Search (35 results, page 1 of 2)

  • × author_ss:"Dahlberg, I."
  1. Dahlberg, I.: Kompatibilität und Integration : Probleme und Lösungen in der Wissensorganisation (2008) 0.06
    0.06494575 = product of:
      0.10824291 = sum of:
        0.07668271 = weight(_text_:section in 1677) [ClassicSimilarity], result of:
          0.07668271 = score(doc=1677,freq=2.0), product of:
            0.26305357 = queryWeight, product of:
              5.276892 = idf(docFreq=613, maxDocs=44218)
              0.049850095 = queryNorm
            0.29150987 = fieldWeight in 1677, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              5.276892 = idf(docFreq=613, maxDocs=44218)
              0.0390625 = fieldNorm(doc=1677)
        0.023073634 = weight(_text_:on in 1677) [ClassicSimilarity], result of:
          0.023073634 = score(doc=1677,freq=6.0), product of:
            0.109641045 = queryWeight, product of:
              2.199415 = idf(docFreq=13325, maxDocs=44218)
              0.049850095 = queryNorm
            0.21044704 = fieldWeight in 1677, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              2.199415 = idf(docFreq=13325, maxDocs=44218)
              0.0390625 = fieldNorm(doc=1677)
        0.0084865615 = weight(_text_:information in 1677) [ClassicSimilarity], result of:
          0.0084865615 = score(doc=1677,freq=2.0), product of:
            0.08751074 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.049850095 = queryNorm
            0.09697737 = fieldWeight in 1677, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.0390625 = fieldNorm(doc=1677)
      0.6 = coord(3/5)
    
    Abstract
    The trend in the fifties and sixties of the past century away from the use of universal classification systems such as the UDC towards establishing thesauri in special subject fields for the description of the conceptual contents of documents lead documentalists soon to realize that the necessary common tool for a collaboration among centers of similar subject fields was lacking. Therefore compatibility and integration studies began between the different thesauri of such fields, leading often to more comprehensive thesauri, such as macrothesauri. The paper describes this historic development and also the solutions found at the 1995 ISKO-Conference in Warsaw/Poland on Compatibility and Integration as given in its papers, its recommendations and also in the conceptual frame of its comprehensive bibliography on this topic. In conclusion a new solution is presented oriented toward combining the use of a universal classification system with the new developments of ontologies and their problem of interoperability and heterogeneity.
    Content
    Enthält im Anhang (S.48-49) die: "Recommendations of the Research Seminar on Compatibility and Integration of Order Systems organized by the International Society fpr Knowledge Organization (ISKO) and the Society for Professional Information (TIP), Warsaw, Poland, September 13-15, 1995".
    Source
    Kompatibilität, Medien und Ethik in der Wissensorganisation - Compatibility, Media and Ethics in Knowledge Organization: Proceedings der 10. Tagung der Deutschen Sektion der Internationalen Gesellschaft für Wissensorganisation Wien, 3.-5. Juli 2006 - Proceedings of the 10th Conference of the German Section of the International Society of Knowledge Organization Vienna, 3-5 July 2006. Ed.: H.P. Ohly, S. Netscher u. K. Mitgutsch
  2. Dahlberg, I.: DIN 32705: the German standard on classification systems : a critical appraisal (1992) 0.05
    0.049596407 = product of:
      0.12399101 = sum of:
        0.092019245 = weight(_text_:section in 2669) [ClassicSimilarity], result of:
          0.092019245 = score(doc=2669,freq=2.0), product of:
            0.26305357 = queryWeight, product of:
              5.276892 = idf(docFreq=613, maxDocs=44218)
              0.049850095 = queryNorm
            0.34981182 = fieldWeight in 2669, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              5.276892 = idf(docFreq=613, maxDocs=44218)
              0.046875 = fieldNorm(doc=2669)
        0.031971764 = weight(_text_:on in 2669) [ClassicSimilarity], result of:
          0.031971764 = score(doc=2669,freq=8.0), product of:
            0.109641045 = queryWeight, product of:
              2.199415 = idf(docFreq=13325, maxDocs=44218)
              0.049850095 = queryNorm
            0.29160398 = fieldWeight in 2669, product of:
              2.828427 = tf(freq=8.0), with freq of:
                8.0 = termFreq=8.0
              2.199415 = idf(docFreq=13325, maxDocs=44218)
              0.046875 = fieldNorm(doc=2669)
      0.4 = coord(2/5)
    
