Search (60 results, page 1 of 3)

  • × author_ss:"Bornmann, L."
  1. Marx, W.; Bornmann, L.: On the problems of dealing with bibliometric data (2014) 0.12
    0.115210064 = product of:
      0.19201677 = sum of:
        0.031971764 = weight(_text_:on in 1239) [ClassicSimilarity], result of:
          0.031971764 = score(doc=1239,freq=2.0), product of:
            0.109641045 = queryWeight, product of:
              2.199415 = idf(docFreq=13325, maxDocs=44218)
              0.049850095 = queryNorm
            0.29160398 = fieldWeight in 1239, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              2.199415 = idf(docFreq=13325, maxDocs=44218)
              0.09375 = fieldNorm(doc=1239)
        0.020367749 = weight(_text_:information in 1239) [ClassicSimilarity], result of:
          0.020367749 = score(doc=1239,freq=2.0), product of:
            0.08751074 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.049850095 = queryNorm
            0.23274569 = fieldWeight in 1239, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.09375 = fieldNorm(doc=1239)
        0.13967726 = sum of:
          0.058629274 = weight(_text_:technology in 1239) [ClassicSimilarity], result of:
            0.058629274 = score(doc=1239,freq=2.0), product of:
              0.14847288 = queryWeight, product of:
                2.978387 = idf(docFreq=6114, maxDocs=44218)
                0.049850095 = queryNorm
              0.39488205 = fieldWeight in 1239, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                2.978387 = idf(docFreq=6114, maxDocs=44218)
                0.09375 = fieldNorm(doc=1239)
          0.08104799 = weight(_text_:22 in 1239) [ClassicSimilarity], result of:
            0.08104799 = score(doc=1239,freq=2.0), product of:
              0.17456654 = queryWeight, product of:
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.049850095 = queryNorm
              0.46428138 = fieldWeight in 1239, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.09375 = fieldNorm(doc=1239)
      0.6 = coord(3/5)
    
    Date
    18. 3.2014 19:13:22
    Source
    Journal of the Association for Information Science and Technology. 65(2014) no.4, S.866-867
  2. Bornmann, L.; Mutz, R.: From P100 to P100' : a new citation-rank approach (2014) 0.08
    0.07680671 = product of:
      0.12801118 = sum of:
        0.02131451 = weight(_text_:on in 1431) [ClassicSimilarity], result of:
          0.02131451 = score(doc=1431,freq=2.0), product of:
            0.109641045 = queryWeight, product of:
              2.199415 = idf(docFreq=13325, maxDocs=44218)
              0.049850095 = queryNorm
            0.19440265 = fieldWeight in 1431, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              2.199415 = idf(docFreq=13325, maxDocs=44218)
              0.0625 = fieldNorm(doc=1431)
        0.013578499 = weight(_text_:information in 1431) [ClassicSimilarity], result of:
          0.013578499 = score(doc=1431,freq=2.0), product of:
            0.08751074 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.049850095 = queryNorm
            0.1551638 = fieldWeight in 1431, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.0625 = fieldNorm(doc=1431)
        0.093118176 = sum of:
          0.03908618 = weight(_text_:technology in 1431) [ClassicSimilarity], result of:
            0.03908618 = score(doc=1431,freq=2.0), product of:
              0.14847288 = queryWeight, product of:
                2.978387 = idf(docFreq=6114, maxDocs=44218)
                0.049850095 = queryNorm
              0.2632547 = fieldWeight in 1431, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                2.978387 = idf(docFreq=6114, maxDocs=44218)
                0.0625 = fieldNorm(doc=1431)
          0.054031998 = weight(_text_:22 in 1431) [ClassicSimilarity], result of:
            0.054031998 = score(doc=1431,freq=2.0), product of:
              0.17456654 = queryWeight, product of:
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.049850095 = queryNorm
              0.30952093 = fieldWeight in 1431, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.0625 = fieldNorm(doc=1431)
      0.6 = coord(3/5)
    
    Abstract
    Properties of a percentile-based rating scale needed in bibliometrics are formulated. Based on these properties, P100 was recently introduced as a new citation-rank approach (Bornmann, Leydesdorff, & Wang, 2013). In this paper, we conceptualize P100 and propose an improvement which we call P100'. Advantages and disadvantages of citation-rank indicators are noted.
    Date
    22. 8.2014 17:05:18
    Source
    Journal of the Association for Information Science and Technology. 65(2014) no.9, S.1939-1943
  3. Bornmann, L.: How to analyze percentile citation impact data meaningfully in bibliometrics : the statistical analysis of distributions, percentile rank classes, and top-cited papers (2013) 0.06
    0.06462652 = product of:
      0.10771087 = sum of:
        0.027688364 = weight(_text_:on in 656) [ClassicSimilarity], result of:
          0.027688364 = score(doc=656,freq=6.0), product of:
            0.109641045 = queryWeight, product of:
              2.199415 = idf(docFreq=13325, maxDocs=44218)
              0.049850095 = queryNorm
            0.25253648 = fieldWeight in 656, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              2.199415 = idf(docFreq=13325, maxDocs=44218)
              0.046875 = fieldNorm(doc=656)
        0.0101838745 = weight(_text_:information in 656) [ClassicSimilarity], result of:
          0.0101838745 = score(doc=656,freq=2.0), product of:
            0.08751074 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.049850095 = queryNorm
            0.116372846 = fieldWeight in 656, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.046875 = fieldNorm(doc=656)
        0.06983863 = sum of:
          0.029314637 = weight(_text_:technology in 656) [ClassicSimilarity], result of:
            0.029314637 = score(doc=656,freq=2.0), product of:
              0.14847288 = queryWeight, product of:
                2.978387 = idf(docFreq=6114, maxDocs=44218)
                0.049850095 = queryNorm
              0.19744103 = fieldWeight in 656, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                2.978387 = idf(docFreq=6114, maxDocs=44218)
                0.046875 = fieldNorm(doc=656)
          0.040523995 = weight(_text_:22 in 656) [ClassicSimilarity], result of:
            0.040523995 = score(doc=656,freq=2.0), product of:
              0.17456654 = queryWeight, product of:
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.049850095 = queryNorm
              0.23214069 = fieldWeight in 656, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.046875 = fieldNorm(doc=656)
      0.6 = coord(3/5)
    
