0.064055935 = score(doc=3161,freq=2.0), product of:
                0.16556148 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.047278564 = queryNorm
                0.38690117 = fieldWeight in 3161, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.078125 = fieldNorm(doc=3161)
          0.5 = coord(1/2)
      0.25 = coord(1/4)
    
    Date
    2. 2.1996 15:40:22
  5. Broughton, V.: ¬A new classification for the literature for religion (2000) 0.01
    0.0078124115 = product of:
      0.031249646 = sum of:
        0.031249646 = weight(_text_:for in 5398) [ClassicSimilarity], result of:
          0.031249646 = score(doc=5398,freq=4.0), product of:
            0.08876751 = queryWeight, product of:
              1.8775425 = idf(docFreq=18385, maxDocs=44218)
              0.047278564 = queryNorm
            0.35203922 = fieldWeight in 5398, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              1.8775425 = idf(docFreq=18385, maxDocs=44218)
              0.09375 = fieldNorm(doc=5398)
      0.25 = coord(1/4)
    
  6. Pejtersen, A.M.; Jensen, H.; Speck, P.; Villumsen, S.; Weber, S.: Catalogs for children : the Book House project on visualization of database retrieval and classification (1993) 0.01
    0.0076340535 = product of:
      0.030536214 = sum of:
        0.030536214 = weight(_text_:for in 6232) [ClassicSimilarity], result of:
          0.030536214 = score(doc=6232,freq=22.0), product of:
            0.08876751 = queryWeight, product of:
              1.8775425 = idf(docFreq=18385, maxDocs=44218)
              0.047278564 = queryNorm
            0.34400213 = fieldWeight in 6232, product of:
              4.690416 = tf(freq=22.0), with freq of:
                22.0 = termFreq=22.0
              1.8775425 = idf(docFreq=18385, maxDocs=44218)
              0.0390625 = fieldNorm(doc=6232)
      0.25 = coord(1/4)
    
    Abstract
    This paper describes the Book House system which is designed to support children's information retrieval in libraries as part of their education. It is a shareware program available on CD-ROM and discs, and comprises functionality for database searching as well as for the classification and storage of book information in the database. The system concept is based on an understanding of children's domain structures and their capabilities for categorization of information needs in connection with their activities in public libraries, in school libraries or in schools. These structures are visualized in the interface by using metaphors and multimedia technology. Through the use of text, images and animation, the Book House supports children - even at a very early age - to learn by doing in an enjoyable way which plays on their previous experiences with computer games. Both words and pictures can be used for searching; this makes the system suitable for all age groups. Even children who have not yet learned to read properly can by selecting pictures search for and find books they would like to have read aloud. Thus at the very beginning of their school period, they can learn to search for books on their own. For the library community itself, such a system will provide an extended service which will increase the number of children's own searches and also improve the relevance, quality and utilization of the collections in the libraries. A market research on the need for an annual indexing service for books in the Book House format is in preparation by the Danish Library Center
  7. Butcher, J.E.; Trotter, R.: Building on PRECIS : strategies for online subject access in the British Library (1989) 0.01
    0.0064449105 = product of:
      0.025779642 = sum of:
        0.025779642 = weight(_text_:for in 996) [ClassicSimilarity], result of:
          0.025779642 = score(doc=996,freq=2.0), product of:
            0.08876751 = queryWeight, product of:
              1.8775425 = idf(docFreq=18385, maxDocs=44218)
              0.047278564 = queryNorm
            0.29041752 = fieldWeight in 996, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.8775425 = idf(docFreq=18385, maxDocs=44218)
              0.109375 = fieldNorm(doc=996)
      0.25 = coord(1/4)
    
  8. Jouguelet, S.: Subject access and the marketplace for bibliographic information in France (1989) 0.01
    0.0064449105 = product of:
      0.025779642 = sum of:
        0.025779642 = weight(_text_:for in 998) [ClassicSimilarity], result of:
          0.025779642 = score(doc=998,freq=2.0), product of:
            0.08876751 = queryWeight, product of:
              1.8775425 = idf(docFreq=18385, maxDocs=44218)
              0.047278564 = queryNorm
            0.29041752 = fieldWeight in 998, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.8775425 = idf(docFreq=18385, maxDocs=44218)
              0.109375 = fieldNorm(doc=998)
      0.25 = coord(1/4)
    
