Search (87 results, page 1 of 5)

  • × theme_ss:"Theorie verbaler Dokumentationssprachen"
  1. Khoo, S.G.; Na, J.-C.: Semantic relations in information science (2006) 0.08
    0.07536412 = product of:
      0.09420515 = sum of:
        0.046009623 = weight(_text_:section in 1978) [ClassicSimilarity], result of:
          0.046009623 = score(doc=1978,freq=2.0), product of:
            0.26305357 = queryWeight, product of:
              5.276892 = idf(docFreq=613, maxDocs=44218)
              0.049850095 = queryNorm
            0.17490591 = fieldWeight in 1978, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              5.276892 = idf(docFreq=613, maxDocs=44218)
              0.0234375 = fieldNorm(doc=1978)
        0.023978824 = weight(_text_:on in 1978) [ClassicSimilarity], result of:
          0.023978824 = score(doc=1978,freq=18.0), product of:
            0.109641045 = queryWeight, product of:
              2.199415 = idf(docFreq=13325, maxDocs=44218)
              0.049850095 = queryNorm
            0.21870299 = fieldWeight in 1978, product of:
              4.2426405 = tf(freq=18.0), with freq of:
                18.0 = termFreq=18.0
              2.199415 = idf(docFreq=13325, maxDocs=44218)
              0.0234375 = fieldNorm(doc=1978)
        0.016888045 = weight(_text_:information in 1978) [ClassicSimilarity], result of:
          0.016888045 = score(doc=1978,freq=22.0), product of:
            0.08751074 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.049850095 = queryNorm
            0.19298252 = fieldWeight in 1978, product of:
              4.690416 = tf(freq=22.0), with freq of:
                22.0 = termFreq=22.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.0234375 = fieldNorm(doc=1978)
        0.0073286593 = product of:
          0.014657319 = sum of:
            0.014657319 = weight(_text_:technology in 1978) [ClassicSimilarity], result of:
              0.014657319 = score(doc=1978,freq=2.0), product of:
                0.14847288 = queryWeight, product of:
                  2.978387 = idf(docFreq=6114, maxDocs=44218)
                  0.049850095 = queryNorm
                0.09872051 = fieldWeight in 1978, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  2.978387 = idf(docFreq=6114, maxDocs=44218)
                  0.0234375 = fieldNorm(doc=1978)
          0.5 = coord(1/2)
      0.8 = coord(4/5)
    
    Abstract
    This chapter examines the nature of semantic relations and their main applications in information science. The nature and types of semantic relations are discussed from the perspectives of linguistics and psychology. An overview of the semantic relations used in knowledge structures such as thesauri and ontologies is provided, as well as the main techniques used in the automatic extraction of semantic relations from text. The chapter then reviews the use of semantic relations in information extraction, information retrieval, question-answering, and automatic text summarization applications. Concepts and relations are the foundation of knowledge and thought. When we look at the world, we perceive not a mass of colors but objects to which we automatically assign category labels. Our perceptual system automatically segments the world into concepts and categories. Concepts are the building blocks of knowledge; relations act as the cement that links concepts into knowledge structures. We spend much of our lives identifying regular associations and relations between objects, events, and processes so that the world has an understandable structure and predictability. Our lives and work depend on the accuracy and richness of this knowledge structure and its web of relations. Relations are needed for reasoning and inferencing. Chaffin and Herrmann (1988b, p. 290) noted that "relations between ideas have long been viewed as basic to thought, language, comprehension, and memory." Aristotle's Metaphysics (Aristotle, 1961; McKeon, expounded on several types of relations. The majority of the 30 entries in a section of the Metaphysics known today as the Philosophical Lexicon referred to relations and attributes, including cause, part-whole, same and opposite, quality (i.e., attribute) and kind-of, and defined different types of each relation. Hume (1955) pointed out that there is a connection between successive ideas in our minds, even in our dreams, and that the introduction of an idea in our mind automatically recalls an associated idea. He argued that all the objects of human reasoning are divided into relations of ideas and matters of fact and that factual reasoning is founded on the cause-effect relation. His Treatise of Human Nature identified seven kinds of relations: resemblance, identity, relations of time and place, proportion in quantity or number, degrees in quality, contrariety, and causation. Mill (1974, pp. 989-1004) discoursed on several types of relations, claiming that all things are either feelings, substances, or attributes, and that attributes can be a quality (which belongs to one object) or a relation to other objects.
    Linguists in the structuralist tradition (e.g., Lyons, 1977; Saussure, 1959) have asserted that concepts cannot be defined on their own but only in relation to other concepts. Semantic relations appear to reflect a logical structure in the fundamental nature of thought (Caplan & Herrmann, 1993). Green, Bean, and Myaeng (2002) noted that semantic relations play a critical role in how we represent knowledge psychologically, linguistically, and computationally, and that many systems of knowledge representation start with a basic distinction between entities and relations. Green (2001, p. 3) said that "relationships are involved as we combine simple entities to form more complex entities, as we compare entities, as we group entities, as one entity performs a process on another entity, and so forth. Indeed, many things that we might initially regard as basic and elemental are revealed upon further examination to involve internal structure, or in other words, internal relationships." Concepts and relations are often expressed in language and text. Language is used not just for communicating concepts and relations, but also for representing, storing, and reasoning with concepts and relations. We shall examine the nature of semantic relations from a linguistic and psychological perspective, with an emphasis on relations expressed in text. The usefulness of semantic relations in information science, especially in ontology construction, information extraction, information retrieval, question-answering, and text summarization is discussed. Research and development in information science have focused on concepts and terms, but the focus will increasingly shift to the identification, processing, and management of relations to achieve greater effectiveness and refinement in information science techniques. Previous chapters in ARIST on natural language processing (Chowdhury, 2003), text mining (Trybula, 1999), information retrieval and the philosophy of language (Blair, 2003), and query expansion (Efthimiadis, 1996) provide a background for this discussion, as semantic relations are an important part of these applications.
    Source
    Annual review of information science and technology. 40(2006), S.157-228
  2. Fugmann, R.: ¬The complementarity of natural and controlled languages in indexing (1995) 0.07
    0.072003424 = product of:
      0.18000856 = sum of:
        0.15336542 = weight(_text_:section in 1634) [ClassicSimilarity], result of:
          0.15336542 = score(doc=1634,freq=2.0), product of:
            0.26305357 = queryWeight, product of:
              5.276892 = idf(docFreq=613, maxDocs=44218)
              0.049850095 = queryNorm
            0.58301973 = fieldWeight in 1634, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              5.276892 = idf(docFreq=613, maxDocs=44218)
              0.078125 = fieldNorm(doc=1634)
        0.026643137 = weight(_text_:on in 1634) [ClassicSimilarity], result of:
          0.026643137 = score(doc=1634,freq=2.0), product of:
            0.109641045 = queryWeight, product of:
              2.199415 = idf(docFreq=13325, maxDocs=44218)
              0.049850095 = queryNorm
            0.24300331 = fieldWeight in 1634, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              2.199415 = idf(docFreq=13325, maxDocs=44218)
              0.078125 = fieldNorm(doc=1634)
      0.4 = coord(2/5)
    
