Search (31 results, page 1 of 2)

  • × author_ss:"Larivière, V."
  1. Larivière, V.; Gingras, Y.; Archambault, E.: ¬The decline in the concentration of citations, 1900-2007 (2009) 0.02
    0.019639647 = product of:
      0.039279293 = sum of:
        0.01029941 = weight(_text_:information in 2763) [ClassicSimilarity], result of:
          0.01029941 = score(doc=2763,freq=2.0), product of:
            0.08850355 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.050415643 = queryNorm
            0.116372846 = fieldWeight in 2763, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.046875 = fieldNorm(doc=2763)
        0.028979883 = product of:
          0.057959765 = sum of:
            0.057959765 = weight(_text_:22 in 2763) [ClassicSimilarity], result of:
              0.057959765 = score(doc=2763,freq=4.0), product of:
                0.17654699 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.050415643 = queryNorm
                0.32829654 = fieldWeight in 2763, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046875 = fieldNorm(doc=2763)
          0.5 = coord(1/2)
      0.5 = coord(2/4)
    
    Date
    22. 3.2009 19:22:35
    Source
    Journal of the American Society for Information Science and Technology. 60(2009) no.4, S.858-862
  2. Atanassova, I.; Bertin, M.; Larivière, V.: On the composition of scientific abstracts (2016) 0.02
    0.016283836 = product of:
      0.032567672 = sum of:
        0.014865918 = weight(_text_:information in 3028) [ClassicSimilarity], result of:
          0.014865918 = score(doc=3028,freq=6.0), product of:
            0.08850355 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.050415643 = queryNorm
            0.16796975 = fieldWeight in 3028, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.0390625 = fieldNorm(doc=3028)
        0.017701752 = product of:
          0.035403505 = sum of:
            0.035403505 = weight(_text_:organization in 3028) [ClassicSimilarity], result of:
              0.035403505 = score(doc=3028,freq=2.0), product of:
                0.17974974 = queryWeight, product of:
                  3.5653565 = idf(docFreq=3399, maxDocs=44218)
                  0.050415643 = queryNorm
                0.19695997 = fieldWeight in 3028, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5653565 = idf(docFreq=3399, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=3028)
          0.5 = coord(1/2)
      0.5 = coord(2/4)
    
    Abstract
    Purpose - Scientific abstracts reproduce only part of the information and the complexity of argumentation in a scientific article. The purpose of this paper provides a first analysis of the similarity between the text of scientific abstracts and the body of articles, using sentences as the basic textual unit. It contributes to the understanding of the structure of abstracts. Design/methodology/approach - Using sentence-based similarity metrics, the authors quantify the phenomenon of text re-use in abstracts and examine the positions of the sentences that are similar to sentences in abstracts in the introduction, methods, results and discussion structure, using a corpus of over 85,000 research articles published in the seven Public Library of Science journals. Findings - The authors provide evidence that 84 percent of abstract have at least one sentence in common with the body of the paper. Studying the distributions of sentences in the body of the articles that are re-used in abstracts, the authors show that there exists a strong relation between the rhetorical structure of articles and the zones that authors re-use when writing abstracts, with sentences mainly coming from the beginning of the introduction and the end of the conclusion. Originality/value - Scientific abstracts contain what is considered by the author(s) as information that best describe documents' content. This is a first study that examines the relation between the contents of abstracts and the rhetorical structure of scientific articles. The work might provide new insight for improving automatic abstracting tools as well as information retrieval approaches, in which text organization and structure are important features.
  3. Bertin, M.; Atanassova, I.; Gingras, Y.; Larivière, V.: ¬The invariant distribution of references in scientific articles (2016) 0.02
    0.015770756 = product of:
      0.03154151 = sum of:
        0.01029941 = weight(_text_:information in 2497) [ClassicSimilarity], result of:
          0.01029941 = score(doc=2497,freq=2.0), product of:
            0.08850355 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.050415643 = queryNorm
            0.116372846 = fieldWeight in 2497, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.046875 = fieldNorm(doc=2497)
        0.021242103 = product of:
          0.042484205 = sum of:
            0.042484205 = weight(_text_:organization in 2497) [ClassicSimilarity], result of:
              0.042484205 = score(doc=2497,freq=2.0), product of:
                0.17974974 = queryWeight, product of:
                  3.5653565 = idf(docFreq=3399, maxDocs=44218)
                  0.050415643 = queryNorm
                0.23635197 = fieldWeight in 2497, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5653565 = idf(docFreq=3399, maxDocs=44218)
                  0.046875 = fieldNorm(doc=2497)
          0.5 = coord(1/2)
      0.5 = coord(2/4)
    