  9. Stephan, W.: Guidelines for subject authority and reference entries (GSARE) : a first step to a worldwide accepted standard (1992) 0.01
    0.0064449105 = product of:
      0.025779642 = sum of:
        0.025779642 = weight(_text_:for in 2609) [ClassicSimilarity], result of:
          0.025779642 = score(doc=2609,freq=2.0), product of:
            0.08876751 = queryWeight, product of:
              1.8775425 = idf(docFreq=18385, maxDocs=44218)
              0.047278564 = queryNorm
            0.29041752 = fieldWeight in 2609, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.8775425 = idf(docFreq=18385, maxDocs=44218)
              0.109375 = fieldNorm(doc=2609)
      0.25 = coord(1/4)
    
  10. Kemp, A. de: Information provision : a publisher's point of view in changing times and with new technologies (1993) 0.01
    0.0063788076 = product of:
      0.02551523 = sum of:
        0.02551523 = weight(_text_:for in 6235) [ClassicSimilarity], result of:
          0.02551523 = score(doc=6235,freq=6.0), product of:
            0.08876751 = queryWeight, product of:
              1.8775425 = idf(docFreq=18385, maxDocs=44218)
              0.047278564 = queryNorm
            0.28743884 = fieldWeight in 6235, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              1.8775425 = idf(docFreq=18385, maxDocs=44218)
              0.0625 = fieldNorm(doc=6235)
      0.25 = coord(1/4)
    
    Abstract
    Almost everybody seems to be talking about document delivery and digital libraries. Library networks are starting joint ventures with journal subscription agencies and offering electronic tables of contents. Integrated systems for image management and document management are being implemented. Academic networks and Internet are being used at an exponential rate. At the same time budgets for the acquisition of books and journals are shrinking and alternatives for the delivery of information are being discussed. Are there alternatives and what will be their impact?
  11. Lund, B.D.: ¬A chat with ChatGPT : how will AI impact scholarly publishing? (2022) 0.01
    0.0063788076 = product of:
      0.02551523 = sum of:
        0.02551523 = weight(_text_:for in 850) [ClassicSimilarity], result of:
          0.02551523 = score(doc=850,freq=6.0), product of:
            0.08876751 = queryWeight, product of:
              1.8775425 = idf(docFreq=18385, maxDocs=44218)
              0.047278564 = queryNorm
            0.28743884 = fieldWeight in 850, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              1.8775425 = idf(docFreq=18385, maxDocs=44218)
              0.0625 = fieldNorm(doc=850)
      0.25 = coord(1/4)
    
    Abstract
    This is a short project that serves as an inspiration for a forthcoming paper, which will explore the technical side of ChatGPT and the ethical issues it presents for academic researchers, which will result in a peer-reviewed publication. This demonstrates that capacities of ChatGPT as a "chatbot" that is far more advanced than many alternatives available today and may even be able to be used to draft entire academic manuscripts for researchers. ChatGPT is available via https://chat.openai.com/chat.
  12. Byrum, J.D.: ¬The birth and re-birth of the ISBD's : process and procedures for creating and revising the International Standard Bibliographic Description (2000) 0.01
    0.0055242092 = product of:
      0.022096837 = sum of:
        0.022096837 = weight(_text_:for in 5399) [ClassicSimilarity], result of:
          0.022096837 = score(doc=5399,freq=2.0), product of:
            0.08876751 = queryWeight, product of:
              1.8775425 = idf(docFreq=18385, maxDocs=44218)
              0.047278564 = queryNorm
            0.24892932 = fieldWeight in 5399, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.8775425 = idf(docFreq=18385, maxDocs=44218)
              0.09375 = fieldNorm(doc=5399)
      0.25 = coord(1/4)
    
  13. Elazar, D.H.: ¬The making of a classification scheme for libraries of Judaica (2000) 0.01
    0.0055242092 = product of:
      0.022096837 = sum of:
        0.022096837 = weight(_text_:for in 5400) [ClassicSimilarity], result of:
          0.022096837 = score(doc=5400,freq=2.0), product of:
            0.08876751 = queryWeight, product of:
              1.8775425 = idf(docFreq=18385, maxDocs=44218)
              0.047278564 = queryNorm
            0.24892932 = fieldWeight in 5400, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.8775425 = idf(docFreq=18385, maxDocs=44218)
              0.09375 = fieldNorm(doc=5400)
      0.25 = coord(1/4)
    