    Source
    Subject indexing: principles and practices in the 90's. Proceedings of the IFLA Satellite Meeting Held in Lisbon, Portugal, 17-18 August 1993, and sponsored by the IFLA Section on Classification and Indexing and the Instituto da Biblioteca Nacional e do Livro, Lisbon, Portugal. Ed.: R.P. Holley et al
  3. Hoerman, H.L.; Furniss, K.A.: Turning practice into principles : a comparison of the IFLA Principles underlying Subject Heading Languages (SHLs) and the principles underlying the Library of Congress Subject Headings system (2000) 0.05
    0.047883045 = product of:
      0.11970761 = sum of:
        0.092019245 = weight(_text_:section in 5611) [ClassicSimilarity], result of:
          0.092019245 = score(doc=5611,freq=2.0), product of:
            0.26305357 = queryWeight, product of:
              5.276892 = idf(docFreq=613, maxDocs=44218)
              0.049850095 = queryNorm
            0.34981182 = fieldWeight in 5611, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              5.276892 = idf(docFreq=613, maxDocs=44218)
              0.046875 = fieldNorm(doc=5611)
        0.027688364 = weight(_text_:on in 5611) [ClassicSimilarity], result of:
          0.027688364 = score(doc=5611,freq=6.0), product of:
            0.109641045 = queryWeight, product of:
              2.199415 = idf(docFreq=13325, maxDocs=44218)
              0.049850095 = queryNorm
            0.25253648 = fieldWeight in 5611, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              2.199415 = idf(docFreq=13325, maxDocs=44218)
              0.046875 = fieldNorm(doc=5611)
      0.4 = coord(2/5)
    
    Abstract
    The IFLA Section on Classification and Indexing's Working Group on Principles Underlying Subject Headings Languages has identified a set of eleven principles for subject heading languages and excerpted the texts that match each principle from the instructions for each of eleven national subject indexing systems, including excerpts from the LC's Subject Cataloging Manual: Subject Headings. This study compares the IFLA principles with other texts that express the principles underlying LCSH, especially Library of Congress Subject Headings: Principles of Structure and Policies for Application, prepared by Lois Mai Chan for the Library of Congress in 1990, Chan's later book on LCSH, and earlier documents by Haykin and Cutter. The principles are further elaborated for clarity and discussed
  4. Principles underlying subject heading languages (SHLs) (1999) 0.05
    0.04585068 = product of:
      0.1146267 = sum of:
        0.092019245 = weight(_text_:section in 1659) [ClassicSimilarity], result of:
          0.092019245 = score(doc=1659,freq=2.0), product of:
            0.26305357 = queryWeight, product of:
              5.276892 = idf(docFreq=613, maxDocs=44218)
              0.049850095 = queryNorm
            0.34981182 = fieldWeight in 1659, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              5.276892 = idf(docFreq=613, maxDocs=44218)
              0.046875 = fieldNorm(doc=1659)
        0.022607451 = weight(_text_:on in 1659) [ClassicSimilarity], result of:
          0.022607451 = score(doc=1659,freq=4.0), product of:
            0.109641045 = queryWeight, product of:
              2.199415 = idf(docFreq=13325, maxDocs=44218)
              0.049850095 = queryNorm
            0.20619515 = fieldWeight in 1659, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              2.199415 = idf(docFreq=13325, maxDocs=44218)
              0.046875 = fieldNorm(doc=1659)
      0.4 = coord(2/5)
    