    Abstract
    The German standard on the construction and further development of classification systems is introduced with its background. The contents of its 8 chapters is described. A critical appraisal considers (1) the fact that the standard does not openly deal with the optimal form of CS, viz. faceted CS, but treats them as one possibility among others, although the authors seem to have had this kind in mind when recommending the section on steps of CS development and other sections of the standard; (2) that the standard does not give any recommendation on the computerization of the necessary activities in establishing CS; and (3) that a convergence of CS and thesauri in the form of faceted CS and faceted thesauri has not been taken into consideration. - Concludingly some doubts are raised whether a standard would be the best medium to provide recommendations or guidelines for the construction of such systems. More adequate ways for this should be explored
  3. De Luca, E.W.; Dahlberg, I.: Including knowledge domains from the ICC into the multilingual lexical linked data cloud (2014) 0.04
    0.04049715 = product of:
      0.06749525 = sum of:
        0.026643137 = weight(_text_:on in 1493) [ClassicSimilarity], result of:
          0.026643137 = score(doc=1493,freq=8.0), product of:
            0.109641045 = queryWeight, product of:
              2.199415 = idf(docFreq=13325, maxDocs=44218)
              0.049850095 = queryNorm
            0.24300331 = fieldWeight in 1493, product of:
              2.828427 = tf(freq=8.0), with freq of:
                8.0 = termFreq=8.0
              2.199415 = idf(docFreq=13325, maxDocs=44218)
              0.0390625 = fieldNorm(doc=1493)
        0.016973123 = weight(_text_:information in 1493) [ClassicSimilarity], result of:
          0.016973123 = score(doc=1493,freq=8.0), product of:
            0.08751074 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.049850095 = queryNorm
            0.19395474 = fieldWeight in 1493, product of:
              2.828427 = tf(freq=8.0), with freq of:
                8.0 = termFreq=8.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.0390625 = fieldNorm(doc=1493)
        0.023878993 = product of:
          0.047757987 = sum of:
            0.047757987 = weight(_text_:22 in 1493) [ClassicSimilarity], result of:
              0.047757987 = score(doc=1493,freq=4.0), product of:
                0.17456654 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.049850095 = queryNorm
                0.27358043 = fieldWeight in 1493, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=1493)
          0.5 = coord(1/2)
      0.6 = coord(3/5)
    
    Abstract
    A lot of information that is already available on the Web, or retrieved from local information systems and social networks is structured in data silos that are not semantically related. Semantic technologies make it emerge that the use of typed links that directly express their relations are an advantage for every application that can reuse the incorporated knowledge about the data. For this reason, data integration, through reengineering (e.g. triplify), or querying (e.g. D2R) is an important task in order to make information available for everyone. Thus, in order to build a semantic map of the data, we need knowledge about data items itself and the relation between heterogeneous data items. In this paper, we present our work of providing Lexical Linked Data (LLD) through a meta-model that contains all the resources and gives the possibility to retrieve and navigate them from different perspectives. We combine the existing work done on knowledge domains (based on the Information Coding Classification) within the Multilingual Lexical Linked Data Cloud (based on the RDF/OWL EurowordNet and the related integrated lexical resources (MultiWordNet, EuroWordNet, MEMODATA Lexicon, Hamburg Methaphor DB).
    Date
    22. 9.2014 19:01:18
    Source
    Knowledge organization in the 21st century: between historical patterns and future prospects. Proceedings of the Thirteenth International ISKO Conference 19-22 May 2014, Kraków, Poland. Ed.: Wieslaw Babik
  4. Dahlberg, I.: On the theory of the concept (1979) 0.03
    0.02623306 = product of:
      0.06558265 = sum of:
        0.045214903 = weight(_text_:on in 1615) [ClassicSimilarity], result of:
          0.045214903 = score(doc=1615,freq=4.0), product of:
            0.109641045 = queryWeight, product of:
              2.199415 = idf(docFreq=13325, maxDocs=44218)
              0.049850095 = queryNorm
            0.4123903 = fieldWeight in 1615, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              2.199415 = idf(docFreq=13325, maxDocs=44218)
              0.09375 = fieldNorm(doc=1615)
        0.020367749 = weight(_text_:information in 1615) [ClassicSimilarity], result of:
          0.020367749 = score(doc=1615,freq=2.0), product of:
            0.08751074 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.049850095 = queryNorm
            0.23274569 = fieldWeight in 1615, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.09375 = fieldNorm(doc=1615)
      0.4 = coord(2/5)
    
