Search (103 results, page 1 of 6)

  • × theme_ss:"Universale Facettenklassifikationen"
  1. Aparecida Moura, M.: Emerging discursive formations, folksonomy and social semantic information spaces (SSIS) : the contributions of the theory of integrative levels in the studies carried out by the Classification Research Group (CRG) (2014) 0.03
    0.029690543 = product of:
      0.1039169 = sum of:
        0.025855081 = weight(_text_:of in 1395) [ClassicSimilarity], result of:
          0.025855081 = score(doc=1395,freq=38.0), product of:
            0.06866331 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.043909185 = queryNorm
            0.37654874 = fieldWeight in 1395, product of:
              6.164414 = tf(freq=38.0), with freq of:
                38.0 = termFreq=38.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.0390625 = fieldNorm(doc=1395)
        0.07806182 = weight(_text_:congress in 1395) [ClassicSimilarity], result of:
          0.07806182 = score(doc=1395,freq=4.0), product of:
            0.20946044 = queryWeight, product of:
              4.7703104 = idf(docFreq=1018, maxDocs=44218)
              0.043909185 = queryNorm
            0.3726805 = fieldWeight in 1395, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              4.7703104 = idf(docFreq=1018, maxDocs=44218)
              0.0390625 = fieldNorm(doc=1395)
      0.2857143 = coord(2/7)
    
    Abstract
    This paper focuses on the discursive formations emerging from the Social Semantic Information Spaces (SSIS) in light of the concept of emergence in the theory of integrative levels. The study aims to identify the opportunities and challenges of incorporating epistemological considerations in the act of acquiring knowledge into the consolidation of knowledge organization and mediation processes and devices in the emergence of phenomena. The goal was to analyze the effects of that concept on the actions of a sample of researchers registered in an emerging research domain in SSIS in order to understand this type of indexing done by the users and communities as a classification of integrating levels. The methodology was established by triangulation through social network analysis, consensus analysis and archaeology of knowledge. It was possible to conclude that there is a collective effort to settle a semantic interoperability model for the labeling of contents based on best practices regarding the description of the objects shared in SSIS.
    Footnote
    Papers from I Congress of ISKO Spain and Portugal / XI Congress ISKO Spain, 7-9 November 2013, University of Porto.
  2. Krishnamurthy, M.; Satija, M.P.; Martínez-Ávila, D.: Classification of classifications : species of library classifications (2024) 0.02
    0.021545801 = product of:
      0.0754103 = sum of:
        0.030198583 = weight(_text_:of in 1158) [ClassicSimilarity], result of:
          0.030198583 = score(doc=1158,freq=36.0), product of:
            0.06866331 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.043909185 = queryNorm
            0.43980673 = fieldWeight in 1158, product of:
              6.0 = tf(freq=36.0), with freq of:
                36.0 = termFreq=36.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.046875 = fieldNorm(doc=1158)
        0.045211717 = weight(_text_:cataloging in 1158) [ClassicSimilarity], result of:
          0.045211717 = score(doc=1158,freq=2.0), product of:
            0.17305137 = queryWeight, product of:
              3.9411201 = idf(docFreq=2334, maxDocs=44218)
              0.043909185 = queryNorm
            0.26126182 = fieldWeight in 1158, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.9411201 = idf(docFreq=2334, maxDocs=44218)
              0.046875 = fieldNorm(doc=1158)
      0.2857143 = coord(2/7)
    
    Abstract
    Acknowledging the importance of classification not only for library and information science but also for the study and mapping of the world phenomena, in this paper we revisit and systematize the main types of classifications and focus on the species of classification mainly drawing on the work of S. R. Ranganathan. We trace the evolution of library classification systems by their structures and modes of design of various shades of classification systems and make a comparative study of enumerative and faceted species of library classifications. The value of this paper is to have a picture of the whole spectrum of existing classifications, which may serve for the study of future developments and constructions of new systems. This paper updates previous works by Comaromi and Ranganathan and is also theoretically inspired by them.
    Source
    Cataloging and classification quarterly. 61(2023) no.2, p.228-248
  3. Broughton, V.: Facet analysis : the evolution of an idea (2023) 0.02
    0.02134795 = product of:
      0.07471782 = sum of:
        0.021970814 = weight(_text_:of in 1164) [ClassicSimilarity], result of:
          0.021970814 = score(doc=1164,freq=14.0), product of:
            0.06866331 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.043909185 = queryNorm
            0.31997898 = fieldWeight in 1164, product of:
              3.7416575 = tf(freq=14.0), with freq of:
                14.0 = termFreq=14.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.0546875 = fieldNorm(doc=1164)
        0.052747004 = weight(_text_:cataloging in 1164) [ClassicSimilarity], result of:
          0.052747004 = score(doc=1164,freq=2.0), product of:
            0.17305137 = queryWeight, product of:
              3.9411201 = idf(docFreq=2334, maxDocs=44218)
              0.043909185 = queryNorm
            0.30480546 = fieldWeight in 1164, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.9411201 = idf(docFreq=2334, maxDocs=44218)
              0.0546875 = fieldNorm(doc=1164)
      0.2857143 = coord(2/7)
    