    Issue
    Working Group on Principles Underlying Subject Heading Languages; approved by the Standing Committee of the IFLA Section on Classification and Indexing.
  5. Schmitz-Esser, W.: Formalizing terminology-based knowledge for an ontology independently of a particular language (2008) 0.05
    0.04585068 = product of:
      0.1146267 = sum of:
        0.092019245 = weight(_text_:section in 1680) [ClassicSimilarity], result of:
          0.092019245 = score(doc=1680,freq=2.0), product of:
            0.26305357 = queryWeight, product of:
              5.276892 = idf(docFreq=613, maxDocs=44218)
              0.049850095 = queryNorm
            0.34981182 = fieldWeight in 1680, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              5.276892 = idf(docFreq=613, maxDocs=44218)
              0.046875 = fieldNorm(doc=1680)
        0.022607451 = weight(_text_:on in 1680) [ClassicSimilarity], result of:
          0.022607451 = score(doc=1680,freq=4.0), product of:
            0.109641045 = queryWeight, product of:
              2.199415 = idf(docFreq=13325, maxDocs=44218)
              0.049850095 = queryNorm
            0.20619515 = fieldWeight in 1680, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              2.199415 = idf(docFreq=13325, maxDocs=44218)
              0.046875 = fieldNorm(doc=1680)
      0.4 = coord(2/5)
    
    Abstract
    Last word ontological thought and practice is exemplified on an axiomatic framework [a model for an Integrative Cross-Language Ontology (ICLO), cf. Poli, R., Schmitz-Esser, W., forthcoming 2007] that is highly general, based on natural language, multilingual, can be implemented as topic maps and may be openly enhanced by software available for particular languages. Basics of ontological modelling, conditions for construction and maintenance, and the most salient points in application are addressed, such as cross-language text mining and knowledge generation. The rationale is to open the eyes for the tremendous potential of terminology-based ontologies for principled Knowledge Organization and the interchange and reuse of formalized knowledge.
    Source
    Kompatibilität, Medien und Ethik in der Wissensorganisation - Compatibility, Media and Ethics in Knowledge Organization: Proceedings der 10. Tagung der Deutschen Sektion der Internationalen Gesellschaft für Wissensorganisation Wien, 3.-5. Juli 2006 - Proceedings of the 10th Conference of the German Section of the International Society of Knowledge Organization Vienna, 3-5 July 2006. Ed.: H.P. Ohly, S. Netscher u. K. Mitgutsch
  6. Maniez, J.: Fusion de banques de donnees documentaires at compatibilite des languages d'indexation (1997) 0.03
    0.032332122 = product of:
      0.053886868 = sum of:
        0.015985882 = weight(_text_:on in 2246) [ClassicSimilarity], result of:
          0.015985882 = score(doc=2246,freq=2.0), product of:
            0.109641045 = queryWeight, product of:
              2.199415 = idf(docFreq=13325, maxDocs=44218)
              0.049850095 = queryNorm
            0.14580199 = fieldWeight in 2246, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              2.199415 = idf(docFreq=13325, maxDocs=44218)
              0.046875 = fieldNorm(doc=2246)
        0.017638987 = weight(_text_:information in 2246) [ClassicSimilarity], result of:
          0.017638987 = score(doc=2246,freq=6.0), product of:
            0.08751074 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.049850095 = queryNorm
            0.20156369 = fieldWeight in 2246, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.046875 = fieldNorm(doc=2246)
        0.020261997 = product of:
          0.040523995 = sum of:
            0.040523995 = weight(_text_:22 in 2246) [ClassicSimilarity], result of:
              0.040523995 = score(doc=2246,freq=2.0), product of:
                0.17456654 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.049850095 = queryNorm
                0.23214069 = fieldWeight in 2246, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046875 = fieldNorm(doc=2246)
          0.5 = coord(1/2)
      0.6 = coord(3/5)
    
    Abstract
    Discusses the apparently unattainable goal of compatibility of information languages. While controlled languages can improve retrieval performance within a single system, they make cooperation across different systems more difficult. The Internet and downloading accentuate this adverse outcome and the acceleration of data exchange aggravates the problem of compatibility. Defines this familiar concept and demonstrates that coherence is just as necessary as it was for indexing languages, the proliferation of which has created confusion in grouped data banks. Describes 2 types of potential solutions, similar to those applied to automatic translation of natural languages: - harmonizing the information languages themselves, both difficult and expensive, or, the more flexible solution involving automatic harmonization of indexing formulae based on pre established concordance tables. However, structural incompatibilities between post coordinated languages and classifications may lead any harmonization tools up a blind alley, while the paths of a universal concordance model are rare and narrow
    Date
    1. 8.1996 22:01:00
    Footnote
    Übers. d. Titels: Integration of information data banks and compatibility of indexing languages
  7. Engerer, V.: Control and syntagmatization : vocabulary requirements in information retrieval thesauri and natural language lexicons (2017) 0.03
    0.030606572 = product of:
      0.05101095 = sum of:
        0.015985882 = weight(_text_:on in 3678) [ClassicSimilarity], result of:
          0.015985882 = score(doc=3678,freq=2.0), product of:
            0.109641045 = queryWeight, product of:
              2.199415 = idf(docFreq=13325, maxDocs=44218)
              0.049850095 = queryNorm
            0.14580199 = fieldWeight in 3678, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              2.199415 = idf(docFreq=13325, maxDocs=44218)
              0.046875 = fieldNorm(doc=3678)
        0.020367749 = weight(_text_:information in 3678) [ClassicSimilarity], result of:
          0.020367749 = score(doc=3678,freq=8.0), product of:
            0.08751074 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.049850095 = queryNorm
            0.23274569 = fieldWeight in 3678, product of:
              2.828427 = tf(freq=8.0), with freq of:
                8.0 = termFreq=8.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.046875 = fieldNorm(doc=3678)
        0.014657319 = product of:
          0.029314637 = sum of:
            0.029314637 = weight(_text_:technology in 3678) [ClassicSimilarity], result of:
              0.029314637 = score(doc=3678,freq=2.0), product of:
                0.14847288 = queryWeight, product of:
                  2.978387 = idf(docFreq=6114, maxDocs=44218)
                  0.049850095 = queryNorm
                0.19744103 = fieldWeight in 3678, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  2.978387 = idf(docFreq=6114, maxDocs=44218)
                  0.046875 = fieldNorm(doc=3678)
          0.5 = coord(1/2)
      0.6 = coord(3/5)
    
