Search (13 results, page 1 of 1)

  • × author_ss:"Greenberg, J."
  • × year_i:[2000 TO 2010}
  1. Greenberg, J.: Metadata and digital information (2009) 0.04
    0.043494053 = product of:
      0.08698811 = sum of:
        0.02059882 = weight(_text_:information in 4697) [ClassicSimilarity], result of:
          0.02059882 = score(doc=4697,freq=8.0), product of:
            0.08850355 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.050415643 = queryNorm
            0.23274569 = fieldWeight in 4697, product of:
              2.828427 = tf(freq=8.0), with freq of:
                8.0 = termFreq=8.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.046875 = fieldNorm(doc=4697)
        0.066389285 = weight(_text_:standards in 4697) [ClassicSimilarity], result of:
          0.066389285 = score(doc=4697,freq=2.0), product of:
            0.22470023 = queryWeight, product of:
              4.4569545 = idf(docFreq=1393, maxDocs=44218)
              0.050415643 = queryNorm
            0.29545712 = fieldWeight in 4697, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.4569545 = idf(docFreq=1393, maxDocs=44218)
              0.046875 = fieldNorm(doc=4697)
      0.5 = coord(2/4)
    
    Abstract
    The range of metadata activity over this last decade is both extensive and astonishing, and substantiates metadata as an integral part of our digital information infrastructure. This entry begins with a brief history of metadata relating to digital information, followed by an overview of different metadata types, functions, and domain-specific definitions. Next, the family of standards comprising a metadata architecture are defined, followed by an overview of metadata generation processes, applications, and people: this latter section gives particular attention to automatic metadata generation approaches. The following section explores four key metadata models. The conclusion summarizes the entry, highlights a number of significant metadata challenges, and notes efforts underway to address metadata challenges in the new millennium.
    Source
    Encyclopedia of library and information sciences. 3rd ed. Ed.: M.J. Bates
  2. Greenberg, J.; Pattuelli, M.; Parsia, B.; Robertson, W.: Author-generated Dublin Core Metadata for Web Resources : A Baseline Study in an Organization (2002) 0.03
    0.026284594 = product of:
      0.05256919 = sum of:
        0.017165681 = weight(_text_:information in 1281) [ClassicSimilarity], result of:
          0.017165681 = score(doc=1281,freq=2.0), product of:
            0.08850355 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.050415643 = queryNorm
            0.19395474 = fieldWeight in 1281, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.078125 = fieldNorm(doc=1281)
        0.035403505 = product of:
          0.07080701 = sum of:
            0.07080701 = weight(_text_:organization in 1281) [ClassicSimilarity], result of:
              0.07080701 = score(doc=1281,freq=2.0), product of:
                0.17974974 = queryWeight, product of:
                  3.5653565 = idf(docFreq=3399, maxDocs=44218)
                  0.050415643 = queryNorm
                0.39391994 = fieldWeight in 1281, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5653565 = idf(docFreq=3399, maxDocs=44218)
                  0.078125 = fieldNorm(doc=1281)
          0.5 = coord(1/2)
      0.5 = coord(2/4)
    
    Source
    Journal of digital information. 2(2002) no.2,
  3. Shoffner, M.; Greenberg, J.; Kramer-Duffield, J.; Woodbury, D.: Web 2.0 semantic systems : collaborative learning in science (2008) 0.01
    0.011685811 = product of:
      0.023371622 = sum of:
        0.009710376 = weight(_text_:information in 2661) [ClassicSimilarity], result of:
          0.009710376 = score(doc=2661,freq=4.0), product of:
            0.08850355 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.050415643 = queryNorm
            0.10971737 = fieldWeight in 2661, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.03125 = fieldNorm(doc=2661)
        0.013661247 = product of:
          0.027322493 = sum of:
            0.027322493 = weight(_text_:22 in 2661) [ClassicSimilarity], result of:
              0.027322493 = score(doc=2661,freq=2.0), product of:
                0.17654699 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.050415643 = queryNorm
                0.15476047 = fieldWeight in 2661, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.03125 = fieldNorm(doc=2661)
          0.5 = coord(1/2)
      0.5 = coord(2/4)
    