    Abstract
    The organization of scientific papers typically follows a standardized pattern, the well-known IMRaD structure (introduction, methods, results, and discussion). Using the full text of 45,000 papers published in the PLoS series of journals as a case study, this paper investigates, from the viewpoint of bibliometrics, how references are distributed along the structure of scientific papers as well as the age of these cited references. Once the sections of articles are realigned to follow the IMRaD sequence, the position of cited references along the text of articles is invariant across all PLoS journals, with the introduction and discussion accounting for most of the references. It also provides evidence that the age of cited references varies by section, with older references being found in the methods and more recent references in the discussion. These results provide insight into the different roles citations have in the scholarly communication process.
    Source
    Journal of the Association for Information Science and Technology. 67(2016) no.1, S.164-177
  4. Haustein, S.; Sugimoto, C.; Larivière, V.: Social media in scholarly communication : Guest editorial (2015) 0.01
    0.010880513 = product of:
      0.021761026 = sum of:
        0.01151509 = weight(_text_:information in 3809) [ClassicSimilarity], result of:
          0.01151509 = score(doc=3809,freq=10.0), product of:
            0.08850355 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.050415643 = queryNorm
            0.1301088 = fieldWeight in 3809, product of:
              3.1622777 = tf(freq=10.0), with freq of:
                10.0 = termFreq=10.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.0234375 = fieldNorm(doc=3809)
        0.010245935 = product of:
          0.02049187 = sum of:
            0.02049187 = weight(_text_:22 in 3809) [ClassicSimilarity], result of:
              0.02049187 = score(doc=3809,freq=2.0), product of:
                0.17654699 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.050415643 = queryNorm
                0.116070345 = fieldWeight in 3809, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0234375 = fieldNorm(doc=3809)
          0.5 = coord(1/2)
      0.5 = coord(2/4)
    
    Abstract
    This year marks 350 years since the inaugural publications of both the Journal des Sçavans and the Philosophical Transactions, first published in 1665 and considered the birth of the peer-reviewed journal article. This form of scholarly communication has not only remained the dominant model for disseminating new knowledge (particularly for science and medicine), but has also increased substantially in volume. Derek de Solla Price - the "father of scientometrics" (Merton and Garfield, 1986, p. vii) - was the first to document the exponential increase in scientific journals and showed that "scientists have always felt themselves to be awash in a sea of the scientific literature" (Price, 1963, p. 15), as, for example, expressed at the 1948 Royal Society's Scientific Information Conference: Not for the first time in history, but more acutely than ever before, there was a fear that scientists would be overwhelmed, that they would be no longer able to control the vast amounts of potentially relevant material that were pouring forth from the world's presses, that science itself was under threat (Bawden and Robinson, 2008, p. 183).
    One of the solutions to help scientists filter the most relevant publications and, thus, to stay current on developments in their fields during the transition from "little science" to "big science", was the introduction of citation indexing as a Wellsian "World Brain" (Garfield, 1964) of scientific information: It is too much to expect a research worker to spend an inordinate amount of time searching for the bibliographic descendants of antecedent papers. It would not be excessive to demand that the thorough scholar check all papers that have cited or criticized such papers, if they could be located quickly. The citation index makes this check practicable (Garfield, 1955, p. 108). In retrospective, citation indexing can be perceived as a pre-social web version of crowdsourcing, as it is based on the concept that the community of citing authors outperforms indexers in highlighting cognitive links between papers, particularly on the level of specific ideas and concepts (Garfield, 1983). Over the last 50 years, citation analysis and more generally, bibliometric methods, have developed from information retrieval tools to research evaluation metrics, where they are presumed to make scientific funding more efficient and effective (Moed, 2006). However, the dominance of bibliometric indicators in research evaluation has also led to significant goal displacement (Merton, 1957) and the oversimplification of notions of "research productivity" and "scientific quality", creating adverse effects such as salami publishing, honorary authorships, citation cartels, and misuse of indicators (Binswanger, 2015; Cronin and Sugimoto, 2014; Frey and Osterloh, 2006; Haustein and Larivière, 2015; Weingart, 2005).
    Furthermore, the rise of the web, and subsequently, the social web, has challenged the quasi-monopolistic status of the journal as the main form of scholarly communication and citation indices as the primary assessment mechanisms. Scientific communication is becoming more open, transparent, and diverse: publications are increasingly open access; manuscripts, presentations, code, and data are shared online; research ideas and results are discussed and criticized openly on blogs; and new peer review experiments, with open post publication assessment by anonymous or non-anonymous referees, are underway. The diversification of scholarly production and assessment, paired with the increasing speed of the communication process, leads to an increased information overload (Bawden and Robinson, 2008), demanding new filters. The concept of altmetrics, short for alternative (to citation) metrics, was created out of an attempt to provide a filter (Priem et al., 2010) and to steer against the oversimplification of the measurement of scientific success solely on the basis of number of journal articles published and citations received, by considering a wider range of research outputs and metrics (Piwowar, 2013). Although the term altmetrics was introduced in a tweet in 2010 (Priem, 2010), the idea of capturing traces - "polymorphous mentioning" (Cronin et al., 1998, p. 1320) - of scholars and their documents on the web to measure "impact" of science in a broader manner than citations was introduced years before, largely in the context of webometrics (Almind and Ingwersen, 1997; Thelwall et al., 2005):
    Date
    20. 1.2015 18:30:22
    Source
    Aslib journal of information management. 67(2015) no.3, S.260-288
  5. Larivière, V.; Sugimoto, C.R.; Cronin, B.: ¬A bibliometric chronicling of library and information science's first hundred years (2012) 0.00
    0.0042914203 = product of:
      0.017165681 = sum of:
        0.017165681 = weight(_text_:information in 244) [ClassicSimilarity], result of:
          0.017165681 = score(doc=244,freq=8.0), product of:
            0.08850355 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.050415643 = queryNorm
            0.19395474 = fieldWeight in 244, product of:
              2.828427 = tf(freq=8.0), with freq of:
                8.0 = termFreq=8.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.0390625 = fieldNorm(doc=244)
      0.25 = coord(1/4)
    