    Abstract
    This paper explores the relationships between natural language lexicons in lexical semantics and thesauri in information retrieval research. These different areas of knowledge have different restrictions on use of vocabulary; thesauri are used only in information search and retrieval contexts, whereas lexicons are mental systems and generally applicable in all domains of life. A set of vocabulary requirements that defines the more concrete characteristics of vocabulary items in the 2 contexts can be derived from this framework: lexicon items have to be learnable, complex, transparent, etc., whereas thesaurus terms must be effective, current and relevant, searchable, etc. The differences in vocabulary properties correlate with 2 other factors, the well-known dimension of Control (deliberate, social activities of building and maintaining vocabularies), and Syntagmatization, which is less known and describes vocabulary items' varying formal preparedness to exit the thesaurus/lexicon, enter into linear syntactic constructions, and, finally, acquire communicative functionality. It is proposed that there is an inverse relationship between Control and Syntagmatization.
    Source
    Journal of the Association for Information Science and Technology. 68(2017) no.6, S.1480-1490
  8. Hjoerland, B.: Semantics and knowledge organization (2007) 0.03
    0.02881626 = product of:
      0.0480271 = sum of:
        0.018839544 = weight(_text_:on in 1980) [ClassicSimilarity], result of:
          0.018839544 = score(doc=1980,freq=4.0), product of:
            0.109641045 = queryWeight, product of:
              2.199415 = idf(docFreq=13325, maxDocs=44218)
              0.049850095 = queryNorm
            0.1718293 = fieldWeight in 1980, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              2.199415 = idf(docFreq=13325, maxDocs=44218)
              0.0390625 = fieldNorm(doc=1980)
        0.016973123 = weight(_text_:information in 1980) [ClassicSimilarity], result of:
          0.016973123 = score(doc=1980,freq=8.0), product of:
            0.08751074 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.049850095 = queryNorm
            0.19395474 = fieldWeight in 1980, product of:
              2.828427 = tf(freq=8.0), with freq of:
                8.0 = termFreq=8.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.0390625 = fieldNorm(doc=1980)
        0.012214432 = product of:
          0.024428863 = sum of:
            0.024428863 = weight(_text_:technology in 1980) [ClassicSimilarity], result of:
              0.024428863 = score(doc=1980,freq=2.0), product of:
                0.14847288 = queryWeight, product of:
                  2.978387 = idf(docFreq=6114, maxDocs=44218)
                  0.049850095 = queryNorm
                0.16453418 = fieldWeight in 1980, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  2.978387 = idf(docFreq=6114, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=1980)
          0.5 = coord(1/2)
      0.6 = coord(3/5)
    
    Abstract
    The aim of this chapter is to demonstrate that semantic issues underlie all research questions within Library and Information Science (LIS, or, as hereafter, IS) and, in particular, the subfield known as Knowledge Organization (KO). Further, it seeks to show that semantics is a field influenced by conflicting views and discusses why it is important to argue for the most fruitful one of these. Moreover, the chapter demonstrates that IS has not yet addressed semantic problems in systematic fashion and examines why the field is very fragmented and without a proper theoretical basis. The focus here is on broad interdisciplinary issues and the long-term perspective. The theoretical problems involving semantics and concepts are very complicated. Therefore, this chapter starts by considering tools developed in KO for information retrieval (IR) as basically semantic tools. In this way, it establishes a specific IS focus on the relation between KO and semantics. It is well known that thesauri consist of a selection of concepts supplemented with information about their semantic relations (such as generic relations or "associative relations"). Some words in thesauri are "preferred terms" (descriptors), whereas others are "lead-in terms." The descriptors represent concepts. The difference between "a word" and "a concept" is that different words may have the same meaning and similar words may have different meanings, whereas one concept expresses one meaning.
    Source
    Annual review of information science and technology. 41(2007), S.367-405
  9. Kobrin, R.Y.: On the principles of terminological work in the creation of thesauri for information retrieval systems (1979) 0.02
    0.024425104 = product of:
      0.06106276 = sum of:
        0.03730039 = weight(_text_:on in 2954) [ClassicSimilarity], result of:
          0.03730039 = score(doc=2954,freq=2.0), product of:
            0.109641045 = queryWeight, product of:
              2.199415 = idf(docFreq=13325, maxDocs=44218)
              0.049850095 = queryNorm
            0.34020463 = fieldWeight in 2954, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              2.199415 = idf(docFreq=13325, maxDocs=44218)
              0.109375 = fieldNorm(doc=2954)
        0.023762373 = weight(_text_:information in 2954) [ClassicSimilarity], result of:
          0.023762373 = score(doc=2954,freq=2.0), product of:
            0.08751074 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.049850095 = queryNorm
            0.27153665 = fieldWeight in 2954, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.109375 = fieldNorm(doc=2954)
      0.4 = coord(2/5)
    
  10. Mikacic, M.: Statistical system for subject designation (SSSD) for libraries in Croatia (1996) 0.02
    0.02380836 = product of:
      0.0595209 = sum of:
        0.02131451 = weight(_text_:on in 2943) [ClassicSimilarity], result of:
          0.02131451 = score(doc=2943,freq=2.0), product of:
            0.109641045 = queryWeight, product of:
              2.199415 = idf(docFreq=13325, maxDocs=44218)
              0.049850095 = queryNorm
            0.19440265 = fieldWeight in 2943, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              2.199415 = idf(docFreq=13325, maxDocs=44218)
              0.0625 = fieldNorm(doc=2943)
        0.03820639 = product of:
          0.07641278 = sum of:
            0.07641278 = weight(_text_:22 in 2943) [ClassicSimilarity], result of:
              0.07641278 = score(doc=2943,freq=4.0), product of:
                0.17456654 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.049850095 = queryNorm
                0.4377287 = fieldWeight in 2943, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0625 = fieldNorm(doc=2943)
          0.5 = coord(1/2)
      0.4 = coord(2/5)
    