    Abstract
    The basic goal of education within a discipline is to transform a novice into an expert. This entails moving the novice toward the "semantic space" that the expert inhabits-the space of concepts, meanings, vocabularies, and other intellectual constructs that comprise the discipline. Metadata is significant to this goal in digitally mediated education environments. Encoding the experts' semantic space not only enables the sharing of semantics among discipline scientists, but also creates an environment that bridges the semantic gap between the common vocabulary of the novice and the granular descriptive language of the seasoned scientist (Greenberg, et al, 2005). Developments underlying the Semantic Web, where vocabularies are formalized in the Web Ontology Language (OWL), and Web 2.0 approaches of user-generated folksonomies provide an infrastructure for linking vocabulary systems and promoting group learning via metadata literacy. Group learning is a pedagogical approach to teaching that harnesses the phenomenon of "collective intelligence" to increase learning by means of collaboration. Learning a new semantic system can be daunting for a novice, and yet it is integral to advance one's knowledge in a discipline and retain interest. These ideas are key to the "BOT 2.0: Botany through Web 2.0, the Memex and Social Learning" project (Bot 2.0).72 Bot 2.0 is a collaboration involving the North Carolina Botanical Garden, the UNC SILS Metadata Research center, and the Renaissance Computing Institute (RENCI). Bot 2.0 presents a curriculum utilizing a memex as a way for students to link and share digital information, working asynchronously in an environment beyond the traditional classroom. Our conception of a memex is not a centralized black box but rather a flexible, distributed framework that uses the most salient and easiest-to-use collaborative platforms (e.g., Facebook, Flickr, wiki and blog technology) for personal information management. By meeting students "where they live" digitally, we hope to attract students to the study of botanical science. A key aspect is to teach students scientific terminology and about the value of metadata, an inherent function in several of the technologies and in the instructional approach we are utilizing. This poster will report on a study examining the value of both folksonomies and taxonomies for post-secondary college students learning plant identification. Our data is drawn from a curriculum involving a virtual independent learning portion and a "BotCamp" weekend at UNC, where students work with digital plan specimens that they have captured. Results provide some insight into the importance of collaboration and shared vocabulary for gaining confidence and for student progression from novice to expert in botany.
    Source
    Metadata for semantic and social applications : proceedings of the International Conference on Dublin Core and Metadata Applications, Berlin, 22 - 26 September 2008, DC 2008: Berlin, Germany / ed. by Jane Greenberg and Wolfgang Klas
  4. White, H.C.; Carrier, S.; Thompson, A.; Greenberg, J.; Scherle, R.: ¬The Dryad Data Repository : a Singapore framework metadata architecture in a DSpace environment (2008) 0.01
    0.0059767957 = product of:
      0.023907183 = sum of:
        0.023907183 = product of:
          0.047814365 = sum of:
            0.047814365 = weight(_text_:22 in 2592) [ClassicSimilarity], result of:
              0.047814365 = score(doc=2592,freq=2.0), product of:
                0.17654699 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.050415643 = queryNorm
                0.2708308 = fieldWeight in 2592, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=2592)
          0.5 = coord(1/2)
      0.25 = coord(1/4)
    
    Source
    Metadata for semantic and social applications : proceedings of the International Conference on Dublin Core and Metadata Applications, Berlin, 22 - 26 September 2008, DC 2008: Berlin, Germany / ed. by Jane Greenberg and Wolfgang Klas
  5. Crystal, A.; Greenberg, J.: Relevance criteria identified by health information users during Web searches (2006) 0.01
    0.005255895 = product of:
      0.02102358 = sum of:
        0.02102358 = weight(_text_:information in 5909) [ClassicSimilarity], result of:
          0.02102358 = score(doc=5909,freq=12.0), product of:
            0.08850355 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.050415643 = queryNorm
            0.23754507 = fieldWeight in 5909, product of:
              3.4641016 = tf(freq=12.0), with freq of:
                12.0 = termFreq=12.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.0390625 = fieldNorm(doc=5909)
      0.25 = coord(1/4)
    