    Abstract
    Facets are widely encountered in information and knowledge organization, but there is much disparity in the use and understanding of concepts such as "facet," "facet analysis," and "faceted classification." The paper traces the history of these ideas and how they have been employed in different contexts. What may be termed the classical school of faceted classification is given some prominence, through the ideas of Ranganathan and the Classification Research Group, but other interpretations are also explored. Attention is paid not only to the idea of what facet analysis is, and what purpose it serves, but also the language utilized to describe and explain it.
    Footnote
    Beitrag in Themenheft: Implementation of Faceted Vocabularies.
    Source
    Cataloging and classification quarterly. 61(2023) no.5-6, S.411-438
  4. Thomas, A.R.: Bliss Bibliographic Classification 2nd Edition : principles features and applications (1992) 0.02
    0.020882292 = product of:
      0.07308802 = sum of:
        0.02034102 = weight(_text_:of in 541) [ClassicSimilarity], result of:
          0.02034102 = score(doc=541,freq=12.0), product of:
            0.06866331 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.043909185 = queryNorm
            0.29624295 = fieldWeight in 541, product of:
              3.4641016 = tf(freq=12.0), with freq of:
                12.0 = termFreq=12.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.0546875 = fieldNorm(doc=541)
        0.052747004 = weight(_text_:cataloging in 541) [ClassicSimilarity], result of:
          0.052747004 = score(doc=541,freq=2.0), product of:
            0.17305137 = queryWeight, product of:
              3.9411201 = idf(docFreq=2334, maxDocs=44218)
              0.043909185 = queryNorm
            0.30480546 = fieldWeight in 541, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.9411201 = idf(docFreq=2334, maxDocs=44218)
              0.0546875 = fieldNorm(doc=541)
      0.2857143 = coord(2/7)
    
    Abstract
    Publication of the 2nd ed. of the Bliss Bibliographic Classification presents librarians with a fresh opportunity to reassess the nature and benefits of helpful order for their collections and records. Half the parts are now available, exhibiting major expansion, revision, and development of the scheme. The new edition is sponsored by the Bliss Classification Association which welcomes the views and inputs of American librarians. It has been applied to libraries and information centers and used in thesaurus construction. This edition provides intensive subject specifity through detailed term listings and full synthetic capability. The notation is designed to be as brief as possible for the detail attainable. The classification allows a large measure of flexibility in arrangement and syntax
    Source
    Cataloging and classification quarterly. 15(1992) no.4, S.3-17
  5. Coates, E.J.: BC2 and BSO : presentation at the 36th Allerton Institute, 1994 session on preparing traditional classifications for the future (1995) 0.02
    0.01663542 = product of:
      0.058223967 = sum of:
        0.020547535 = weight(_text_:of in 5566) [ClassicSimilarity], result of:
          0.020547535 = score(doc=5566,freq=24.0), product of:
            0.06866331 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.043909185 = queryNorm
            0.2992506 = fieldWeight in 5566, product of:
              4.8989797 = tf(freq=24.0), with freq of:
                24.0 = termFreq=24.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.0390625 = fieldNorm(doc=5566)
        0.03767643 = weight(_text_:cataloging in 5566) [ClassicSimilarity], result of:
          0.03767643 = score(doc=5566,freq=2.0), product of:
            0.17305137 = queryWeight, product of:
              3.9411201 = idf(docFreq=2334, maxDocs=44218)
              0.043909185 = queryNorm
            0.21771818 = fieldWeight in 5566, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.9411201 = idf(docFreq=2334, maxDocs=44218)
              0.0390625 = fieldNorm(doc=5566)
      0.2857143 = coord(2/7)
    