    Abstract
    Describes the developments of the Statistical System for Subject Designation (SSSD): a syntactical system for subject designation for libraries in Croatia, based on the construction of subject headings in agreement with the theory of the sentence nature of subject headings. The discussion is preceded by a brief summary of theories underlying basic principles and fundamental rules of the alphabetical subject catalogue
    Date
    31. 7.2006 14:22:21
    Source
    Cataloging and classification quarterly. 22(1996) no.1, S.77-93
  11. Mooers, C.N.: ¬The indexing language of an information retrieval system (1985) 0.02
    0.021048157 = product of:
      0.052620392 = sum of:
        0.011881187 = weight(_text_:information in 3644) [ClassicSimilarity], result of:
          0.011881187 = score(doc=3644,freq=8.0), product of:
            0.08751074 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.049850095 = queryNorm
            0.13576832 = fieldWeight in 3644, product of:
              2.828427 = tf(freq=8.0), with freq of:
                8.0 = termFreq=8.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.02734375 = fieldNorm(doc=3644)
        0.040739205 = sum of:
          0.017100206 = weight(_text_:technology in 3644) [ClassicSimilarity], result of:
            0.017100206 = score(doc=3644,freq=2.0), product of:
              0.14847288 = queryWeight, product of:
                2.978387 = idf(docFreq=6114, maxDocs=44218)
                0.049850095 = queryNorm
              0.115173936 = fieldWeight in 3644, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                2.978387 = idf(docFreq=6114, maxDocs=44218)
                0.02734375 = fieldNorm(doc=3644)
          0.023639 = weight(_text_:22 in 3644) [ClassicSimilarity], result of:
            0.023639 = score(doc=3644,freq=2.0), product of:
              0.17456654 = queryWeight, product of:
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.049850095 = queryNorm
              0.1354154 = fieldWeight in 3644, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.02734375 = fieldNorm(doc=3644)
      0.4 = coord(2/5)
    
    Abstract
    Calvin Mooers' work toward the resolution of the problem of ambiguity in indexing went unrecognized for years. At the time he introduced the "descriptor" - a term with a very distinct meaning-indexers were, for the most part, taking index terms directly from the document, without either rationalizing them with context or normalizing them with some kind of classification. It is ironic that Mooers' term came to be attached to the popular but unsophisticated indexing methods which he was trying to root out. Simply expressed, what Mooers did was to take the dictionary definitions of terms and redefine them so clearly that they could not be used in any context except that provided by the new definition. He did, at great pains, construct such meanings for over four hundred words; disambiguation and specificity were sought after and found for these words. He proposed that all indexers adopt this method so that when the index supplied a term, it also supplied the exact meaning for that term as used in the indexed document. The same term used differently in another document would be defined differently and possibly renamed to avoid ambiguity. The disambiguation was achieved by using unabridged dictionaries and other sources of defining terminology. In practice, this tends to produce circularity in definition, that is, word A refers to word B which refers to word C which refers to word A. It was necessary, therefore, to break this chain by creating a new, definitive meaning for each word. Eventually, means such as those used by Austin (q.v.) for PRECIS achieved the same purpose, but by much more complex means than just creating a unique definition of each term. Mooers, however, was probably the first to realize how confusing undefined terminology could be. Early automatic indexers dealt with distinct disciplines and, as long as they did not stray beyond disciplinary boundaries, a quick and dirty keyword approach was satisfactory. The trouble came when attempts were made to make a combined index for two or more distinct disciplines. A number of processes have since been developed, mostly involving tagging of some kind or use of strings. Mooers' solution has rarely been considered seriously and probably would be extremely difficult to apply now because of so much interdisciplinarity. But for a specific, weIl defined field, it is still weIl worth considering. Mooers received training in mathematics and physics from the University of Minnesota and the Massachusetts Institute of Technology. He was the founder of Zator Company, which developed and marketed a coded card information retrieval system, and of Rockford Research, Inc., which engages in research in information science. He is the inventor of the TRAC computer language.
    Footnote
    Original in: Information retrieval today: papers presented at an Institute conducted by the Library School and the Center for Continuation Study, University of Minnesota, Sept. 19-22, 1962. Ed. by Wesley Simonton. Minneapolis, Minn.: The Center, 1963. S.21-36.
  12. Fugmann, R.: ¬The analytico-synthetic foundation for large indexing & information retrieval systems : dedicated to Prof. Dr. Werner Schultheis, the vigorous initiator of modern chem. documentation in Germany on the occasion of his 85th birthday (1983) 0.02
    0.020670783 = product of:
      0.051676955 = sum of:
        0.02131451 = weight(_text_:on in 215) [ClassicSimilarity], result of:
          0.02131451 = score(doc=215,freq=2.0), product of:
            0.109641045 = queryWeight, product of:
              2.199415 = idf(docFreq=13325, maxDocs=44218)
              0.049850095 = queryNorm
            0.19440265 = fieldWeight in 215, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              2.199415 = idf(docFreq=13325, maxDocs=44218)
              0.0625 = fieldNorm(doc=215)
        0.030362446 = weight(_text_:information in 215) [ClassicSimilarity], result of:
          0.030362446 = score(doc=215,freq=10.0), product of:
            0.08751074 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.049850095 = queryNorm
            0.3469568 = fieldWeight in 215, product of:
              3.1622777 = tf(freq=10.0), with freq of:
                10.0 = termFreq=10.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.0625 = fieldNorm(doc=215)
      0.4 = coord(2/5)
    