    Abstract
    According to current research in bibliometrics, percentiles (or percentile rank classes) are the most suitable method for normalizing the citation counts of individual publications in terms of the subject area, the document type, and the publication year. Up to now, bibliometric research has concerned itself primarily with the calculation of percentiles. This study suggests how percentiles (and percentile rank classes) can be analyzed meaningfully for an evaluation study. Publication sets from four universities are compared with each other to provide sample data. These suggestions take into account on the one hand the distribution of percentiles over the publications in the sets (universities here) and on the other hand concentrate on the range of publications with the highest citation impact-that is, the range that is usually of most interest in the evaluation of scientific performance.
    Date
    22. 3.2013 19:44:17
    Source
    Journal of the American Society for Information Science and Technology. 64(2013) no.3, S.587-595
  4. Leydesdorff, L.; Bornmann, L.; Wagner, C.S.: ¬The relative influences of government funding and international collaboration on citation impact (2019) 0.06
    0.061577972 = product of:
      0.10262995 = sum of:
        0.022607451 = weight(_text_:on in 4681) [ClassicSimilarity], result of:
          0.022607451 = score(doc=4681,freq=4.0), product of:
            0.109641045 = queryWeight, product of:
              2.199415 = idf(docFreq=13325, maxDocs=44218)
              0.049850095 = queryNorm
            0.20619515 = fieldWeight in 4681, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              2.199415 = idf(docFreq=13325, maxDocs=44218)
              0.046875 = fieldNorm(doc=4681)
        0.0101838745 = weight(_text_:information in 4681) [ClassicSimilarity], result of:
          0.0101838745 = score(doc=4681,freq=2.0), product of:
            0.08751074 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.049850095 = queryNorm
            0.116372846 = fieldWeight in 4681, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.046875 = fieldNorm(doc=4681)
        0.06983863 = sum of:
          0.029314637 = weight(_text_:technology in 4681) [ClassicSimilarity], result of:
            0.029314637 = score(doc=4681,freq=2.0), product of:
              0.14847288 = queryWeight, product of:
                2.978387 = idf(docFreq=6114, maxDocs=44218)
                0.049850095 = queryNorm
              0.19744103 = fieldWeight in 4681, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                2.978387 = idf(docFreq=6114, maxDocs=44218)
                0.046875 = fieldNorm(doc=4681)
          0.040523995 = weight(_text_:22 in 4681) [ClassicSimilarity], result of:
            0.040523995 = score(doc=4681,freq=2.0), product of:
              0.17456654 = queryWeight, product of:
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.049850095 = queryNorm
              0.23214069 = fieldWeight in 4681, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.046875 = fieldNorm(doc=4681)
      0.6 = coord(3/5)
    
    Abstract
    A recent publication in Nature reports that public R&D funding is only weakly correlated with the citation impact of a nation's articles as measured by the field-weighted citation index (FWCI; defined by Scopus). On the basis of the supplementary data, we up-scaled the design using Web of Science data for the decade 2003-2013 and OECD funding data for the corresponding decade assuming a 2-year delay (2001-2011). Using negative binomial regression analysis, we found very small coefficients, but the effects of international collaboration are positive and statistically significant, whereas the effects of government funding are negative, an order of magnitude smaller, and statistically nonsignificant (in two of three analyses). In other words, international collaboration improves the impact of research articles, whereas more government funding tends to have a small adverse effect when comparing OECD countries.
    Date
    8. 1.2019 18:22:45
    Source
    Journal of the Association for Information Science and Technology. 70(2019) no.2, S.198-201
  5. Collins, H.; Bornmann, L.: On scientific misconduct (2014) 0.06
    0.057157904 = product of:
      0.09526317 = sum of:
        0.03730039 = weight(_text_:on in 1247) [ClassicSimilarity], result of:
          0.03730039 = score(doc=1247,freq=2.0), product of:
            0.109641045 = queryWeight, product of:
              2.199415 = idf(docFreq=13325, maxDocs=44218)
              0.049850095 = queryNorm
            0.34020463 = fieldWeight in 1247, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              2.199415 = idf(docFreq=13325, maxDocs=44218)
              0.109375 = fieldNorm(doc=1247)
        0.023762373 = weight(_text_:information in 1247) [ClassicSimilarity], result of:
          0.023762373 = score(doc=1247,freq=2.0), product of:
            0.08751074 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.049850095 = queryNorm
            0.27153665 = fieldWeight in 1247, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.109375 = fieldNorm(doc=1247)
        0.03420041 = product of:
          0.06840082 = sum of:
            0.06840082 = weight(_text_:technology in 1247) [ClassicSimilarity], result of:
              0.06840082 = score(doc=1247,freq=2.0), product of:
                0.14847288 = queryWeight, product of:
                  2.978387 = idf(docFreq=6114, maxDocs=44218)
                  0.049850095 = queryNorm
                0.46069574 = fieldWeight in 1247, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  2.978387 = idf(docFreq=6114, maxDocs=44218)
                  0.109375 = fieldNorm(doc=1247)
          0.5 = coord(1/2)
      0.6 = coord(3/5)
    