    Abstract
    This article pertains to two further general classifications, which, in contrast to the reigning classifications just mentioned, incorporate in a thoroughgoing manner a modem view of the world. One of these was announced in 1910, to a chorus of disapproval, saw the light of day as a completed scheme in 1935, fell into suspended animation after the death of its author in the 1950s, and was revived, drastically revised and expanded in England by Jack Mills in 1967. A large part of the expanded scheme has appeared in the form of separately published fascicles; the remainder mostly in the areas of science and technology are in an advanced state of preparation. I refer of course to the Bliss Bibliographic Classification. I use the expression "of course" with some slight hesitation having once met a North American library school academic who thought that Henry Evelyn Bliss was an Englishman who lived in the London inner suburb of Islington. This was an unconscious tribute to Jack Mills, though perhaps unfair to Bliss himself, not to mention America, whose son he was.
    Source
    Cataloging and classification quarterly. 21(1995) no.2, S.59-67
  6. Dahlberg, I.: ¬The future of classification in libraries and networks : a theoretical point of view (1995) 0.02
    0.016385486 = product of:
      0.057349198 = sum of:
        0.019672766 = weight(_text_:of in 5563) [ClassicSimilarity], result of:
          0.019672766 = score(doc=5563,freq=22.0), product of:
            0.06866331 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.043909185 = queryNorm
            0.28651062 = fieldWeight in 5563, product of:
              4.690416 = tf(freq=22.0), with freq of:
                22.0 = termFreq=22.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.0390625 = fieldNorm(doc=5563)
        0.03767643 = weight(_text_:cataloging in 5563) [ClassicSimilarity], result of:
          0.03767643 = score(doc=5563,freq=2.0), product of:
            0.17305137 = queryWeight, product of:
              3.9411201 = idf(docFreq=2334, maxDocs=44218)
              0.043909185 = queryNorm
            0.21771818 = fieldWeight in 5563, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.9411201 = idf(docFreq=2334, maxDocs=44218)
              0.0390625 = fieldNorm(doc=5563)
      0.2857143 = coord(2/7)
    
    Abstract
    Some time ago, some people said classification is dead, we don't need it any more. They probably thought that subject headings could do the job of the necessary subject analysis and shelving of books. However, all of a sudden in 1984 the attitude changed, when an OCLC study of Karen Markey started to show what could be done even with an "outdated system" such as the Dewey Decimal Classification in the computer, once it was visible on a screen to show the helpfulness of a classified library catalogue called an OPAC; classification was brought back into the minds of doubtful librarians and of all those who thought they would not need it any longer. But the problem once phrased: "We are stuck with the two old systems, LCC and DDC" would not find a solution and is still with us today. We know that our systems are outdated but we seem still to be unable to replace them with better ones. What then should one do and advise, knowing that we need something better? Perhaps a new universal ordering system which more adequately represents and mediates the world of our present day knowledge? If we were to develop it from scratch, how would we create it and implement it in such a way that it would be acceptable to the majority of the present intellectual world population?
    Source
    Cataloging and classification quarterly. 21(1995) no.2, S.23-35
  7. Lin, W.-Y.C.: ¬The concept and applications of faceted classifications (2006) 0.01
    0.013973103 = product of:
      0.048905857 = sum of:
        0.025109503 = weight(_text_:of in 5083) [ClassicSimilarity], result of:
          0.025109503 = score(doc=5083,freq=14.0), product of:
            0.06866331 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.043909185 = queryNorm
            0.36569026 = fieldWeight in 5083, product of:
              3.7416575 = tf(freq=14.0), with freq of:
                14.0 = termFreq=14.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.0625 = fieldNorm(doc=5083)
        0.023796353 = product of:
          0.047592707 = sum of:
            0.047592707 = weight(_text_:22 in 5083) [ClassicSimilarity], result of:
              0.047592707 = score(doc=5083,freq=2.0), product of:
                0.15376249 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.043909185 = queryNorm
                0.30952093 = fieldWeight in 5083, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0625 = fieldNorm(doc=5083)
          0.5 = coord(1/2)
      0.2857143 = coord(2/7)
    