  14. Yitzhaki, M.: ¬A draft version of a consolidated thesaurus for the rapidly growing field of alternative medicine (2000) 0.01
    0.0055242092 = product of:
      0.022096837 = sum of:
        0.022096837 = weight(_text_:for in 5417) [ClassicSimilarity], result of:
          0.022096837 = score(doc=5417,freq=2.0), product of:
            0.08876751 = queryWeight, product of:
              1.8775425 = idf(docFreq=18385, maxDocs=44218)
              0.047278564 = queryNorm
            0.24892932 = fieldWeight in 5417, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.8775425 = idf(docFreq=18385, maxDocs=44218)
              0.09375 = fieldNorm(doc=5417)
      0.25 = coord(1/4)
    
  15. Breuer, T.; Tavakolpoursaleh, N.; Schaer, P.; Hienert, D.; Schaible, J.; Castro, L.J.: Online Information Retrieval Evaluation using the STELLA Framework (2022) 0.01
    0.0055242092 = product of:
      0.022096837 = sum of:
        0.022096837 = weight(_text_:for in 640) [ClassicSimilarity], result of:
          0.022096837 = score(doc=640,freq=8.0), product of:
            0.08876751 = queryWeight, product of:
              1.8775425 = idf(docFreq=18385, maxDocs=44218)
              0.047278564 = queryNorm
            0.24892932 = fieldWeight in 640, product of:
              2.828427 = tf(freq=8.0), with freq of:
                8.0 = termFreq=8.0
              1.8775425 = idf(docFreq=18385, maxDocs=44218)
              0.046875 = fieldNorm(doc=640)
      0.25 = coord(1/4)
    
    Abstract
    Involving users in early phases of software development has become a common strategy as it enables developers to consider user needs from the beginning. Once a system is in production, new opportunities to observe, evaluate and learn from users emerge as more information becomes available. Gathering information from users to continuously evaluate their behavior is a common practice for commercial software, while the Cranfield paradigm remains the preferred option for Information Retrieval (IR) and recommendation systems in the academic world. Here we introduce the Infrastructures for Living Labs STELLA project which aims to create an evaluation infrastructure allowing experimental systems to run along production web-based academic search systems with real users. STELLA combines user interactions and log files analyses to enable large-scale A/B experiments for academic search.
  16. Wormell, I.: Multifunctional information work : new demands for training? (1995) 0.01
    0.0052082743 = product of:
      0.020833097 = sum of:
        0.020833097 = weight(_text_:for in 3371) [ClassicSimilarity], result of:
          0.020833097 = score(doc=3371,freq=4.0), product of:
            0.08876751 = queryWeight, product of:
              1.8775425 = idf(docFreq=18385, maxDocs=44218)
              0.047278564 = queryNorm
            0.23469281 = fieldWeight in 3371, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              1.8775425 = idf(docFreq=18385, maxDocs=44218)
              0.0625 = fieldNorm(doc=3371)
      0.25 = coord(1/4)
    
    Abstract
    The paper calls for an integrated approach to information science education where disciplinary interaction is predicated on the forgoing of formal, informal and sustainable links with researchers and pracitioners in other fields. The modern information profession, in order to promote its creativity and to strengthen its development, has to go beyond the traditional roles and functions and should extend the professions' horizons. Thus the LIS education and training programmes must aim to foster professionals who, one day, will create new jobs and not just fill the old ones
  17. Jaenecke, P.: Knowledge organization due to theory formation (1995) 0.01
    0.0052082743 = product of:
      0.020833097 = sum of:
        0.020833097 = weight(_text_:for in 3751) [ClassicSimilarity], result of:
          0.020833097 = score(doc=3751,freq=4.0), product of:
            0.08876751 = queryWeight, product of:
              1.8775425 = idf(docFreq=18385, maxDocs=44218)
              0.047278564 = queryNorm
            0.23469281 = fieldWeight in 3751, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              1.8775425 = idf(docFreq=18385, maxDocs=44218)
              0.0625 = fieldNorm(doc=3751)
      0.25 = coord(1/4)
    