    Abstract
    This article focuses on the relevance judgments made by health information users who use the Web. Health information users were conceptualized as motivated information users concerned about how an environmental issue affects their health. Users identified their own environmental health interests and conducted a Web search of a particular environmental health Web site. Users were asked to identify (by highlighting with a mouse) the criteria they use to assess relevance in both Web search engine surrogates and full-text Web documents. Content analysis of document criteria highlighted by users identified the criteria these users relied on most often. Key criteria identified included (in order of frequency of appearance) research, topic, scope, data, influence, affiliation, Web characteristics, and authority/ person. A power-law distribution of criteria was observed (a few criteria represented most of the highlighted regions, with a long tail of occasionally used criteria). Implications of this work are that information retrieval (IR) systems should be tailored in terms of users' tendencies to rely on certain document criteria, and that relevance research should combine methods to gather richer, contextualized data. Metadata for IR systems, such as that used in search engine surrogates, could be improved by taking into account actual usage of relevance criteria. Such metadata should be user-centered (based on data from users, as in this study) and contextappropriate (fit to users' situations and tasks).
    Source
    Journal of the American Society for Information Science and Technology. 57(2006) no.10, S.1368-1382
  6. Greenberg, J.: User comprehension and application of information retrieval thesauri (2004) 0.01
    0.005149705 = product of:
      0.02059882 = sum of:
        0.02059882 = weight(_text_:information in 5008) [ClassicSimilarity], result of:
          0.02059882 = score(doc=5008,freq=8.0), product of:
            0.08850355 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.050415643 = queryNorm
            0.23274569 = fieldWeight in 5008, product of:
              2.828427 = tf(freq=8.0), with freq of:
                8.0 = termFreq=8.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.046875 = fieldNorm(doc=5008)
      0.25 = coord(1/4)
    
    Abstract
    While information retrieval thesauri may improve search results, there is little research documenting whether general information system users employ these vocabulary tools. This article explores user comprehension and searching with thesauri. Data was gathered as part of a larger empirical query-expansion study involving the ProQuest Controlled Vocabulary. The results suggest that users' knowledge of thesauri is extremely limited. After receiving a basic thesaurus introduction, however, users indicate a desire to employ these tools. The most significant result was that users expressed a preference for thesauri employment through interactive processing or a combination of automatic and interactive processing, compared to exclusively automatic processing. This article defines information retrieval thesauri, summarizes research results, considers circumstances underlying users' knowledge and searching with thesauri, and highlights future research needs.
  7. Greenberg, J.: Metadata and the World Wide Web (2002) 0.00
    0.0042914203 = product of:
      0.017165681 = sum of:
        0.017165681 = weight(_text_:information in 4264) [ClassicSimilarity], result of:
          0.017165681 = score(doc=4264,freq=8.0), product of:
            0.08850355 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.050415643 = queryNorm
            0.19395474 = fieldWeight in 4264, product of:
              2.828427 = tf(freq=8.0), with freq of:
                8.0 = termFreq=8.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.0390625 = fieldNorm(doc=4264)
      0.25 = coord(1/4)
    
    Abstract
    Metadata is of paramount importance for persons, organizations, and endeavors of every dimension that are increasingly turning to the World Wide Web (hereafter referred to as the Web) as a chief conduit for accessing and disseminating information. This is evidenced by the development and implementation of metadata schemas supporting projects ranging from restricted corporate intranets, data warehouses, and consumer-oriented electronic commerce enterprises to freely accessible digital libraries, educational initiatives, virtual museums, and other public Web sites. Today's metadata activities are unprecedented because they extend beyond the traditional library environment in an effort to deal with the Web's exponential growth. This article considers metadata in today's Web environment. The article defines metadata, examines the relationship between metadata and cataloging, provides definitions for key metadata vocabulary terms, and explores the topic of metadata generation. Metadata is an extensive and expanding subject that is prevalent in many environments. For practical reasons, this article has elected to concentrate an the information resource domain, which is defined by electronic textual documents, graphical images, archival materials, museum artifacts, and other objects found in both digital and physical information centers (e.g., libraries, museums, record centers, and archives). To show the extent and larger application of metadata, several examples are also drawn from the data warehouse, electronic commerce, open source, and medical communities.
    Source
    Encyclopedia of library and information science. Vol.72, [=Suppl.35]
  8. Greenberg, J.: Optimal query expansion (QE) processing methods with semantically encoded structured thesaurus terminology (2001) 0.00
    0.0036413912 = product of:
      0.014565565 = sum of:
        0.014565565 = weight(_text_:information in 5750) [ClassicSimilarity], result of:
          0.014565565 = score(doc=5750,freq=4.0), product of:
            0.08850355 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.050415643 = queryNorm
            0.16457605 = fieldWeight in 5750, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.046875 = fieldNorm(doc=5750)
      0.25 = coord(1/4)
    