    Source
    Ordering systems for global information networks. Proc. of the 3rd Int. Study Conf. on Classification Research, Bombay 1975
  5. Dahlberg, I.: Towards a future for knowledge organization (2006) 0.02
    0.021464769 = product of:
      0.05366192 = sum of:
        0.03014327 = weight(_text_:on in 1476) [ClassicSimilarity], result of:
          0.03014327 = score(doc=1476,freq=4.0), product of:
            0.109641045 = queryWeight, product of:
              2.199415 = idf(docFreq=13325, maxDocs=44218)
              0.049850095 = queryNorm
            0.27492687 = fieldWeight in 1476, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              2.199415 = idf(docFreq=13325, maxDocs=44218)
              0.0625 = fieldNorm(doc=1476)
        0.023518652 = weight(_text_:information in 1476) [ClassicSimilarity], result of:
          0.023518652 = score(doc=1476,freq=6.0), product of:
            0.08751074 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.049850095 = queryNorm
            0.2687516 = fieldWeight in 1476, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.0625 = fieldNorm(doc=1476)
      0.4 = coord(2/5)
    
    Abstract
    Discusses the origin and evolution of the Information Coding Classification (ICC); its theoretical basis, and structure and advantageous attributes for organizing knowledge. Pleads that the considerable work already done on the system should be taken up and developed by interested research groups through collaborative effort. Concludes with some thoughts on the future of knowledge organization for information retrieval and other applications
    Source
    Knowledge organization, information systems and other essays: Professor A. Neelameghan Festschrift. Eds.: K.S. Raghavan u. K.N. Prasad
  6. Dahlberg, I.: Conceptual structures and systematization (1995) 0.02
    0.016206963 = product of:
      0.040517405 = sum of:
        0.02131451 = weight(_text_:on in 3965) [ClassicSimilarity], result of:
          0.02131451 = score(doc=3965,freq=2.0), product of:
            0.109641045 = queryWeight, product of:
              2.199415 = idf(docFreq=13325, maxDocs=44218)
              0.049850095 = queryNorm
            0.19440265 = fieldWeight in 3965, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              2.199415 = idf(docFreq=13325, maxDocs=44218)
              0.0625 = fieldNorm(doc=3965)
        0.019202897 = weight(_text_:information in 3965) [ClassicSimilarity], result of:
          0.019202897 = score(doc=3965,freq=4.0), product of:
            0.08751074 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.049850095 = queryNorm
            0.21943474 = fieldWeight in 3965, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.0625 = fieldNorm(doc=3965)
      0.4 = coord(2/5)
    
    Abstract
    Examines the nature of knowledge and the relationship between the transfer of knowledge and information communication. Discusses the 3 kinds of relationships existing between concepts: formal; form-categorical; and material relationships, and characteristics of concepts. Concludes with a discussion of conceptual structures for concept definitions, conceptual systematization , concept systematization and functionality, and the analytical, referent-oriented concept theory
    Source
    International forum on information and documentation. 20(1995) no.3, S.9-24
  7. Dahlberg, I.: Knowledge organization : a new science? (2006) 0.02
    0.01530262 = product of:
      0.03825655 = sum of:
        0.02637536 = weight(_text_:on in 3375) [ClassicSimilarity], result of:
          0.02637536 = score(doc=3375,freq=4.0), product of:
            0.109641045 = queryWeight, product of:
              2.199415 = idf(docFreq=13325, maxDocs=44218)
              0.049850095 = queryNorm
            0.24056101 = fieldWeight in 3375, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              2.199415 = idf(docFreq=13325, maxDocs=44218)
              0.0546875 = fieldNorm(doc=3375)
        0.011881187 = weight(_text_:information in 3375) [ClassicSimilarity], result of:
          0.011881187 = score(doc=3375,freq=2.0), product of:
            0.08751074 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.049850095 = queryNorm
            0.13576832 = fieldWeight in 3375, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.0546875 = fieldNorm(doc=3375)
      0.4 = coord(2/5)
    