    Source
    Journal of the Association for Information Science and Technology. 65(2014) no.5, S.1089-1090
  6. Bornmann, L.; Leydesdorff, L.: Statistical tests and research assessments : a comment on Schneider (2012) (2013) 0.05
    0.04899249 = product of:
      0.08165415 = sum of:
        0.031971764 = weight(_text_:on in 752) [ClassicSimilarity], result of:
          0.031971764 = score(doc=752,freq=2.0), product of:
            0.109641045 = queryWeight, product of:
              2.199415 = idf(docFreq=13325, maxDocs=44218)
              0.049850095 = queryNorm
            0.29160398 = fieldWeight in 752, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              2.199415 = idf(docFreq=13325, maxDocs=44218)
              0.09375 = fieldNorm(doc=752)
        0.020367749 = weight(_text_:information in 752) [ClassicSimilarity], result of:
          0.020367749 = score(doc=752,freq=2.0), product of:
            0.08751074 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.049850095 = queryNorm
            0.23274569 = fieldWeight in 752, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.09375 = fieldNorm(doc=752)
        0.029314637 = product of:
          0.058629274 = sum of:
            0.058629274 = weight(_text_:technology in 752) [ClassicSimilarity], result of:
              0.058629274 = score(doc=752,freq=2.0), product of:
                0.14847288 = queryWeight, product of:
                  2.978387 = idf(docFreq=6114, maxDocs=44218)
                  0.049850095 = queryNorm
                0.39488205 = fieldWeight in 752, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  2.978387 = idf(docFreq=6114, maxDocs=44218)
                  0.09375 = fieldNorm(doc=752)
          0.5 = coord(1/2)
      0.6 = coord(3/5)
    
    Source
    Journal of the American Society for Information Science and Technology. 64(2013) no.6, S.1306-1308
  7. Bornmann, L.: On the function of university rankings (2014) 0.05
    0.04899249 = product of:
      0.08165415 = sum of:
        0.031971764 = weight(_text_:on in 1188) [ClassicSimilarity], result of:
          0.031971764 = score(doc=1188,freq=2.0), product of:
            0.109641045 = queryWeight, product of:
              2.199415 = idf(docFreq=13325, maxDocs=44218)
              0.049850095 = queryNorm
            0.29160398 = fieldWeight in 1188, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              2.199415 = idf(docFreq=13325, maxDocs=44218)
              0.09375 = fieldNorm(doc=1188)
        0.020367749 = weight(_text_:information in 1188) [ClassicSimilarity], result of:
          0.020367749 = score(doc=1188,freq=2.0), product of:
            0.08751074 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.049850095 = queryNorm
            0.23274569 = fieldWeight in 1188, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.09375 = fieldNorm(doc=1188)
        0.029314637 = product of:
          0.058629274 = sum of:
            0.058629274 = weight(_text_:technology in 1188) [ClassicSimilarity], result of:
              0.058629274 = score(doc=1188,freq=2.0), product of:
                0.14847288 = queryWeight, product of:
                  2.978387 = idf(docFreq=6114, maxDocs=44218)
                  0.049850095 = queryNorm
                0.39488205 = fieldWeight in 1188, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  2.978387 = idf(docFreq=6114, maxDocs=44218)
                  0.09375 = fieldNorm(doc=1188)
          0.5 = coord(1/2)
      0.6 = coord(3/5)
    
    Source
    Journal of the Association for Information Science and Technology. 65(2014) no.2, S.428-429
  8. Leydesdorff, L.; Bornmann, L.: ¬The operationalization of "fields" as WoS subject categories (WCs) in evaluative bibliometrics : the cases of "library and information science" and "science & technology studies" (2016) 0.04
    0.041017454 = product of:
      0.06836242 = sum of:
        0.022607451 = weight(_text_:on in 2779) [ClassicSimilarity], result of:
          0.022607451 = score(doc=2779,freq=4.0), product of:
            0.109641045 = queryWeight, product of:
              2.199415 = idf(docFreq=13325, maxDocs=44218)
              0.049850095 = queryNorm
            0.20619515 = fieldWeight in 2779, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              2.199415 = idf(docFreq=13325, maxDocs=44218)
              0.046875 = fieldNorm(doc=2779)
        0.020367749 = weight(_text_:information in 2779) [ClassicSimilarity], result of:
          0.020367749 = score(doc=2779,freq=8.0), product of:
            0.08751074 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.049850095 = queryNorm
            0.23274569 = fieldWeight in 2779, product of:
              2.828427 = tf(freq=8.0), with freq of:
                8.0 = termFreq=8.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.046875 = fieldNorm(doc=2779)
        0.025387222 = product of:
          0.050774444 = sum of:
            0.050774444 = weight(_text_:technology in 2779) [ClassicSimilarity], result of:
              0.050774444 = score(doc=2779,freq=6.0), product of:
                0.14847288 = queryWeight, product of:
                  2.978387 = idf(docFreq=6114, maxDocs=44218)
                  0.049850095 = queryNorm
                0.34197792 = fieldWeight in 2779, product of:
                  2.4494898 = tf(freq=6.0), with freq of:
                    6.0 = termFreq=6.0
                  2.978387 = idf(docFreq=6114, maxDocs=44218)
                  0.046875 = fieldNorm(doc=2779)
          0.5 = coord(1/2)
      0.6 = coord(3/5)
    