    Abstract
    The concept of faceted classification has its long history and importance in the human civilization. Recently, more and more consumer Web sites adopt the idea of facet analysis to organize and display their products or services. The aim of this article is to review the origin and develpment of faceted classification, as well as its concepts, essence, advantage and limitation. Further, the applications of faceted classification in various domians have been explored.
    Date
    27. 5.2007 22:19:35
    Source
    Journal of educational media and library sciences. 47(2006) no.2, S.153-171
  8. Dousa, T.M.: Categories and the architectonics of system in Julius Otto Kaiser's method of systematic indexing (2014) 0.01
    0.012551808 = product of:
      0.043931324 = sum of:
        0.029058604 = weight(_text_:of in 1418) [ClassicSimilarity], result of:
          0.029058604 = score(doc=1418,freq=48.0), product of:
            0.06866331 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.043909185 = queryNorm
            0.42320424 = fieldWeight in 1418, product of:
              6.928203 = tf(freq=48.0), with freq of:
                48.0 = termFreq=48.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.0390625 = fieldNorm(doc=1418)
        0.014872721 = product of:
          0.029745443 = sum of:
            0.029745443 = weight(_text_:22 in 1418) [ClassicSimilarity], result of:
              0.029745443 = score(doc=1418,freq=2.0), product of:
                0.15376249 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.043909185 = queryNorm
                0.19345059 = fieldWeight in 1418, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=1418)
          0.5 = coord(1/2)
      0.2857143 = coord(2/7)
    
    Abstract
    Categories, or concepts of high generality representing the most basic kinds of entities in the world, have long been understood to be a fundamental element in the construction of knowledge organization systems (KOSs), particularly faceted ones. Commentators on facet analysis have tended to foreground the role of categories in the structuring of controlled vocabularies and the construction of compound index terms, and the implications of this for subject representation and information retrieval. Less attention has been paid to the variety of ways in which categories can shape the overall architectonic framework of a KOS. This case study explores the range of functions that categories took in structuring various aspects of an early analytico-synthetic KOS, Julius Otto Kaiser's method of Systematic Indexing (SI). Within SI, categories not only functioned as mechanisms to partition an index vocabulary into smaller groupings of terms and as elements in the construction of compound index terms but also served as means of defining the units of indexing, or index items, incorporated into an index; determining the organization of card index files and the articulation of the guide card system serving as a navigational aids thereto; and setting structural constraints to the establishment of cross-references between terms. In all these ways, Kaiser's system of categories contributed to the general systematicity of SI.
    Source
    Knowledge organization in the 21st century: between historical patterns and future prospects. Proceedings of the Thirteenth International ISKO Conference 19-22 May 2014, Kraków, Poland. Ed.: Wieslaw Babik
  9. Giri, K.; Gokhale, P.: Developing a banking service ontology using Protégé, an open source software (2015) 0.01
    0.012232507 = product of:
      0.04281377 = sum of:
        0.020547535 = weight(_text_:of in 2793) [ClassicSimilarity], result of:
          0.020547535 = score(doc=2793,freq=24.0), product of:
            0.06866331 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.043909185 = queryNorm
            0.2992506 = fieldWeight in 2793, product of:
              4.8989797 = tf(freq=24.0), with freq of:
                24.0 = termFreq=24.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.0390625 = fieldNorm(doc=2793)
        0.022266233 = product of:
          0.044532467 = sum of:
            0.044532467 = weight(_text_:service in 2793) [ClassicSimilarity], result of:
              0.044532467 = score(doc=2793,freq=2.0), product of:
                0.18813887 = queryWeight, product of:
                  4.284727 = idf(docFreq=1655, maxDocs=44218)
                  0.043909185 = queryNorm
                0.23669997 = fieldWeight in 2793, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  4.284727 = idf(docFreq=1655, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=2793)
          0.5 = coord(1/2)
      0.2857143 = coord(2/7)
    