    Abstract
    In ISKO's name, the term "Knowledge Organization" (KO) denotes already the object and the activity area significant for the existence of any science. Both areas are outlined and their specific contents shown. Also a survey of its special subfields is given. The sciencetheoretical foundation of Knowledge Organization as a new scientific discipline is based on the propositional concept of science. Within a universal system of the sciences, KO has been regarded as a subfield of Science of Science. Concludingly it is proposed to find the necessary institution for work in concerted effort of scientists, knowledge organizers and terminologists on the collection, definition, and systematization of concepts of all subject fields, utilizing the Information Coding Classification (ICC) as the necessary categorizing structure.
  8. Dahlberg, I.: ¬The Information Coding Classification (ICC) : a modern, theory-based fully-faceted, universal system of knowledge fields (2008) 0.01
    0.014030178 = product of:
      0.035075445 = sum of:
        0.023073634 = weight(_text_:on in 1854) [ClassicSimilarity], result of:
          0.023073634 = score(doc=1854,freq=6.0), product of:
            0.109641045 = queryWeight, product of:
              2.199415 = idf(docFreq=13325, maxDocs=44218)
              0.049850095 = queryNorm
            0.21044704 = fieldWeight in 1854, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              2.199415 = idf(docFreq=13325, maxDocs=44218)
              0.0390625 = fieldNorm(doc=1854)
        0.012001811 = weight(_text_:information in 1854) [ClassicSimilarity], result of:
          0.012001811 = score(doc=1854,freq=4.0), product of:
            0.08751074 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.049850095 = queryNorm
            0.13714671 = fieldWeight in 1854, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.0390625 = fieldNorm(doc=1854)
      0.4 = coord(2/5)
    
    Abstract
    Introduction into the structure, contents and specifications (especially the Systematifier) of the Information Coding Classification, developed in the seventies and used in many ways by the author and a few others following its publication in 1982. Its theoretical basis is explained consisting in (1) the Integrative Level Theory, following an evolutionary approach of ontical areas, and integrating also on each level the aspects contained in the sequence of the levels, (2) the distinction between categories of form and categories of being, (3) the application of a feature of Systems Theory (namely the element position plan) and (4) the inclusion of a concept theory, distinguishing four kinds of relationships, originated by the kinds of characteristics (which are the elements of concepts to be derived from the statements on the properties of referents of concepts). Its special Subject Groups on each of its nine levels are outlined and the combinatory facilities at certain positions of the Systematifier are shown. Further elaboration and use have been suggested, be it only as a switching language between the six existing universal classification systems at present in use internationally.
  9. Dahlberg, I.: Knowledge organization : its scope and possibilities (1993) 0.01
    0.013957202 = product of:
      0.034893006 = sum of:
        0.02131451 = weight(_text_:on in 6315) [ClassicSimilarity], result of:
          0.02131451 = score(doc=6315,freq=2.0), product of:
            0.109641045 = queryWeight, product of:
              2.199415 = idf(docFreq=13325, maxDocs=44218)
              0.049850095 = queryNorm
            0.19440265 = fieldWeight in 6315, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              2.199415 = idf(docFreq=13325, maxDocs=44218)
              0.0625 = fieldNorm(doc=6315)
        0.013578499 = weight(_text_:information in 6315) [ClassicSimilarity], result of:
          0.013578499 = score(doc=6315,freq=2.0), product of:
            0.08751074 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.049850095 = queryNorm
            0.1551638 = fieldWeight in 6315, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.0625 = fieldNorm(doc=6315)
      0.4 = coord(2/5)
    
    Abstract
    Sketch of historical development of knowledge organization and presentation of its scope as shown by the contents of the literature service, now called 'Knowledge Organization Literature'. The scheme is explained and shown on its three levels as well as its correlation to a universal classification system of knowledge fields, the 'Information Coding Classification'. The possibilities of Knowledge Organization as a help for everybody, especially also students and above all students of education, and a help for political, industrial and social leaders are discussed. 10 measures for consideration and activation are listed
  10. Luca, E.W. de; Dahlberg, I.: ¬Die Multilingual Lexical Linked Data Cloud : eine mögliche Zugangsoptimierung? (2014) 0.01
    0.013865667 = product of:
      0.03466417 = sum of:
        0.0144021725 = weight(_text_:information in 1736) [ClassicSimilarity], result of:
          0.0144021725 = score(doc=1736,freq=4.0), product of:
            0.08751074 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.049850095 = queryNorm
            0.16457605 = fieldWeight in 1736, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.046875 = fieldNorm(doc=1736)
        0.020261997 = product of:
          0.040523995 = sum of:
            0.040523995 = weight(_text_:22 in 1736) [ClassicSimilarity], result of:
              0.040523995 = score(doc=1736,freq=2.0), product of:
                0.17456654 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.049850095 = queryNorm
                0.23214069 = fieldWeight in 1736, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046875 = fieldNorm(doc=1736)
          0.5 = coord(1/2)
      0.4 = coord(2/5)
    