    LCSH
    Information retrieval
    RSWK
    Information und Dokumentation / Systemgrundlage (BVB)
    Subject
    Information und Dokumentation / Systemgrundlage (BVB)
    Information retrieval
  13. Mai, J.-E.: Actors, domains, and constraints in the design and construction of controlled vocabularies (2008) 0.02
    0.018704424 = product of:
      0.04676106 = sum of:
        0.029787935 = weight(_text_:on in 1921) [ClassicSimilarity], result of:
          0.029787935 = score(doc=1921,freq=10.0), product of:
            0.109641045 = queryWeight, product of:
              2.199415 = idf(docFreq=13325, maxDocs=44218)
              0.049850095 = queryNorm
            0.271686 = fieldWeight in 1921, product of:
              3.1622777 = tf(freq=10.0), with freq of:
                10.0 = termFreq=10.0
              2.199415 = idf(docFreq=13325, maxDocs=44218)
              0.0390625 = fieldNorm(doc=1921)
        0.016973123 = weight(_text_:information in 1921) [ClassicSimilarity], result of:
          0.016973123 = score(doc=1921,freq=8.0), product of:
            0.08751074 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.049850095 = queryNorm
            0.19395474 = fieldWeight in 1921, product of:
              2.828427 = tf(freq=8.0), with freq of:
                8.0 = termFreq=8.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.0390625 = fieldNorm(doc=1921)
      0.4 = coord(2/5)
    
    Abstract
    Classification schemes, thesauri, taxonomies, and other controlled vocabularies play important roles in the organization and retrieval of information in many different environments. While the design and construction of controlled vocabularies have been prescribed at the technical level in great detail over the past decades, the methodological level has been somewhat neglected. However, classification research has in recent years focused on developing approaches to the analysis of users, domains, and activities that could produce requirements for the design of controlled vocabularies. Researchers have often argued that the design, construction, and use of controlled vocabularies need to be based on analyses and understandings of the contexts in which these controlled vocabularies function. While one would assume that the growing body of research on human information behavior might help guide the development of controlled vocabularies shed light on these contexts, unfortunately, much of the research in this area is descriptive in nature and of little use for systems design. This paper discusses these trends and outlines a holistic approach that demonstrates how the design of controlled vocabularies can be informed by investigations of people's interactions with information. This approach is based on the Cognitive Work Analysis framework and outlines several dimensions of human-information interactions. Application of this approach will result is a comprehensive understanding of the contexts in which the controlled vocabulary will function and which can be used for the development of for the development of controlled vocabularies.
  14. Mazzocchi, F.; Plini, P.: Refining thesaurus relational structure : implications and opportunities (2008) 0.02
    0.018403849 = product of:
      0.092019245 = sum of:
        0.092019245 = weight(_text_:section in 5448) [ClassicSimilarity], result of:
          0.092019245 = score(doc=5448,freq=2.0), product of:
            0.26305357 = queryWeight, product of:
              5.276892 = idf(docFreq=613, maxDocs=44218)
              0.049850095 = queryNorm
            0.34981182 = fieldWeight in 5448, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              5.276892 = idf(docFreq=613, maxDocs=44218)
              0.046875 = fieldNorm(doc=5448)
      0.2 = coord(1/5)
    
    Source
    Kompatibilität, Medien und Ethik in der Wissensorganisation - Compatibility, Media and Ethics in Knowledge Organization: Proceedings der 10. Tagung der Deutschen Sektion der Internationalen Gesellschaft für Wissensorganisation Wien, 3.-5. Juli 2006 - Proceedings of the 10th Conference of the German Section of the International Society of Knowledge Organization Vienna, 3-5 July 2006. Ed.: H.P. Ohly, S. Netscher u. K. Mitgutsch
  15. Melton, J.S.: ¬A use for the techniques of structural linguistics in documentation research (1965) 0.02
    0.017488709 = product of:
      0.04372177 = sum of:
        0.03014327 = weight(_text_:on in 834) [ClassicSimilarity], result of:
          0.03014327 = score(doc=834,freq=4.0), product of:
            0.109641045 = queryWeight, product of:
              2.199415 = idf(docFreq=13325, maxDocs=44218)
              0.049850095 = queryNorm
            0.27492687 = fieldWeight in 834, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              2.199415 = idf(docFreq=13325, maxDocs=44218)
              0.0625 = fieldNorm(doc=834)
        0.013578499 = weight(_text_:information in 834) [ClassicSimilarity], result of:
          0.013578499 = score(doc=834,freq=2.0), product of:
            0.08751074 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.049850095 = queryNorm
            0.1551638 = fieldWeight in 834, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.0625 = fieldNorm(doc=834)
      0.4 = coord(2/5)
    