    Abstract
    Computers have transformed from single isolated devices to entry points into a worldwide network of information exchange. Consequently, support in the exchange of data, information, and knowledge is becoming the key issue in computer technology today. The increasing volume of data available on the Web makes information retrieval a tedious and difficult task. Researchers are now exploring the possibility of creating a semantic web, in which meaning is made explicit, allowing machines to process and integrate web resources intelligently. The vision of the semantic web introduces the next generation of the Web by establishing a layer of machine-understandable data. The success of the semantic web depends on the easy creation, integration and use of semantic data, which will depend on web ontology. The faceted approach towards analyzing and representing knowledge given by S R Ranganathan would be useful in this regard. Ontology development in different fields is one such area where this approach given by Ranganathan could be applied. This paper presents a case of developing ontology for the field of banking.
    Source
    Annals of library and information studies. 62(2015) no.4, S.281-285
  10. Tennis, J.T.: Facets and fugit tempus : considering time's effect on faceted classification schemes (2012) 0.01
    0.012222101 = product of:
      0.042777352 = sum of:
        0.018981 = weight(_text_:of in 826) [ClassicSimilarity], result of:
          0.018981 = score(doc=826,freq=8.0), product of:
            0.06866331 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.043909185 = queryNorm
            0.27643585 = fieldWeight in 826, product of:
              2.828427 = tf(freq=8.0), with freq of:
                8.0 = termFreq=8.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.0625 = fieldNorm(doc=826)
        0.023796353 = product of:
          0.047592707 = sum of:
            0.047592707 = weight(_text_:22 in 826) [ClassicSimilarity], result of:
              0.047592707 = score(doc=826,freq=2.0), product of:
                0.15376249 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.043909185 = queryNorm
                0.30952093 = fieldWeight in 826, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0625 = fieldNorm(doc=826)
          0.5 = coord(1/2)
      0.2857143 = coord(2/7)
    
    Abstract
    Describes the effect of scheme change on the semantics in faceted classification. Two types of change are identified: ecological change and lexical change. Examples from different editions of the Colon Classification are used to illustrate change.
    Date
    2. 6.2013 18:33:22
    Source
    Categories, contexts and relations in knowledge organization: Proceedings of the Twelfth International ISKO Conference 6-9 August 2012, Mysore, India. Eds.: Neelameghan, A. u. K.S. Raghavan
  11. Heuvel, C. van den: Multidimensional classifications : past and future conceptualizations and visualizations (2012) 0.01
    0.011760809 = product of:
      0.04116283 = sum of:
        0.02034102 = weight(_text_:of in 632) [ClassicSimilarity], result of:
          0.02034102 = score(doc=632,freq=12.0), product of:
            0.06866331 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.043909185 = queryNorm
            0.29624295 = fieldWeight in 632, product of:
              3.4641016 = tf(freq=12.0), with freq of:
                12.0 = termFreq=12.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.0546875 = fieldNorm(doc=632)
        0.02082181 = product of:
          0.04164362 = sum of:
            0.04164362 = weight(_text_:22 in 632) [ClassicSimilarity], result of:
              0.04164362 = score(doc=632,freq=2.0), product of:
                0.15376249 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.043909185 = queryNorm
                0.2708308 = fieldWeight in 632, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=632)
          0.5 = coord(1/2)
      0.2857143 = coord(2/7)
    
    Abstract
    This paper maps the concepts "space" and "dimensionality" in classifications, in particular in visualizations hereof, from a historical perspective. After a historical excursion in the domain of classification theory of what in mathematics is known as dimensionality reduction in representations of a single universe of knowledge, its potentiality will be explored for information retrieval and navigation in the multiverse of the World Wide Web.
    Content
    This paper is an adaptation and augmented version of a paper presented at the NASKO 2011 conference: Charles van den Heuvel. 2011. Multidimensional classifications: Past and future conceptualizations and visualizations. In Smiraglia, Richard P., ed. Proceedings from North American Symposium on Knowledge Organization, Vol. 3. Toronto, Canada, pp. 105-21. Vgl.: http://www.ergon-verlag.de/isko_ko/downloads/ko_39_2012_6_e.pdf.
    Date
    22. 2.2013 11:31:25
  12. Dousa, T.M.; Ibekwe-SanJuan, F.: Epistemological and methodological eclecticism in the construction of knowledge organization systems (KOSs) : the case of analytico-synthetic KOSs (2014) 0.01
    0.011236909 = product of:
      0.03932918 = sum of:
        0.024456458 = weight(_text_:of in 1417) [ClassicSimilarity], result of:
          0.024456458 = score(doc=1417,freq=34.0), product of:
            0.06866331 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.043909185 = queryNorm
            0.35617945 = fieldWeight in 1417, product of:
              5.8309517 = tf(freq=34.0), with freq of:
                34.0 = termFreq=34.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.0390625 = fieldNorm(doc=1417)
        0.014872721 = product of:
          0.029745443 = sum of:
            0.029745443 = weight(_text_:22 in 1417) [ClassicSimilarity], result of:
              0.029745443 = score(doc=1417,freq=2.0), product of:
                0.15376249 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.043909185 = queryNorm
                0.19345059 = fieldWeight in 1417, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=1417)
          0.5 = coord(1/2)
      0.2857143 = coord(2/7)
    