    Abstract
    Sehr viele Informationen sind bereits im Web verfügbar oder können aus isolierten strukturierten Datenspeichern wie Informationssystemen und sozialen Netzwerken gewonnen werden. Datenintegration durch Nachbearbeitung oder durch Suchmechanismen (z. B. D2R) ist deshalb wichtig, um Informationen allgemein verwendbar zu machen. Semantische Technologien ermöglichen die Verwendung definierter Verbindungen (typisierter Links), durch die ihre Beziehungen zueinander festgehalten werden, was Vorteile für jede Anwendung bietet, die das in Daten enthaltene Wissen wieder verwenden kann. Um ­eine semantische Daten-Landkarte herzustellen, benötigen wir Wissen über die einzelnen Daten und ihre Beziehung zu anderen Daten. Dieser Beitrag stellt unsere Arbeit zur Benutzung von Lexical Linked Data (LLD) durch ein Meta-Modell vor, das alle Ressourcen enthält und zudem die Möglichkeit bietet sie unter unterschiedlichen Gesichtspunkten aufzufinden. Wir verbinden damit bestehende Arbeiten über Wissensgebiete (basierend auf der Information Coding Classification) mit der Multilingual Lexical Linked Data Cloud (basierend auf der RDF/OWL-Repräsentation von EuroWordNet und den ähnlichen integrierten lexikalischen Ressourcen MultiWordNet, MEMODATA und die Hamburg Metapher DB).
    Date
    22. 9.2014 19:00:13
    Source
    Information - Wissenschaft und Praxis. 65(2014) H.4/5, S.279-287
  11. Dahlberg, I.: Normung und Klassifikation (1978) 0.01
    0.0135079995 = product of:
      0.06754 = sum of:
        0.06754 = product of:
          0.13508 = sum of:
            0.13508 = weight(_text_:22 in 1612) [ClassicSimilarity], result of:
              0.13508 = score(doc=1612,freq=2.0), product of:
                0.17456654 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.049850095 = queryNorm
                0.77380234 = fieldWeight in 1612, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.15625 = fieldNorm(doc=1612)
          0.5 = coord(1/2)
      0.2 = coord(1/5)
    
    Source
    DK-Mitteilungen. 22(1978) Nr.5/6, S.13-18
  12. Dahlberg, I.: Kolloquium Einheitsklassifikation (1975) 0.01
    0.0135079995 = product of:
      0.06754 = sum of:
        0.06754 = product of:
          0.13508 = sum of:
            0.13508 = weight(_text_:22 in 1625) [ClassicSimilarity], result of:
              0.13508 = score(doc=1625,freq=2.0), product of:
                0.17456654 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.049850095 = queryNorm
                0.77380234 = fieldWeight in 1625, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.15625 = fieldNorm(doc=1625)
          0.5 = coord(1/2)
      0.2 = coord(1/5)
    
    Source
    Nachrichten für Dokumentation. 26(1975), S.22-25
  13. Dahlberg, I.: Conceptual definitions for INTERCONCEPT (1981) 0.01
    0.0135079995 = product of:
      0.06754 = sum of:
        0.06754 = product of:
          0.13508 = sum of:
            0.13508 = weight(_text_:22 in 1630) [ClassicSimilarity], result of:
              0.13508 = score(doc=1630,freq=2.0), product of:
                0.17456654 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.049850095 = queryNorm
                0.77380234 = fieldWeight in 1630, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.15625 = fieldNorm(doc=1630)
          0.5 = coord(1/2)
      0.2 = coord(1/5)
    