    Abstract
    Normalization of citation scores using reference sets based on Web of Science subject categories (WCs) has become an established ("best") practice in evaluative bibliometrics. For example, the Times Higher Education World University Rankings are, among other things, based on this operationalization. However, WCs were developed decades ago for the purpose of information retrieval and evolved incrementally with the database; the classification is machine-based and partially manually corrected. Using the WC "information science & library science" and the WCs attributed to journals in the field of "science and technology studies," we show that WCs do not provide sufficient analytical clarity to carry bibliometric normalization in evaluation practices because of "indexer effects." Can the compliance with "best practices" be replaced with an ambition to develop "best possible practices"? New research questions can then be envisaged.
    Source
    Journal of the Association for Information Science and Technology. 67(2016) no.3, S.707-714
  9. Marx, W.; Bornmann, L.; Barth, A.; Leydesdorff, L.: Detecting the historical roots of research fields by reference publication year spectroscopy (RPYS) (2014) 0.04
    0.03976907 = product of:
      0.06628178 = sum of:
        0.03730039 = weight(_text_:on in 1238) [ClassicSimilarity], result of:
          0.03730039 = score(doc=1238,freq=8.0), product of:
            0.109641045 = queryWeight, product of:
              2.199415 = idf(docFreq=13325, maxDocs=44218)
              0.049850095 = queryNorm
            0.34020463 = fieldWeight in 1238, product of:
              2.828427 = tf(freq=8.0), with freq of:
                8.0 = termFreq=8.0
              2.199415 = idf(docFreq=13325, maxDocs=44218)
              0.0546875 = fieldNorm(doc=1238)
        0.011881187 = weight(_text_:information in 1238) [ClassicSimilarity], result of:
          0.011881187 = score(doc=1238,freq=2.0), product of:
            0.08751074 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.049850095 = queryNorm
            0.13576832 = fieldWeight in 1238, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.0546875 = fieldNorm(doc=1238)
        0.017100206 = product of:
          0.03420041 = sum of:
            0.03420041 = weight(_text_:technology in 1238) [ClassicSimilarity], result of:
              0.03420041 = score(doc=1238,freq=2.0), product of:
                0.14847288 = queryWeight, product of:
                  2.978387 = idf(docFreq=6114, maxDocs=44218)
                  0.049850095 = queryNorm
                0.23034787 = fieldWeight in 1238, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  2.978387 = idf(docFreq=6114, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=1238)
          0.5 = coord(1/2)
      0.6 = coord(3/5)
    
    Abstract
    We introduce the quantitative method named "Reference Publication Year Spectroscopy" (RPYS). With this method one can determine the historical roots of research fields and quantify their impact on current research. RPYS is based on the analysis of the frequency with which references are cited in the publications of a specific research field in terms of the publication years of these cited references. The origins show up in the form of more or less pronounced peaks mostly caused by individual publications that are cited particularly frequently. In this study, we use research on graphene and on solar cells to illustrate how RPYS functions, and what results it can deliver.
    Source
    Journal of the Association for Information Science and Technology. 65(2014) no.4, S.751-764
  10. Leydesdorff, L.; Bornmann, L.; Mutz, R.; Opthof, T.: Turning the tables on citation analysis one more time : principles for comparing sets of documents (2011) 0.03
    0.034087777 = product of:
      0.056812957 = sum of:
        0.031971764 = weight(_text_:on in 4485) [ClassicSimilarity], result of:
          0.031971764 = score(doc=4485,freq=8.0), product of:
            0.109641045 = queryWeight, product of:
              2.199415 = idf(docFreq=13325, maxDocs=44218)
              0.049850095 = queryNorm
            0.29160398 = fieldWeight in 4485, product of:
              2.828427 = tf(freq=8.0), with freq of:
                8.0 = termFreq=8.0
              2.199415 = idf(docFreq=13325, maxDocs=44218)
              0.046875 = fieldNorm(doc=4485)
        0.0101838745 = weight(_text_:information in 4485) [ClassicSimilarity], result of:
          0.0101838745 = score(doc=4485,freq=2.0), product of:
            0.08751074 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.049850095 = queryNorm
            0.116372846 = fieldWeight in 4485, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.046875 = fieldNorm(doc=4485)
        0.014657319 = product of:
          0.029314637 = sum of:
            0.029314637 = weight(_text_:technology in 4485) [ClassicSimilarity], result of:
              0.029314637 = score(doc=4485,freq=2.0), product of:
                0.14847288 = queryWeight, product of:
                  2.978387 = idf(docFreq=6114, maxDocs=44218)
                  0.049850095 = queryNorm
                0.19744103 = fieldWeight in 4485, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  2.978387 = idf(docFreq=6114, maxDocs=44218)
                  0.046875 = fieldNorm(doc=4485)
          0.5 = coord(1/2)
      0.6 = coord(3/5)
    
    Abstract
    We submit newly developed citation impact indicators based not on arithmetic averages of citations but on percentile ranks. Citation distributions are-as a rule-highly skewed and should not be arithmetically averaged. With percentile ranks, the citation score of each paper is rated in terms of its percentile in the citation distribution. The percentile ranks approach allows for the formulation of a more abstract indicator scheme that can be used to organize and/or schematize different impact indicators according to three degrees of freedom: the selection of the reference sets, the evaluation criteria, and the choice of whether or not to define the publication sets as independent. Bibliometric data of seven principal investigators (PIs) of the Academic Medical Center of the University of Amsterdam are used as an exemplary dataset. We demonstrate that the proposed family indicators [R(6), R(100), R(6, k), R(100, k)] are an improvement on averages-based indicators because one can account for the shape of the distributions of citations over papers.
    Source
    Journal of the American Society for Information Science and Technology. 62(2011) no.7, S.1370-1381
  11. Bornmann, L.: How much does the expected number of citations for a publication change if it contains the address of a specific scientific institute? : a new approach for the analysis of citation data on the institutional level based on regression models (2016) 0.03
    0.03356793 = product of:
      0.05594655 = sum of:
        0.03524556 = weight(_text_:on in 3095) [ClassicSimilarity], result of:
          0.03524556 = score(doc=3095,freq=14.0), product of:
            0.109641045 = queryWeight, product of:
              2.199415 = idf(docFreq=13325, maxDocs=44218)
              0.049850095 = queryNorm
            0.3214632 = fieldWeight in 3095, product of:
              3.7416575 = tf(freq=14.0), with freq of:
                14.0 = termFreq=14.0
              2.199415 = idf(docFreq=13325, maxDocs=44218)
              0.0390625 = fieldNorm(doc=3095)
        0.0084865615 = weight(_text_:information in 3095) [ClassicSimilarity], result of:
          0.0084865615 = score(doc=3095,freq=2.0), product of:
            0.08751074 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.049850095 = queryNorm
            0.09697737 = fieldWeight in 3095, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.0390625 = fieldNorm(doc=3095)
        0.012214432 = product of:
          0.024428863 = sum of:
            0.024428863 = weight(_text_:technology in 3095) [ClassicSimilarity], result of:
              0.024428863 = score(doc=3095,freq=2.0), product of:
                0.14847288 = queryWeight, product of:
                  2.978387 = idf(docFreq=6114, maxDocs=44218)
                  0.049850095 = queryNorm
                0.16453418 = fieldWeight in 3095, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  2.978387 = idf(docFreq=6114, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=3095)
          0.5 = coord(1/2)
      0.6 = coord(3/5)
    