    Abstract
    Index language (the system of symbols for representing subject content after analysis) is considered as a separate component and a variable in an information retrieval system. It is suggested that for purposes of testing, comparing and evaluating index language, the techniques of structural linguistics may provide a descriptive methodology by which all such languages (hierarchical and faceted classification, analytico-synthetic indexing, traditional subject indexing, indexes and classifications based on automatic text analysis, etc.) could be described in term of a linguistic model, and compared on a common basis
  16. Vickery, B.C.: Structure and function in retrieval languages (1997) 0.02
    0.017488709 = product of:
      0.04372177 = sum of:
        0.03014327 = weight(_text_:on in 572) [ClassicSimilarity], result of:
          0.03014327 = score(doc=572,freq=4.0), product of:
            0.109641045 = queryWeight, product of:
              2.199415 = idf(docFreq=13325, maxDocs=44218)
              0.049850095 = queryNorm
            0.27492687 = fieldWeight in 572, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              2.199415 = idf(docFreq=13325, maxDocs=44218)
              0.0625 = fieldNorm(doc=572)
        0.013578499 = weight(_text_:information in 572) [ClassicSimilarity], result of:
          0.013578499 = score(doc=572,freq=2.0), product of:
            0.08751074 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.049850095 = queryNorm
            0.1551638 = fieldWeight in 572, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.0625 = fieldNorm(doc=572)
      0.4 = coord(2/5)
    
    Imprint
    The Hague : International Federation for Information and Documentation (FID)
    Source
    From classification to 'knowledge organization': Dorking revisited or 'past is prelude'. A collection of reprints to commemorate the firty year span between the Dorking Conference (First International Study Conference on Classification Research 1957) and the Sixth International Study Conference on Classification Research (London 1997). Ed.: A. Gilchrist
  17. ¬The semantics of relationships : an interdisciplinary perspective (2002) 0.02
    0.016820064 = product of:
      0.04205016 = sum of:
        0.023073634 = weight(_text_:on in 1430) [ClassicSimilarity], result of:
          0.023073634 = score(doc=1430,freq=6.0), product of:
            0.109641045 = queryWeight, product of:
              2.199415 = idf(docFreq=13325, maxDocs=44218)
              0.049850095 = queryNorm
            0.21044704 = fieldWeight in 1430, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              2.199415 = idf(docFreq=13325, maxDocs=44218)
              0.0390625 = fieldNorm(doc=1430)
        0.018976528 = weight(_text_:information in 1430) [ClassicSimilarity], result of:
          0.018976528 = score(doc=1430,freq=10.0), product of:
            0.08751074 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.049850095 = queryNorm
            0.21684799 = fieldWeight in 1430, product of:
              3.1622777 = tf(freq=10.0), with freq of:
                10.0 = termFreq=10.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.0390625 = fieldNorm(doc=1430)
      0.4 = coord(2/5)
    
    Abstract
    Work on relationships takes place in many communities, including, among others, data modeling, knowledge representation, natural language processing, linguistics, and information retrieval. Unfortunately, continued disciplinary splintering and specialization keeps any one person from being familiar with the full expanse of that work. By including contributions form experts in a variety of disciplines and backgrounds, this volume demonstrates both the parallels that inform work on relationships across a number of fields and the singular emphases that have yet to be fully embraced, The volume is organized into 3 parts: (1) Types of relationships (2) Relationships in knowledge representation and reasoning (3) Applications of relationships
    Content
    Enthält die Beiträge: Pt.1: Types of relationships: CRUDE, D.A.: Hyponymy and its varieties; FELLBAUM, C.: On the semantics of troponymy; PRIBBENOW, S.: Meronymic relationships: from classical mereology to complex part-whole relations; KHOO, C. u.a.: The many facets of cause-effect relation - Pt.2: Relationships in knowledge representation and reasoning: GREEN, R.: Internally-structured conceptual models in cognitive semantics; HOVY, E.: Comparing sets of semantic relations in ontologies; GUARINO, N., C. WELTY: Identity and subsumption; JOUIS; C.: Logic of relationships - Pt.3: Applications of relationships: EVENS, M.: Thesaural relations in information retrieval; KHOO, C., S.H. MYAENG: Identifying semantic relations in text for information retrieval and information extraction; McCRAY, A.T., O. BODENREICHER: A conceptual framework for the biiomedical domain; HETZLER, B.: Visual analysis and exploration of relationships
    Series
    Information science and knowledge management; vol.3
  18. Dietze, J.: Informationsrecherchesprache und deren Lexik : Bemerkungen zur Terminologiediskussion (1980) 0.02
    0.01637247 = product of:
      0.040931176 = sum of:
        0.015985882 = weight(_text_:on in 32) [ClassicSimilarity], result of:
          0.015985882 = score(doc=32,freq=2.0), product of:
            0.109641045 = queryWeight, product of:
              2.199415 = idf(docFreq=13325, maxDocs=44218)
              0.049850095 = queryNorm
            0.14580199 = fieldWeight in 32, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              2.199415 = idf(docFreq=13325, maxDocs=44218)
              0.046875 = fieldNorm(doc=32)
        0.024945294 = weight(_text_:information in 32) [ClassicSimilarity], result of:
          0.024945294 = score(doc=32,freq=12.0), product of:
            0.08751074 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.049850095 = queryNorm
            0.2850541 = fieldWeight in 32, product of:
              3.4641016 = tf(freq=12.0), with freq of:
                12.0 = termFreq=12.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.046875 = fieldNorm(doc=32)
      0.4 = coord(2/5)
    