    Abstract
    In recent years, Hjørland has developed a typology of basic epistemological approaches to KO that identifies four basic positions - empiricism, rationalism, historicism/hermeneutics, and pragmatism -with which to characterize the epistemological bases and methodological orientation of KOSs. Although scholars of KO have noted that the design of a single KOS may incorporate epistemological-methodological features from more than one of these approaches, studies of concrete examples of epistemologico-methodological eclecticism have been rare. In this paper, we consider the phenomenon of epistemologico-methodological eclecticism in one theoretically significant family of KOSs - namely analytico-synthetic, or faceted, KOSs - by examining two cases - Julius Otto Kaiser's method of Systematic Indexing (SI) and Brian Vickery's method of facet analysis (FA) for document classification. We show that both of these systems combined classical features of rationalism with elements of empiricism and pragmatism and argue that such eclecticism is the norm, rather than the exception, for such KOSs in general.
    Source
    Knowledge organization in the 21st century: between historical patterns and future prospects. Proceedings of the Thirteenth International ISKO Conference 19-22 May 2014, Kraków, Poland. Ed.: Wieslaw Babik
  13. Gnoli, C.; Merli, G.; Pavan, G.; Bernuzzi, E.; Priano, M.: Freely faceted classification for a Web-based bibliographic archive : the BioAcoustic Reference Database (2010) 0.01
    0.009042775 = product of:
      0.031649712 = sum of:
        0.016776992 = weight(_text_:of in 3739) [ClassicSimilarity], result of:
          0.016776992 = score(doc=3739,freq=16.0), product of:
            0.06866331 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.043909185 = queryNorm
            0.24433708 = fieldWeight in 3739, product of:
              4.0 = tf(freq=16.0), with freq of:
                16.0 = termFreq=16.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.0390625 = fieldNorm(doc=3739)
        0.014872721 = product of:
          0.029745443 = sum of:
            0.029745443 = weight(_text_:22 in 3739) [ClassicSimilarity], result of:
              0.029745443 = score(doc=3739,freq=2.0), product of:
                0.15376249 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.043909185 = queryNorm
                0.19345059 = fieldWeight in 3739, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=3739)
          0.5 = coord(1/2)
      0.2857143 = coord(2/7)
    
    Abstract
    The Integrative Level Classification (ILC) research project is experimenting with a knowledge organization system based on phenomena rather than disciplines. Each phenomenon has a constant notation, which can be combined with that of any other phenomenon in a freely faceted structure. Citation order can express differential focality of the facets. Very specific subjects can have long classmarks, although their complexity is reduced by various devices. Freely faceted classification is being tested by indexing a corpus of about 3300 papers in the interdisciplinary domain of bioacoustics. The subjects of these papers often include phenomena from a wide variety of integrative levels (mechanical waves, animals, behaviour, vessels, fishing, law, ...) as well as information about the methods of study, as predicted in the León Manifesto. The archive is recorded in a MySQL database, and can be fed and searched through PHP Web interfaces. Indexer's work is made easier by mechanisms that suggest possible classes on the basis of matching title words with terms in the ILC schedules, and synthesize automatically the verbal caption corresponding to the classmark being edited. Users can search the archive by selecting and combining values in each facet. Search refinement should be improved, especially for the cases where no record, or too many records, match the faceted query. However, experience is being gained progressively, showing that freely faceted classification by phenomena, theories, and methods is feasible and successfully working.
    Source
    Wissensspeicher in digitalen Räumen: Nachhaltigkeit - Verfügbarkeit - semantische Interoperabilität. Proceedings der 11. Tagung der Deutschen Sektion der Internationalen Gesellschaft für Wissensorganisation, Konstanz, 20. bis 22. Februar 2008. Hrsg.: J. Sieglerschmidt u. H.P.Ohly
  14. Perugini, S.: Supporting multiple paths to objects in information hierarchies : faceted classification, faceted search, and symbolic links (2010) 0.01
    0.008321714 = product of:
      0.029125996 = sum of:
        0.008304187 = weight(_text_:of in 4227) [ClassicSimilarity], result of:
          0.008304187 = score(doc=4227,freq=2.0), product of:
            0.06866331 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.043909185 = queryNorm
            0.120940685 = fieldWeight in 4227, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.0546875 = fieldNorm(doc=4227)
        0.02082181 = product of:
          0.04164362 = sum of:
            0.04164362 = weight(_text_:22 in 4227) [ClassicSimilarity], result of:
              0.04164362 = score(doc=4227,freq=2.0), product of:
                0.15376249 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.043909185 = queryNorm
                0.2708308 = fieldWeight in 4227, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=4227)
          0.5 = coord(1/2)
      0.2857143 = coord(2/7)
    