    Abstract
    Citation data for institutes are generally provided as numbers of citations or as relative citation rates (as, for example, in the Leiden Ranking). These numbers can then be compared between the institutes. This study aims to present a new approach for the evaluation of citation data at the institutional level, based on regression models. As example data, the study includes all articles and reviews from the Web of Science for the publication year 2003 (n?=?886,416 papers). The study is based on an in-house database of the Max Planck Society. The study investigates how much the expected number of citations for a publication changes if it contains the address of an institute. The calculation of the expected values allows, on the one hand, investigating how the citation impact of the papers of an institute appears in comparison with the total of all papers. On the other hand, the expected values for several institutes can be compared with one another or with a set of randomly selected publications. Besides the institutes, the regression models include factors which can be assumed to have a general influence on citation counts (e.g., the number of authors).
    Source
    Journal of the Association for Information Science and Technology. 67(2016) no.9, S.2274-2282
  12. Bornmann, L.; Marx, W.: ¬The wisdom of citing scientists (2014) 0.03
    0.033214055 = product of:
      0.055356756 = sum of:
        0.02637536 = weight(_text_:on in 1293) [ClassicSimilarity], result of:
          0.02637536 = score(doc=1293,freq=4.0), product of:
            0.109641045 = queryWeight, product of:
              2.199415 = idf(docFreq=13325, maxDocs=44218)
              0.049850095 = queryNorm
            0.24056101 = fieldWeight in 1293, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              2.199415 = idf(docFreq=13325, maxDocs=44218)
              0.0546875 = fieldNorm(doc=1293)
        0.011881187 = weight(_text_:information in 1293) [ClassicSimilarity], result of:
          0.011881187 = score(doc=1293,freq=2.0), product of:
            0.08751074 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.049850095 = queryNorm
            0.13576832 = fieldWeight in 1293, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.0546875 = fieldNorm(doc=1293)
        0.017100206 = product of:
          0.03420041 = sum of:
            0.03420041 = weight(_text_:technology in 1293) [ClassicSimilarity], result of:
              0.03420041 = score(doc=1293,freq=2.0), product of:
                0.14847288 = queryWeight, product of:
                  2.978387 = idf(docFreq=6114, maxDocs=44218)
                  0.049850095 = queryNorm
                0.23034787 = fieldWeight in 1293, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  2.978387 = idf(docFreq=6114, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=1293)
          0.5 = coord(1/2)
      0.6 = coord(3/5)
    
    Abstract
    This Brief Communication discusses the benefits of citation analysis in research evaluation based on Galton's "Wisdom of Crowds" (1907). Citations are based on the assessment of many which is why they can be considered to have some credibility. However, we show that citations are incomplete assessments and that one cannot assume that a high number of citations correlates with a high level of usefulness. Only when one knows that a rarely cited paper has been widely read is it possible to say-strictly speaking-that it was obviously of little use for further research. Using a comparison with "like" data, we try to determine that cited reference analysis allows for a more meaningful analysis of bibliometric data than times-cited analysis.
    Source
    Journal of the Association for Information Science and Technology. 65(2014) no.6, S.1288-1292
  13. Leydesdorff, L.; Bornmann, L.: Integrated impact indicators compared with impact factors : an alternative research design with policy implications (2011) 0.03
    0.03305393 = product of:
      0.055089884 = sum of:
        0.018839544 = weight(_text_:on in 4919) [ClassicSimilarity], result of:
          0.018839544 = score(doc=4919,freq=4.0), product of:
            0.109641045 = queryWeight, product of:
              2.199415 = idf(docFreq=13325, maxDocs=44218)
              0.049850095 = queryNorm
            0.1718293 = fieldWeight in 4919, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              2.199415 = idf(docFreq=13325, maxDocs=44218)
              0.0390625 = fieldNorm(doc=4919)
        0.018976528 = weight(_text_:information in 4919) [ClassicSimilarity], result of:
          0.018976528 = score(doc=4919,freq=10.0), product of:
            0.08751074 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.049850095 = queryNorm
            0.21684799 = fieldWeight in 4919, product of:
              3.1622777 = tf(freq=10.0), with freq of:
                10.0 = termFreq=10.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.0390625 = fieldNorm(doc=4919)
        0.017273815 = product of:
          0.03454763 = sum of:
            0.03454763 = weight(_text_:technology in 4919) [ClassicSimilarity], result of:
              0.03454763 = score(doc=4919,freq=4.0), product of:
                0.14847288 = queryWeight, product of:
                  2.978387 = idf(docFreq=6114, maxDocs=44218)
                  0.049850095 = queryNorm
                0.23268649 = fieldWeight in 4919, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  2.978387 = idf(docFreq=6114, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=4919)
          0.5 = coord(1/2)
      0.6 = coord(3/5)
    