    Abstract
    This paper presents a condensed history of Library and Information Science (LIS) over the course of more than a century using a variety of bibliometric measures. It examines in detail the variable rate of knowledge production in the field, shifts in subject coverage, the dominance of particular publication genres at different times, prevailing modes of production, interactions with other disciplines, and, more generally, observes how the field has evolved. It shows that, despite a striking growth in the number of journals, papers, and contributing authors, a decrease was observed in the field's market-share of all social science and humanities research. Collaborative authorship is now the norm, a pattern seen across the social sciences. The idea of boundary crossing was also examined: in 2010, nearly 60% of authors who published in LIS also published in another discipline. This high degree of permeability in LIS was also demonstrated through reference and citation practices: LIS scholars now cite and receive citations from other fields more than from LIS itself. Two major structural shifts are revealed in the data: in 1960, LIS changed from a professional field focused on librarianship to an academic field focused on information and use; and in 1990, LIS began to receive a growing number of citations from outside the field, notably from Computer Science and Management, and saw a dramatic increase in the number of authors contributing to the literature of the field.
    Source
    Journal of the American Society for Information Science and Technology. 63(2012) no.5, S.997-1016
  6. Larivière, V.; Sugimoto, C.R.; Bergeron, P.: In their own image? : a comparison of doctoral students' and faculty members' referencing behavior (2013) 0.00
    0.0036413912 = product of:
      0.014565565 = sum of:
        0.014565565 = weight(_text_:information in 751) [ClassicSimilarity], result of:
          0.014565565 = score(doc=751,freq=4.0), product of:
            0.08850355 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.050415643 = queryNorm
            0.16457605 = fieldWeight in 751, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.046875 = fieldNorm(doc=751)
      0.25 = coord(1/4)
    