    Abstract
    We present three fundamental, interrelated approaches to support multiple access paths to each terminal object in information hierarchies: faceted classification, faceted search, and web directories with embedded symbolic links. This survey aims to demonstrate how each approach supports users who seek information from multiple perspectives. We achieve this by exploring each approach, the relationships between these approaches, including tradeoffs, and how they can be used in concert, while focusing on a core set of hypermedia elements common to all. This approach provides a foundation from which to study, understand, and synthesize applications which employ these techniques. This survey does not aim to be comprehensive, but rather focuses on thematic issues.
    Source
    Information processing and management. 46(2010) no.1, S.22-43
  15. Dahlberg, I.: Principles for the construction of a universal classification system : a proposal (1978) 0.00
    0.00474525 = product of:
      0.03321675 = sum of:
        0.03321675 = weight(_text_:of in 67) [ClassicSimilarity], result of:
          0.03321675 = score(doc=67,freq=8.0), product of:
            0.06866331 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.043909185 = queryNorm
            0.48376274 = fieldWeight in 67, product of:
              2.828427 = tf(freq=8.0), with freq of:
                8.0 = termFreq=8.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.109375 = fieldNorm(doc=67)
      0.14285715 = coord(1/7)
    
    Source
    Conceptual basis of the classification of knowledge. Proc. of the Ottawa Conf. ... 1.5.10.1971. Ed. by J.A. Wojciechowski
  16. Dahlberg, I.: Grundlagen universaler Wissensordnung : Probleme und Möglichkeiten eines universalen Klassifikationssystems des Wissens (1974) 0.00
    0.0042493492 = product of:
      0.029745443 = sum of:
        0.029745443 = product of:
          0.059490886 = sum of:
            0.059490886 = weight(_text_:22 in 127) [ClassicSimilarity], result of:
              0.059490886 = score(doc=127,freq=2.0), product of:
                0.15376249 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.043909185 = queryNorm
                0.38690117 = fieldWeight in 127, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.078125 = fieldNorm(doc=127)
          0.5 = coord(1/2)
      0.14285715 = coord(1/7)
    
    Footnote
    Zugleich Dissertation Univ. Düsseldorf. - Rez. in: ZfBB. 22(1975) S.53-57 (H.-A. Koch)
  17. Mills, J.: Faceted classification and logical division in information retrieval (2004) 0.00
    0.003938202 = product of:
      0.027567413 = sum of:
        0.027567413 = weight(_text_:of in 831) [ClassicSimilarity], result of:
          0.027567413 = score(doc=831,freq=30.0), product of:
            0.06866331 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.043909185 = queryNorm
            0.4014868 = fieldWeight in 831, product of:
              5.477226 = tf(freq=30.0), with freq of:
                30.0 = termFreq=30.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.046875 = fieldNorm(doc=831)
      0.14285715 = coord(1/7)
    
    Abstract
    The main object of the paper is to demonstrate in detail the role of classification in information retrieval (IR) and the design of classificatory structures by the application of logical division to all forms of the content of records, subject and imaginative. The natural product of such division is a faceted classification. The latter is seen not as a particular kind of library classification but the only viable form enabling the locating and relating of information to be optimally predictable. A detailed exposition of the practical steps in facet analysis is given, drawing on the experience of the new Bliss Classification (BC2). The continued existence of the library as a highly organized information store is assumed. But, it is argued, it must acknowledge the relevance of the revolution in library classification that has taken place. It considers also how alphabetically arranged subject indexes may utilize controlled use of categorical (generically inclusive) and syntactic relations to produce similarly predictable locating and relating systems for IR.
    Footnote
    Artikel in einem Themenheft: The philosophy of information
  18. Hudon, M.: Facet (2020) 0.00
    0.003934554 = product of:
      0.027541874 = sum of:
        0.027541874 = weight(_text_:of in 5899) [ClassicSimilarity], result of:
          0.027541874 = score(doc=5899,freq=22.0), product of:
            0.06866331 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.043909185 = queryNorm
            0.40111488 = fieldWeight in 5899, product of:
              4.690416 = tf(freq=22.0), with freq of:
                22.0 = termFreq=22.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.0546875 = fieldNorm(doc=5899)
      0.14285715 = coord(1/7)
    