    Abstract
    In bibliometrics, the association of "impact" with central-tendency statistics is mistaken. Impacts add up, and citation curves therefore should be integrated instead of averaged. For example, the journals MIS Quarterly and Journal of the American Society for Information Science and Technology differ by a factor of 2 in terms of their respective impact factors (IF), but the journal with the lower IF has the higher impact. Using percentile ranks (e.g., top-1%, top-10%, etc.), an Integrated Impact Indicator (I3) can be based on integration of the citation curves, but after normalization of the citation curves to the same scale. The results across document sets can be compared as percentages of the total impact of a reference set. Total number of citations, however, should not be used instead because the shape of the citation curves is then not appreciated. I3 can be applied to any document set and any citation window. The results of the integration (summation) are fully decomposable in terms of journals or institutional units such as nations, universities, and so on because percentile ranks are determined at the paper level. In this study, we first compare I3 with IFs for the journals in two Institute for Scientific Information subject categories ("Information Science & Library Science" and "Multidisciplinary Sciences"). The library and information science set is additionally decomposed in terms of nations. Policy implications of this possible paradigm shift in citation impact analysis are specified.
    Source
    Journal of the American Society for Information Science and Technology. 62(2011) no.11, S.2133-2146
  14. Bornmann, L.; Bauer, J.: Which of the world's institutions employ the most highly cited researchers : an analysis of the data from highlycited.com (2015) 0.03
    0.032661658 = product of:
      0.054436095 = sum of:
        0.02131451 = weight(_text_:on in 1556) [ClassicSimilarity], result of:
          0.02131451 = score(doc=1556,freq=2.0), product of:
            0.109641045 = queryWeight, product of:
              2.199415 = idf(docFreq=13325, maxDocs=44218)
              0.049850095 = queryNorm
            0.19440265 = fieldWeight in 1556, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              2.199415 = idf(docFreq=13325, maxDocs=44218)
              0.0625 = fieldNorm(doc=1556)
        0.013578499 = weight(_text_:information in 1556) [ClassicSimilarity], result of:
          0.013578499 = score(doc=1556,freq=2.0), product of:
            0.08751074 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.049850095 = queryNorm
            0.1551638 = fieldWeight in 1556, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.0625 = fieldNorm(doc=1556)
        0.01954309 = product of:
          0.03908618 = sum of:
            0.03908618 = weight(_text_:technology in 1556) [ClassicSimilarity], result of:
              0.03908618 = score(doc=1556,freq=2.0), product of:
                0.14847288 = queryWeight, product of:
                  2.978387 = idf(docFreq=6114, maxDocs=44218)
                  0.049850095 = queryNorm
                0.2632547 = fieldWeight in 1556, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  2.978387 = idf(docFreq=6114, maxDocs=44218)
                  0.0625 = fieldNorm(doc=1556)
          0.5 = coord(1/2)
      0.6 = coord(3/5)
    
    Abstract
    In 2014, Thomson Reuters published a list of the most highly cited researchers worldwide (highlycited.com). Because the data are freely available for downloading and include the names of the researchers' institutions, we produced a ranking of the institutions on the basis of the number of highly cited researchers per institution. This ranking is intended to be a helpful amendment of other available institutional rankings.
    Source
    Journal of the Association for Information Science and Technology. 66(2015) no.10, S.2146-2148
  15. Bornmann, L.; Bauer, J.: Which of the world's institutions employ the most highly cited researchers : an analysis of the data from highlycited.com (2015) 0.03
    0.032661658 = product of:
      0.054436095 = sum of:
        0.02131451 = weight(_text_:on in 2223) [ClassicSimilarity], result of:
          0.02131451 = score(doc=2223,freq=2.0), product of:
            0.109641045 = queryWeight, product of:
              2.199415 = idf(docFreq=13325, maxDocs=44218)
              0.049850095 = queryNorm
            0.19440265 = fieldWeight in 2223, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              2.199415 = idf(docFreq=13325, maxDocs=44218)
              0.0625 = fieldNorm(doc=2223)
        0.013578499 = weight(_text_:information in 2223) [ClassicSimilarity], result of:
          0.013578499 = score(doc=2223,freq=2.0), product of:
            0.08751074 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.049850095 = queryNorm
            0.1551638 = fieldWeight in 2223, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.0625 = fieldNorm(doc=2223)
        0.01954309 = product of:
          0.03908618 = sum of:
            0.03908618 = weight(_text_:technology in 2223) [ClassicSimilarity], result of:
              0.03908618 = score(doc=2223,freq=2.0), product of:
                0.14847288 = queryWeight, product of:
                  2.978387 = idf(docFreq=6114, maxDocs=44218)
                  0.049850095 = queryNorm
                0.2632547 = fieldWeight in 2223, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  2.978387 = idf(docFreq=6114, maxDocs=44218)
                  0.0625 = fieldNorm(doc=2223)
          0.5 = coord(1/2)
      0.6 = coord(3/5)
    