    Abstract
    While researchers have explored the value of structured thesauri as controlled vocabularies for general information retrieval (IR) activities, they have not identified the optimal query expansion (QE) processing methods for taking advantage of the semantic encoding underlying the terminology in these tools. The study reported on in this article addresses this question, and examined whether QE via semantically encoded thesauri terminology is more effective in the automatic or interactive processing environment. The research found that, regardless of end-users' retrieval goals, synonyms and partial synonyms (SYNs) and narrower terms (NTs) are generally good candidates for automatic QE and that related (RTs) are better candidates for interactive QE. The study also examined end-users' selection of semantically encoded thesauri terms for interactive QE, and explored how retrieval goals and QE processes may be combined in future thesauri-supported IR systems
    Source
    Journal of the American Society for Information Science and technology. 52(2001) no.6, S.487-498
  9. Greenberg, J.: Metadata generation : processes, people and tools (2003) 0.00
    0.0034331365 = product of:
      0.013732546 = sum of:
        0.013732546 = weight(_text_:information in 1251) [ClassicSimilarity], result of:
          0.013732546 = score(doc=1251,freq=2.0), product of:
            0.08850355 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.050415643 = queryNorm
            0.1551638 = fieldWeight in 1251, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.0625 = fieldNorm(doc=1251)
      0.25 = coord(1/4)
    
    Source
    Bulletin of the American Society for Information Science. 29(2003) no.2, S.16-19
  10. Greenberg, J.: ¬A quantitative categorical analysis of metadata elements in image-applicable metadata schemes (2001) 0.00
    0.0030039945 = product of:
      0.012015978 = sum of:
        0.012015978 = weight(_text_:information in 6529) [ClassicSimilarity], result of:
          0.012015978 = score(doc=6529,freq=2.0), product of:
            0.08850355 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.050415643 = queryNorm
            0.13576832 = fieldWeight in 6529, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.0546875 = fieldNorm(doc=6529)
      0.25 = coord(1/4)
    
    Source
    Journal of the American Society for Information Science and technology. 52(2001) no.11, S.917-924
  11. Newby, G.B.; Greenberg, J.; Jones, P.: Open source software development and Lotka's law : bibliometric patterns in programming (2003) 0.00
    0.0025748524 = product of:
      0.01029941 = sum of:
        0.01029941 = weight(_text_:information in 5140) [ClassicSimilarity], result of:
          0.01029941 = score(doc=5140,freq=2.0), product of:
            0.08850355 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.050415643 = queryNorm
            0.116372846 = fieldWeight in 5140, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.046875 = fieldNorm(doc=5140)
      0.25 = coord(1/4)
    
    Source
    Journal of the American Society for Information Science and technology. 54(2003) no.2, S.169-178
  12. Greenberg, J.: Understanding metadata and metadata scheme (2005) 0.00
    0.0025748524 = product of:
      0.01029941 = sum of:
        0.01029941 = weight(_text_:information in 5725) [ClassicSimilarity], result of:
          0.01029941 = score(doc=5725,freq=2.0), product of:
            0.08850355 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.050415643 = queryNorm
            0.116372846 = fieldWeight in 5725, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.046875 = fieldNorm(doc=5725)
      0.25 = coord(1/4)
    
    Abstract
    Although the development and implementation of metadata schemes over the last decade has been extensive, research examining the sum of these activities is limited. This limitation is likely due to the massive scope of the topic. A framework is needed to study the full extent of, and functionalities supported by, metadata schemes. Metadata schemes developed for information resources are analyzed. To begin, I present a review of the definition of metadata, metadata functions, and several metadata typologies. Next, a conceptualization for metadata schemes is presented. The emphasis is on semantic container-like metadata schemes (data structures). The last part of this paper introduces the MODAL (Metadata Objectives and principles, Domains, and Architectural Layout) framework as an approach for studying metadata schemes. The paper concludes with a brief discussion on value of frameworks for examining metadata schemes, including different types of metadata schemes.
  13. Greenberg, J.: Automatic query expansion via lexical-semantic relationships (2001) 0.00
    0.0021457102 = product of:
      0.008582841 = sum of:
        0.008582841 = weight(_text_:information in 5703) [ClassicSimilarity], result of:
          0.008582841 = score(doc=5703,freq=2.0), product of:
            0.08850355 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.050415643 = queryNorm
            0.09697737 = fieldWeight in 5703, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.0390625 = fieldNorm(doc=5703)
      0.25 = coord(1/4)
    
    Source
    Journal of the American Society for Information Science and technology. 52(2001) no.5, S.402-415