    Source
    International classification. 8(1981), S.16-22
  14. Dahlberg, I.: ICC - Information Coding Classification : principles, structure and application possibilities (1982) 0.01
    0.012155222 = product of:
      0.030388054 = sum of:
        0.015985882 = weight(_text_:on in 1238) [ClassicSimilarity], result of:
          0.015985882 = score(doc=1238,freq=2.0), product of:
            0.109641045 = queryWeight, product of:
              2.199415 = idf(docFreq=13325, maxDocs=44218)
              0.049850095 = queryNorm
            0.14580199 = fieldWeight in 1238, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              2.199415 = idf(docFreq=13325, maxDocs=44218)
              0.046875 = fieldNorm(doc=1238)
        0.0144021725 = weight(_text_:information in 1238) [ClassicSimilarity], result of:
          0.0144021725 = score(doc=1238,freq=4.0), product of:
            0.08751074 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.049850095 = queryNorm
            0.16457605 = fieldWeight in 1238, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.046875 = fieldNorm(doc=1238)
      0.4 = coord(2/5)
    
    Abstract
    Presentation of the design, characteristics and application possibilities of a new universal classification system called ICC which is based on the premises that whenever information is to be generated or to be presented (in coded form) at least two items are necessary one of which plays the part of a subject and the other one that of the predicate of a sentence, with both these items being framed into a third one. The first basic division is by the categorial concepts denoting general entities and general aspects/determinations of being, framed into an evolutionary pattern of levels creating the 81 subject groups of ICC. Each of these subject groups is structured by a socalled systematifier, applying a recurring series of facets. The overall structure is explained and some of its application fields are outlined
  15. Dahlberg, I.: Library catalogs in the Internet : switching for future subject access (1996) 0.01
    0.010467903 = product of:
      0.026169756 = sum of:
        0.015985882 = weight(_text_:on in 5171) [ClassicSimilarity], result of:
          0.015985882 = score(doc=5171,freq=2.0), product of:
            0.109641045 = queryWeight, product of:
              2.199415 = idf(docFreq=13325, maxDocs=44218)
              0.049850095 = queryNorm
            0.14580199 = fieldWeight in 5171, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              2.199415 = idf(docFreq=13325, maxDocs=44218)
              0.046875 = fieldNorm(doc=5171)
        0.0101838745 = weight(_text_:information in 5171) [ClassicSimilarity], result of:
          0.0101838745 = score(doc=5171,freq=2.0), product of:
            0.08751074 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.049850095 = queryNorm
            0.116372846 = fieldWeight in 5171, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.046875 = fieldNorm(doc=5171)
      0.4 = coord(2/5)
    
    Abstract
    A multitude of library catalogs are now being entered into the Internet. Their differing classification and subject headings systems used for subject access call for a switching system, a black box to facilitate the location of subject fields and their subjects in these systems. The principles on which such a switching system must be built in order to provide the necessary insight, surveyability, reproducebility and ease of concept combinability (e.g. in cases of interdisciplinary subjects) are outlined and compared with the BSO which hance once been established by the FID in order to serve a switching purpose. The advantages of using the Information Coding Classification (ICC) as a switching system in the Internet are demonstrated, likewise the methodology needed to establish the necessary correlation between library classification systems (and if possible also subject heading systems and thesauri) and the ICC. Finally some organizational implications for creating a switching for 6 universal systems in use are described
  16. Dahlberg, I.: ¬Die gegenstandsbezogene, analytische Begriffstheorie und ihre Definitionsarten (1987) 0.01
    0.0094556 = product of:
      0.047278 = sum of:
        0.047278 = product of:
          0.094556 = sum of:
            0.094556 = weight(_text_:22 in 880) [ClassicSimilarity], result of:
              0.094556 = score(doc=880,freq=2.0), product of:
                0.17456654 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.049850095 = queryNorm
                0.5416616 = fieldWeight in 880, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.109375 = fieldNorm(doc=880)
          0.5 = coord(1/2)
      0.2 = coord(1/5)
    
    Pages
    S.9-22
  17. Dahlberg, I.: How to improve ISKO's standing : ten desiderata for knowledge organization (2011) 0.01
    0.00923313 = product of:
      0.023082824 = sum of:
        0.018839544 = weight(_text_:on in 4300) [ClassicSimilarity], result of:
          0.018839544 = score(doc=4300,freq=16.0), product of:
            0.109641045 = queryWeight, product of:
              2.199415 = idf(docFreq=13325, maxDocs=44218)
              0.049850095 = queryNorm
            0.1718293 = fieldWeight in 4300, product of:
              4.0 = tf(freq=16.0), with freq of:
                16.0 = termFreq=16.0
              2.199415 = idf(docFreq=13325, maxDocs=44218)
              0.01953125 = fieldNorm(doc=4300)
        0.0042432807 = weight(_text_:information in 4300) [ClassicSimilarity], result of:
          0.0042432807 = score(doc=4300,freq=2.0), product of:
            0.08751074 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.049850095 = queryNorm
            0.048488684 = fieldWeight in 4300, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.01953125 = fieldNorm(doc=4300)
      0.4 = coord(2/5)
    