    Abstract
    In 2014, Thomson Reuters published a list of the most highly cited researchers worldwide (highlycited.com). Because the data are freely available for downloading and include the names of the researchers' institutions, we produced a ranking of the institutions on the basis of the number of highly cited researchers per institution. This ranking is intended to be a helpful amendment of other available institutional rankings.
    Source
    Journal of the Association for Information Science and Technology. 66(2015) no.10, S.2146-2148
  16. Leydesdorff, L.; Bornmann, L.: Mapping (USPTO) patent data using overlays to Google Maps (2012) 0.03
    0.03261207 = product of:
      0.05435345 = sum of:
        0.015985882 = weight(_text_:on in 288) [ClassicSimilarity], result of:
          0.015985882 = score(doc=288,freq=2.0), product of:
            0.109641045 = queryWeight, product of:
              2.199415 = idf(docFreq=13325, maxDocs=44218)
              0.049850095 = queryNorm
            0.14580199 = fieldWeight in 288, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              2.199415 = idf(docFreq=13325, maxDocs=44218)
              0.046875 = fieldNorm(doc=288)
        0.017638987 = weight(_text_:information in 288) [ClassicSimilarity], result of:
          0.017638987 = score(doc=288,freq=6.0), product of:
            0.08751074 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.049850095 = queryNorm
            0.20156369 = fieldWeight in 288, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.046875 = fieldNorm(doc=288)
        0.02072858 = product of:
          0.04145716 = sum of:
            0.04145716 = weight(_text_:technology in 288) [ClassicSimilarity], result of:
              0.04145716 = score(doc=288,freq=4.0), product of:
                0.14847288 = queryWeight, product of:
                  2.978387 = idf(docFreq=6114, maxDocs=44218)
                  0.049850095 = queryNorm
                0.2792238 = fieldWeight in 288, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  2.978387 = idf(docFreq=6114, maxDocs=44218)
                  0.046875 = fieldNorm(doc=288)
          0.5 = coord(1/2)
      0.6 = coord(3/5)
    
    Abstract
    A technique is developed using patent information available online (at the U.S. Patent and Trademark Office) for the generation of Google Maps. The overlays indicate both the quantity and the quality of patents at the city level. This information is relevant for research questions in technology analysis, innovation studies, and evolutionary economics, as well as economic geography. The resulting maps can also be relevant for technological innovation policies and research and development management, because the U.S. market can be considered the leading market for patenting and patent competition. In addition to the maps, the routines provide quantitative data about the patents for statistical analysis. The cities on the map are colored according to the results of significance tests. The overlays are explored for the Netherlands as a "national system of innovations" and further elaborated in two cases of emerging technologies: ribonucleic acid interference (RNAi) and nanotechnology.
    Source
    Journal of the American Society for Information Science and Technology. 63(2012) no.7, S.1442-1458
  17. Bornmann, L.; Moya Anegón, F. de; Mutz, R.: Do universities or research institutions with a specific subject profile have an advantage or a disadvantage in institutional rankings? (2013) 0.03
    0.031517737 = product of:
      0.05252956 = sum of:
        0.027688364 = weight(_text_:on in 1109) [ClassicSimilarity], result of:
          0.027688364 = score(doc=1109,freq=6.0), product of:
            0.109641045 = queryWeight, product of:
              2.199415 = idf(docFreq=13325, maxDocs=44218)
              0.049850095 = queryNorm
            0.25253648 = fieldWeight in 1109, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              2.199415 = idf(docFreq=13325, maxDocs=44218)
              0.046875 = fieldNorm(doc=1109)
        0.0101838745 = weight(_text_:information in 1109) [ClassicSimilarity], result of:
          0.0101838745 = score(doc=1109,freq=2.0), product of:
            0.08751074 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.049850095 = queryNorm
            0.116372846 = fieldWeight in 1109, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.046875 = fieldNorm(doc=1109)
        0.014657319 = product of:
          0.029314637 = sum of:
            0.029314637 = weight(_text_:technology in 1109) [ClassicSimilarity], result of:
              0.029314637 = score(doc=1109,freq=2.0), product of:
                0.14847288 = queryWeight, product of:
                  2.978387 = idf(docFreq=6114, maxDocs=44218)
                  0.049850095 = queryNorm
                0.19744103 = fieldWeight in 1109, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  2.978387 = idf(docFreq=6114, maxDocs=44218)
                  0.046875 = fieldNorm(doc=1109)
          0.5 = coord(1/2)
      0.6 = coord(3/5)
    
    Abstract
    Using data compiled for the SCImago Institutions Ranking, we look at whether the subject area type an institution (university or research-focused institution) belongs to (in terms of the fields researched) has an influence on its ranking position. We used latent class analysis to categorize institutions based on their publications in certain subject areas. Even though this categorization does not relate directly to scientific performance, our results show that it exercises an important influence on the outcome of a performance measurement: Certain subject area types of institutions have an advantage in the ranking positions when compared with others. This advantage manifests itself not only when performance is measured with an indicator that is not field-normalized but also for indicators that are field-normalized.
    Source
    Journal of the American Society for Information Science and Technology. 64(2013) no.11, S.2310-2316
  18. Bornmann, L.; Haunschild, R.: Overlay maps based on Mendeley data : the use of altmetrics for readership networks (2016) 0.03
    0.031000165 = product of:
      0.05166694 = sum of:
        0.022607451 = weight(_text_:on in 3230) [ClassicSimilarity], result of:
          0.022607451 = score(doc=3230,freq=4.0), product of:
            0.109641045 = queryWeight, product of:
              2.199415 = idf(docFreq=13325, maxDocs=44218)
              0.049850095 = queryNorm
            0.20619515 = fieldWeight in 3230, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              2.199415 = idf(docFreq=13325, maxDocs=44218)
              0.046875 = fieldNorm(doc=3230)
        0.0144021725 = weight(_text_:information in 3230) [ClassicSimilarity], result of:
          0.0144021725 = score(doc=3230,freq=4.0), product of:
            0.08751074 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.049850095 = queryNorm
            0.16457605 = fieldWeight in 3230, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.046875 = fieldNorm(doc=3230)
        0.014657319 = product of:
          0.029314637 = sum of:
            0.029314637 = weight(_text_:technology in 3230) [ClassicSimilarity], result of:
              0.029314637 = score(doc=3230,freq=2.0), product of:
                0.14847288 = queryWeight, product of:
                  2.978387 = idf(docFreq=6114, maxDocs=44218)
                  0.049850095 = queryNorm
                0.19744103 = fieldWeight in 3230, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  2.978387 = idf(docFreq=6114, maxDocs=44218)
                  0.046875 = fieldNorm(doc=3230)
          0.5 = coord(1/2)
      0.6 = coord(3/5)
    