    Abstract
    Information research consists of the comparison of 2 sources of information - that of formal description and content analysis and that based on the needs of the user. Information research filters identical elements from the sources by means of document and research cross-sections. Establishing such cross-sections for scientific documents and research questions is made possible by classification. Through the definition of the terms 'class' and 'classification' it becomes clear that the terms 'hierarchic classification' and 'classification' cannot be used synonymously. The basic types of information research languages are both hierarchic and non-hierarchic arising from the structure of lexicology and the paradigmatic relations of the lexicological units. The names for the lexicological units ('descriptor' and 'subject haedings') are synonymous, but it is necessary to differentiate between the terms 'descriptor language' and 'information research thesaurus'. The principles of precoordination and post-coordination as applied to word formation are unsuitable for the typification of information research languages
  19. ALA / Subcommittee on Subject Relationships/Reference Structures: Final Report to the ALCTS/CCS Subject Analysis Committee (1997) 0.02
    0.015942594 = product of:
      0.039856482 = sum of:
        0.027975295 = weight(_text_:on in 1800) [ClassicSimilarity], result of:
          0.027975295 = score(doc=1800,freq=18.0), product of:
            0.109641045 = queryWeight, product of:
              2.199415 = idf(docFreq=13325, maxDocs=44218)
              0.049850095 = queryNorm
            0.25515348 = fieldWeight in 1800, product of:
              4.2426405 = tf(freq=18.0), with freq of:
                18.0 = termFreq=18.0
              2.199415 = idf(docFreq=13325, maxDocs=44218)
              0.02734375 = fieldNorm(doc=1800)
        0.011881187 = weight(_text_:information in 1800) [ClassicSimilarity], result of:
          0.011881187 = score(doc=1800,freq=8.0), product of:
            0.08751074 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.049850095 = queryNorm
            0.13576832 = fieldWeight in 1800, product of:
              2.828427 = tf(freq=8.0), with freq of:
                8.0 = termFreq=8.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.02734375 = fieldNorm(doc=1800)
      0.4 = coord(2/5)
    
    Abstract
    The SAC Subcommittee on Subject Relationships/Reference Structures was authorized at the 1995 Midwinter Meeting and appointed shortly before Annual Conference. Its creation was one result of a discussion of how (and why) to promote the display and use of broader-term subject heading references, and its charge reads as follows: To investigate: (1) the kinds of relationships that exist between subjects, the display of which are likely to be useful to catalog users; (2) how these relationships are or could be recorded in authorities and classification formats; (3) options for how these relationships should be presented to users of online and print catalogs, indexes, lists, etc. By the summer 1996 Annual Conference, make some recommendations to SAC about how to disseminate the information and/or implement changes. At that time assess the need for additional time to investigate these issues. The Subcommittee's work on each of the imperatives in the charge was summarized in a report issued at the 1996 Annual Conference (Appendix A). Highlights of this work included the development of a taxonomy of 165 subject relationships; a demonstration that, using existing MARC coding, catalog systems could be programmed to generate references they do not currently support; and an examination of reference displays in several CD-ROM database products. Since that time, work has continued on identifying term relationships and display options; on tracking research, discussion, and implementation of subject relationships in information systems; and on compiling a list of further research needs.
    Content
    Enthält: Appendix A: Subcommittee on Subject Relationships/Reference Structures - REPORT TO THE ALCTS/CCS SUBJECT ANALYSIS COMMITTEE - July 1996 Appendix B (part 1): Taxonomy of Subject Relationships. Compiled by Dee Michel with the assistance of Pat Kuhr - June 1996 draft (alphabetical display) (Separat in: http://web2.ala.org/ala/alctscontent/CCS/committees/subjectanalysis/subjectrelations/msrscu2.pdf) Appendix B (part 2): Taxonomy of Subject Relationships. Compiled by Dee Michel with the assistance of Pat Kuhr - June 1996 draft (hierarchical display) Appendix C: Checklist of Candidate Subject Relationships for Information Retrieval. Compiled by Dee Michel, Pat Kuhr, and Jane Greenberg; edited by Greg Wool - June 1997 Appendix D: Review of Reference Displays in Selected CD-ROM Abstracts and Indexes by Harriette Hemmasi and Steven Riel Appendix E: Analysis of Relationships in Six LC Subject Authority Records by Harriette Hemmasi and Gary Strawn Appendix F: Report of a Preliminary Survey of Subject Referencing in OPACs by Gregory Wool Appendix G: LC Subject Referencing in OPACs--Why Bother? by Gregory Wool Appendix H: Research Needs on Subject Relationships and Reference Structures in Information Access compiled by Jane Greenberg and Steven Riel with contributions from Dee Michel and others edited by Gregory Wool Appendix I: Bibliography on Subject Relationships compiled mostly by Dee Michel with additional contributions from Jane Greenberg, Steven Riel, and Gregory Wool
  20. Panzer, M.: Semantische Integration heterogener und unterschiedlichsprachiger Wissensorganisationssysteme : CrissCross und jenseits (2008) 0.02
    0.015336542 = product of:
      0.07668271 = sum of:
        0.07668271 = weight(_text_:section in 4335) [ClassicSimilarity], result of:
          0.07668271 = score(doc=4335,freq=2.0), product of:
            0.26305357 = queryWeight, product of:
              5.276892 = idf(docFreq=613, maxDocs=44218)
              0.049850095 = queryNorm
            0.29150987 = fieldWeight in 4335, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              5.276892 = idf(docFreq=613, maxDocs=44218)
              0.0390625 = fieldNorm(doc=4335)
      0.2 = coord(1/5)
    
    Source
    Kompatibilität, Medien und Ethik in der Wissensorganisation - Compatibility, Media and Ethics in Knowledge Organization: Proceedings der 10. Tagung der Deutschen Sektion der Internationalen Gesellschaft für Wissensorganisation Wien, 3.-5. Juli 2006 - Proceedings of the 10th Conference of the German Section of the International Society of Knowledge Organization Vienna, 3-5 July 2006. Ed.: H.P. Ohly, S. Netscher u. K. Mitgutsch

Languages

  • e 73
  • d 9
  • f 3
  • ja 1
  • nl 1
  • More… Less…

Types

  • a 72
  • m 9
  • s 7
  • el 3
  • r 2
  • d 1
  • x 1
  • More… Less…