    Abstract
    S.R. Ranganathan is credited with the introduction of the term "facet" in the field of knowledge organization towards the middle of the twentieth century. Facets have traditionally been used to organize document collections and to express complex subjects. In the digital world, they act as filters to facilitate navigation and improve retrieval. But the popularity of the term does not mean that a definitive characterization of the concept has been established. Indeed, several conceptualizations of the facet co-exist. This article provides an overview of formal and informal definitions found in the literature of knowledge organization, followed by a discussion of four common conceptualizations of the facet: process vs product, nature vs function, object vs subject and organization vs navigation.
    Series
    Reviews of concepts in knowledge organization
  19. Gnoli, C.: Categories and facets in integrative levels (2008) 0.00
    0.0038046641 = product of:
      0.026632648 = sum of:
        0.026632648 = weight(_text_:of in 1806) [ClassicSimilarity], result of:
          0.026632648 = score(doc=1806,freq=28.0), product of:
            0.06866331 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.043909185 = queryNorm
            0.38787308 = fieldWeight in 1806, product of:
              5.2915025 = tf(freq=28.0), with freq of:
                28.0 = termFreq=28.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.046875 = fieldNorm(doc=1806)
      0.14285715 = coord(1/7)
    
    Abstract
    Facets and general categories used in bibliographic classification have been based on a disciplinary organization of knowledge. However, facets and categories of phenomena independent from disciplines can be identified similarly. Phenomena can be classified according to a series of integrative levels (layers), which in turn can be grouped into the major strata of form, matter, life, mind, society and culture, agreeing with Nicolai Hartmann's ontology. Unlike a layer, a stratum is not constituted of elements of the lower ones; rather, it represents the formal pattern of the lower ones, like the horse hoof represents the shape of the steppe. Bibliographic categories can now be seen in the light of level theory: some categories are truly general, while others only appear at a given level, being the realization of a general category in the specific context of the level: these are the facets of that level. In the notation of the Integrative Level Classification project, categories and facets are represented by digits, and displayed in a Web interface with the help of colours.
  20. Dutta, B.: Ranganathan's elucidation of subject in the light of 'Infinity (8)' (2015) 0.00
    0.0037895362 = product of:
      0.026526753 = sum of:
        0.026526753 = weight(_text_:of in 2794) [ClassicSimilarity], result of:
          0.026526753 = score(doc=2794,freq=40.0), product of:
            0.06866331 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.043909185 = queryNorm
            0.38633084 = fieldWeight in 2794, product of:
              6.3245554 = tf(freq=40.0), with freq of:
                40.0 = termFreq=40.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.0390625 = fieldNorm(doc=2794)
      0.14285715 = coord(1/7)
    
    Abstract
    This paper reviews Ranganathan's description of subject from mathematical angle. Ranganathan was highly influenced by Nineteenth Century mathematician George Cantor and he used the concept of infinity in developing an axiomatic interpretation of subject. Majority of library scientists interpreted the concept of subject merely as a term or descriptor or heading to include the same in cataloguing and subject indexing. Some library scientists interpreted subject on the basis of document, i.e. from the angle of the concept of aboutness or epistemological potential of the document etc. Some people explained subject from the viewpoint of social, cultural or socio-cultural process. Attempts were made to describe subject from epistemological viewpoint. But S R Ranganathan was the first to develop an axiomatic concept of subject on its own. He built up an independent idea of subject that is ubiquitously pervasive with human cognition process. To develop the basic foundation of subject, he used the mathematical concepts of infinity and infinitesimal and construed the set of subjects or universe of subjects as continuous infinite universe. The subject may also exist in extremely micro-form, which was termed as spot subject and analogized with point, which is dimensionless having only an existence. The influence of Twentieth Century physicist George Gamow on Ranganathan's thought has also been discussed.
    Source
    Annals of library and information studies. 62(2015) no.4, S.255-264

Languages

  • e 101
  • chi 1
  • d 1
  • More… Less…

Types

  • a 85
  • el 10
  • m 10
  • s 4
  • b 2
  • More… Less…