    Abstract
    In 2009 ISKO had its 20th anniversary, a time for review and reflection on what might be envisaged to further Knowledge Organization in the forthcoming years. In addition to some proposals set forth at the end of this contribution, ten desiderata appear urgent. A preliminary condition to any other consideration is the recognition of the fundamental difference in the organization of knowledge between the concept (i.e., the unit of knowledge)-the conceptual level-and the word, term or code-the verbal level-and the need for implementing this distinction in theory and practice (Desideratum 1). On this basis, some further proposals are enunciated. The 2nd proposition concerns the surveying of extant classification systems, thesauri, and other means of organizing, ordering, and indexing knowledge; the 3rd proposition envisages the improvement of expert training in Knowledge Organization (KO), also with regard to curricula and professional acknowledgment. Nr.4) refers to the professionalization of the hitherto rather neglected national ISKO secretariats, as well as the international ISKO secretariat. Nr.5) urges a systematic survey of KO-relevant concepts to serve as a model or standard for other subject fields, Nr.6) claims the establishment of KO Institutes, Nr.7) views consultancy to the effect that anybody interested in KO may approach ISKO for help, Nr 8) urges ISKO's promotion of membership and chapters in as many countries as possible, Nr.9) presses for intensification of ISKO's publication activities, and Nr.10) pleads for KO as a scientific discipline on its own.
    Content
    6. Establishment of national Knowledge Organization Institutes should be scheduled by national chapters, planned energetically and submitted to corresponding administrative authorities for support. They could be attached to research institutions, e.g., the Max-Planck or Fraunhofer Institutes in Germany or to universities. Their scope and research areas relate to the elaboration of knowledge systems of subject related concepts, according to Desideratum 1, and may be connected to training activities and KOsubject-related research work. 7. ISKO experts should not accept to be impressed by Internet and Computer Science, but should demonstrate their expertise more actively on the public plane. They should tend to take a leading part in the ISKO Secretariats and the KO Institutes, and act as consultants and informants, as well as editors of statistics and other publications. 8. All colleagues trained in the field of classification/indexing and thesauri construction and active in different countries should be identified and approached for membership in ISKO. This would have to be accomplished by the General Secretariat with the collaboration of the experts in the different secretariats of the countries, as soon as they start to work. The more members ISKO will have, the greater will be its reputation and influence. But it will also prove its professionalism by the quality of its products, especially its innovating conceptual order systems to come. 9. ISKO should-especially in view of global expansion-intensify the promotion of knowledge about its own subject area through the publications mentioned here and in further publications as deemed necessary. It should be made clear that, especially in ISKO's own publications, professional subject indexes are a sine qua non. 10. 1) Knowledge Organization, having arisen from librarianship and documentation, the contents of which has many points of contact with numerous application fields, should-although still linked up with its areas of descent-be recognized in the long run as an independent autonomous discipline to be located under the science of science, since only thereby can it fully play its role as an equal partner in all application fields; and, 2) An "at-a-first-glance knowledge order" could be implemented through the Information Coding Classification (ICC), as this system is based on an entirely new approach, namely based on general object areas, thus deviating from discipline-oriented main classes of the current main universal classification systems. It can therefore recoup by simple display on screen the hitherto lost overview of all knowledge areas and fields. On "one look", one perceives 9 object areas subdivided into 9 aspects which break down into 81 subject areas with their 729 subject fields, including further special fields. The synthesis and place of order of all knowledge becomes thus evident at a glance to everybody. Nobody would any longer be irritated by the abundance of singular apparently unrelated knowledge fields or become hesitant in his/her understanding of the world.
  18. Dahlberg, I.: ¬The future of classification in libraries and networks : a theoretical point of view (1995) 0.01
    0.0087232515 = product of:
      0.021808129 = sum of:
        0.013321568 = weight(_text_:on in 5563) [ClassicSimilarity], result of:
          0.013321568 = score(doc=5563,freq=2.0), product of:
            0.109641045 = queryWeight, product of:
              2.199415 = idf(docFreq=13325, maxDocs=44218)
              0.049850095 = queryNorm
            0.121501654 = fieldWeight in 5563, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              2.199415 = idf(docFreq=13325, maxDocs=44218)
              0.0390625 = fieldNorm(doc=5563)
        0.0084865615 = weight(_text_:information in 5563) [ClassicSimilarity], result of:
          0.0084865615 = score(doc=5563,freq=2.0), product of:
            0.08751074 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.049850095 = queryNorm
            0.09697737 = fieldWeight in 5563, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.0390625 = fieldNorm(doc=5563)
      0.4 = coord(2/5)
    