    Abstract
    Visualization of scientific results using networks has become popular in scientometric research. We provide base maps for Mendeley reader count data using the publication year 2012 from the Web of Science data. Example networks are shown and explained. The reader can use our base maps to visualize other results with the VOSViewer. The proposed overlay maps are able to show the impact of publications in terms of readership data. The advantage of using our base maps is that it is not necessary for the user to produce a network based on all data (e.g., from 1 year), but can collect the Mendeley data for a single institution (or journals, topics) and can match them with our already produced information. Generation of such large-scale networks is still a demanding task despite the available computer power and digital data availability. Therefore, it is very useful to have base maps and create the network with the overlay technique.
    Source
    Journal of the Association for Information Science and Technology. 67(2016) no.12, S.3064-3072
  19. Bornmann, L.; Daniel, H.-D.: Multiple publication on a single research study: does it pay? : The influence of number of research articles on total citation counts in biomedicine (2007) 0.03
    0.030293357 = product of:
      0.050488926 = sum of:
        0.029787935 = weight(_text_:on in 444) [ClassicSimilarity], result of:
          0.029787935 = score(doc=444,freq=10.0), product of:
            0.109641045 = queryWeight, product of:
              2.199415 = idf(docFreq=13325, maxDocs=44218)
              0.049850095 = queryNorm
            0.271686 = fieldWeight in 444, product of:
              3.1622777 = tf(freq=10.0), with freq of:
                10.0 = termFreq=10.0
              2.199415 = idf(docFreq=13325, maxDocs=44218)
              0.0390625 = fieldNorm(doc=444)
        0.0084865615 = weight(_text_:information in 444) [ClassicSimilarity], result of:
          0.0084865615 = score(doc=444,freq=2.0), product of:
            0.08751074 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.049850095 = queryNorm
            0.09697737 = fieldWeight in 444, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.0390625 = fieldNorm(doc=444)
        0.012214432 = product of:
          0.024428863 = sum of:
            0.024428863 = weight(_text_:technology in 444) [ClassicSimilarity], result of:
              0.024428863 = score(doc=444,freq=2.0), product of:
                0.14847288 = queryWeight, product of:
                  2.978387 = idf(docFreq=6114, maxDocs=44218)
                  0.049850095 = queryNorm
                0.16453418 = fieldWeight in 444, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  2.978387 = idf(docFreq=6114, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=444)
          0.5 = coord(1/2)
      0.6 = coord(3/5)
    
    Abstract
    Scientists may seek to report a single definable body of research in more than one publication, that is, in repeated reports of the same work or in fractional reports, in order to disseminate their research as widely as possible in the scientific community. Up to now, however, it has not been examined whether this strategy of "multiple publication" in fact leads to greater reception of the research. In the present study, we investigate the influence of number of articles reporting the results of a single study on reception in the scientific community (total citation counts of an article on a single study). Our data set consists of 96 applicants for a research fellowship from the Boehringer Ingelheim Fonds (BIF), an international foundation for the promotion of basic research in biomedicine. The applicants reported to us all articles that they had published within the framework of their doctoral research projects. On this single project, the applicants had published from 1 to 16 articles (M = 4; Mdn = 3). The results of a regression model with an interaction term show that the practice of multiple publication of research study results does in fact lead to greater reception of the research (higher total citation counts) in the scientific community. However, reception is dependent upon length of article: the longer the article, the more total citation counts increase with the number of articles. Thus, it pays for scientists to practice multiple publication of study results in the form of sizable reports.
    Source
    Journal of the American Society for Information Science and Technology. 58(2007) no.8, S.1100-1107
  20. Bornmann, L.; Daniel, H.-D.: What do we know about the h index? (2007) 0.03
    0.028578952 = product of:
      0.047631584 = sum of:
        0.018650195 = weight(_text_:on in 477) [ClassicSimilarity], result of:
          0.018650195 = score(doc=477,freq=2.0), product of:
            0.109641045 = queryWeight, product of:
              2.199415 = idf(docFreq=13325, maxDocs=44218)
              0.049850095 = queryNorm
            0.17010231 = fieldWeight in 477, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              2.199415 = idf(docFreq=13325, maxDocs=44218)
              0.0546875 = fieldNorm(doc=477)
        0.011881187 = weight(_text_:information in 477) [ClassicSimilarity], result of:
          0.011881187 = score(doc=477,freq=2.0), product of:
            0.08751074 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.049850095 = queryNorm
            0.13576832 = fieldWeight in 477, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.0546875 = fieldNorm(doc=477)
        0.017100206 = product of:
          0.03420041 = sum of:
            0.03420041 = weight(_text_:technology in 477) [ClassicSimilarity], result of:
              0.03420041 = score(doc=477,freq=2.0), product of:
                0.14847288 = queryWeight, product of:
                  2.978387 = idf(docFreq=6114, maxDocs=44218)
                  0.049850095 = queryNorm
                0.23034787 = fieldWeight in 477, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  2.978387 = idf(docFreq=6114, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=477)
          0.5 = coord(1/2)
      0.6 = coord(3/5)
    
    Abstract
    Jorge Hirsch recently proposed the h index to quantify the research output of individual scientists. The new index has attracted a lot of attention in the scientific community. The claim that the h index in a single number provides a good representation of the scientific lifetime achievement of a scientist as well as the (supposed) simple calculation of the h index using common literature databases lead to the danger of improper use of the index. We describe the advantages and disadvantages of the h index and summarize the studies on the convergent validity of this index. We also introduce corrections and complements as well as single-number alternatives to the h index.
    Source
    Journal of the American Society for Information Science and Technology. 58(2007) no.9, S.1381-1385