    Abstract
    Theory formation is regarded as a process of domain-internal knowledge organization. Misunderstandings about the concept 'theory' are explained. A theory is considered as a systematical representation of a domain realized by three closely related theory-forming actions: establishment of a suitable system of basic concepts, ordering of the experience or given experimental results, synthesizing of conflicting hypotheses. In this view, theory formation means an ambitious kind of knowledge representation. Its consequences are summarized and its importance for the human sciences and for society is emphasized
  18. Lehmann, F.: Semiosis complicates high-level ontology (2000) 0.00
    0.004784106 = product of:
      0.019136423 = sum of:
        0.019136423 = weight(_text_:for in 5087) [ClassicSimilarity], result of:
          0.019136423 = score(doc=5087,freq=6.0), product of:
            0.08876751 = queryWeight, product of:
              1.8775425 = idf(docFreq=18385, maxDocs=44218)
              0.047278564 = queryNorm
            0.21557912 = fieldWeight in 5087, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              1.8775425 = idf(docFreq=18385, maxDocs=44218)
              0.046875 = fieldNorm(doc=5087)
      0.25 = coord(1/4)
    
    Abstract
    For automated question-answering, natural-language understanding, semantic integration of different databases/standards/thesauri/etc., you need a big complicated ontology of concepts and a logical language to combine them. Cyc (www.cyc.com) is such a system. It's good for your upper ontology to be systematic and clear, One way is to have a small number of well-defined distinctions at the top, by which all more specific concepts are partitioned. This is a system of "factors", or "facets" in Ranganathan's sense Iyer 1995) much like Aristotle's "differentia" in his "categories", as promoted in John Sowa's "ontological crystal". Practical considerations have driven Cyc's builders to mess up the neatness of such upper divisions. In particular, the simplicity of some very high "factors" is confounded, for practical use, by the occurrence in our world of semiosis and representation This talk will report on some of our experiences
  19. Slavic, A.: Interface to classification : some objectives and options (2006) 0.00
    0.004784106 = product of:
      0.019136423 = sum of:
        0.019136423 = weight(_text_:for in 2131) [ClassicSimilarity], result of:
          0.019136423 = score(doc=2131,freq=6.0), product of:
            0.08876751 = queryWeight, product of:
              1.8775425 = idf(docFreq=18385, maxDocs=44218)
              0.047278564 = queryNorm
            0.21557912 = fieldWeight in 2131, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              1.8775425 = idf(docFreq=18385, maxDocs=44218)
              0.046875 = fieldNorm(doc=2131)
      0.25 = coord(1/4)
    
    Abstract
    This is a preprint to be published in the Extensions & Corrections to the UDC. The paper explains the basic functions of browsing and searching that need to be supported in relation to analytico-synthetic classifications such as Universal Decimal Classification (UDC), irrespective of any specific, real-life implementation. UDC is an example of a semi-faceted system that can be used, for instance, for both post-coordinate searching and hierarchical/facet browsing. The advantages of using a classification for IR, however, depend on the strength of the GUI, which should provide a user-friendly interface to classification browsing and searching. The power of this interface is in supporting visualisation that will 'convert' what is potentially a user-unfriendly indexing language based on symbols, to a subject presentation that is easy to understand, search and navigate. A summary of the basic functions of searching and browsing a classification that may be provided on a user-friendly interface is given and examples of classification browsing interfaces are provided.
  20. Wilk, D.: Problems in the use of Library of Congress Subject Headings as the basis for Hebrew subject headings in the Bar-Ilan University Library (2000) 0.00
    0.0046035075 = product of:
      0.01841403 = sum of:
        0.01841403 = weight(_text_:for in 5416) [ClassicSimilarity], result of:
          0.01841403 = score(doc=5416,freq=2.0), product of:
            0.08876751 = queryWeight, product of:
              1.8775425 = idf(docFreq=18385, maxDocs=44218)
              0.047278564 = queryNorm
            0.20744109 = fieldWeight in 5416, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.8775425 = idf(docFreq=18385, maxDocs=44218)
              0.078125 = fieldNorm(doc=5416)
      0.25 = coord(1/4)