    Abstract
    Some time ago, some people said classification is dead, we don't need it any more. They probably thought that subject headings could do the job of the necessary subject analysis and shelving of books. However, all of a sudden in 1984 the attitude changed, when an OCLC study of Karen Markey started to show what could be done even with an "outdated system" such as the Dewey Decimal Classification in the computer, once it was visible on a screen to show the helpfulness of a classified library catalogue called an OPAC; classification was brought back into the minds of doubtful librarians and of all those who thought they would not need it any longer. But the problem once phrased: "We are stuck with the two old systems, LCC and DDC" would not find a solution and is still with us today. We know that our systems are outdated but we seem still to be unable to replace them with better ones. What then should one do and advise, knowing that we need something better? Perhaps a new universal ordering system which more adequately represents and mediates the world of our present day knowledge? If we were to develop it from scratch, how would we create it and implement it in such a way that it would be acceptable to the majority of the present intellectual world population?
    Footnote
    Paper presented at the 36th Allerton Institute, 23-25 Oct 94, Allerton Park, Monticello, IL: "New Roles for Classification in Libraries and Information Networks: Presentation and Reports"
  19. Dahlberg, I.: ¬A faceted classification of general concepts (2011) 0.01
    0.0087232515 = product of:
      0.021808129 = sum of:
        0.013321568 = weight(_text_:on in 4824) [ClassicSimilarity], result of:
          0.013321568 = score(doc=4824,freq=2.0), product of:
            0.109641045 = queryWeight, product of:
              2.199415 = idf(docFreq=13325, maxDocs=44218)
              0.049850095 = queryNorm
            0.121501654 = fieldWeight in 4824, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              2.199415 = idf(docFreq=13325, maxDocs=44218)
              0.0390625 = fieldNorm(doc=4824)
        0.0084865615 = weight(_text_:information in 4824) [ClassicSimilarity], result of:
          0.0084865615 = score(doc=4824,freq=2.0), product of:
            0.08751074 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.049850095 = queryNorm
            0.09697737 = fieldWeight in 4824, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.0390625 = fieldNorm(doc=4824)
      0.4 = coord(2/5)
    
    Abstract
    General concepts are all those form-categorial concepts which - attached to a specific concept of a classification system or thesaurus - can help to widen, sometimes even in a syntactical sense, the understanding of a case. In some existing universal classification systems such concepts have been named "auxiliaries" or "common isolates" as in the Colon Classification (CC). However, by such auxiliaries, different kinds of such concepts are listed, e.g. concepts of space and time, concepts of races and languages and concepts of kinds of documents, next to them also concepts of kinds of general activities, properties, persons, and institutions. Such latter kinds form part of the nine aspects ruling the facets in the Information Coding Classification (ICC) through the principle of using a Systematiser for the subdivision of subject groups and fields. Based on this principle and using and extending existing systems of such concepts, e.g. which A. Diemer had presented to the German Thesaurus Committee as well as those found in the UDC, in CC and attached to the Subject Heading System of the German National Library, a faceted classification is proposed for critical assessment, necessary improvement and possible later use in classification systems and thesauri.
  20. Dahlberg, I.: Grundlagen universaler Wissensordnung : Probleme und Möglichkeiten eines universalen Klassifikationssystems des Wissens (1974) 0.01
    0.0067539997 = product of:
      0.03377 = sum of:
        0.03377 = product of:
          0.06754 = sum of:
            0.06754 = weight(_text_:22 in 127) [ClassicSimilarity], result of:
              0.06754 = score(doc=127,freq=2.0), product of:
                0.17456654 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.049850095 = queryNorm
                0.38690117 = fieldWeight in 127, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.078125 = fieldNorm(doc=127)
          0.5 = coord(1/2)
      0.2 = coord(1/5)
    
    Footnote
    Zugleich Dissertation Univ. Düsseldorf. - Rez. in: ZfBB. 22(1975) S.53-57 (H.-A. Koch)