    Abstract
    This article compares doctoral students' and faculty members' referencing behavior through the analysis of a large corpus of scientific articles. It shows that doctoral students tend to cite more documents per article than faculty members, and that the literature they cite is, on average, more recent. It also demonstrates that doctoral students cite a larger proportion of conference proceedings and journal articles than faculty members and faculty members are more likely to self-cite and cite theses than doctoral students. Analysis of the impact of cited journals indicates that in health research, faculty members tend to cite journals with slightly lower impact factors whereas in social sciences and humanities, faculty members cite journals with higher impact factors. Finally, it provides evidence that, in every discipline, faculty members tend to cite a higher proportion of clinical/applied research journals than doctoral students. This study contributes to the understanding of referencing patterns and age stratification in academia. Implications for understanding the information-seeking behavior of academics are discussed.
    Source
    Journal of the American Society for Information Science and Technology. 64(2013) no.5, S.1045-1054
  7. Haustein, S.; Bowman, T.D.; Holmberg, K.; Tsou, A.; Sugimoto, C.R.; Larivière, V.: Tweets as impact indicators : Examining the implications of automated "bot" accounts on Twitter (2016) 0.00
    0.0036413912 = product of:
      0.014565565 = sum of:
        0.014565565 = weight(_text_:information in 2502) [ClassicSimilarity], result of:
          0.014565565 = score(doc=2502,freq=4.0), product of:
            0.08850355 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.050415643 = queryNorm
            0.16457605 = fieldWeight in 2502, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.046875 = fieldNorm(doc=2502)
      0.25 = coord(1/4)
    
    Abstract
    This brief communication presents preliminary findings on automated Twitter accounts distributing links to scientific articles deposited on the preprint repository arXiv. It discusses the implication of the presence of such bots from the perspective of social media metrics (altmetrics), where mentions of scholarly documents on Twitter have been suggested as a means of measuring impact that is both broader and timelier than citations. Our results show that automated Twitter accounts create a considerable amount of tweets to scientific articles and that they behave differently than common social bots, which has critical implications for the use of raw tweet counts in research evaluation and assessment. We discuss some definitions of Twitter cyborgs and bots in scholarly communication and propose distinguishing between different levels of engagement-that is, differentiating between tweeting only bibliographic information to discussing or commenting on the content of a scientific work.
    Source
    Journal of the Association for Information Science and Technology. 67(2016) no.1, S.232-238
  8. Lisée, C.; Larivière, V.; Archambault, E.: Conference proceedings as a source of scientific information : a bibliometric analysis (2008) 0.00
    0.0030344925 = product of:
      0.01213797 = sum of:
        0.01213797 = weight(_text_:information in 2356) [ClassicSimilarity], result of:
          0.01213797 = score(doc=2356,freq=4.0), product of:
            0.08850355 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.050415643 = queryNorm
            0.13714671 = fieldWeight in 2356, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.0390625 = fieldNorm(doc=2356)
      0.25 = coord(1/4)
    
    Source
    Journal of the American Society for Information Science and Technology. 59(2008) no.11, S.1776-1784
  9. Archambault, E.; Campbell, D; Gingras, Y.; Larivière, V.: Comparing bibliometric statistics obtained from the Web of Science and Scopus (2009) 0.00
    0.0030344925 = product of:
      0.01213797 = sum of:
        0.01213797 = weight(_text_:information in 2933) [ClassicSimilarity], result of:
          0.01213797 = score(doc=2933,freq=4.0), product of:
            0.08850355 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.050415643 = queryNorm
            0.13714671 = fieldWeight in 2933, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.0390625 = fieldNorm(doc=2933)
      0.25 = coord(1/4)
    
    Abstract
    For more than 40 years, the Institute for Scientific Information (ISI, now part of Thomson Reuters) produced the only available bibliographic databases from which bibliometricians could compile large-scale bibliometric indicators. ISI's citation indexes, now regrouped under the Web of Science (WoS), were the major sources of bibliometric data until 2004, when Scopus was launched by the publisher Reed Elsevier. For those who perform bibliometric analyses and comparisons of countries or institutions, the existence of these two major databases raises the important question of the comparability and stability of statistics obtained from different data sources. This paper uses macrolevel bibliometric indicators to compare results obtained from the WoS and Scopus. It shows that the correlations between the measures obtained with both databases for the number of papers and the number of citations received by countries, as well as for their ranks, are extremely high. There is also a very high correlation when countries' papers are broken down by field. The paper thus provides evidence that indicators of scientific production and citations at the country level are stable and largely independent of the database.
    Source
    Journal of the American Society for Information Science and Technology. 60(2009) no.7, S.1320-1326
  10. Haustein, S.; Peters, I.; Sugimoto, C.R.; Thelwall, M.; Larivière, V.: Tweeting biomedicine : an analysis of tweets and citations in the biomedical literature (2014) 0.00
    0.0030344925 = product of:
      0.01213797 = sum of:
        0.01213797 = weight(_text_:information in 1229) [ClassicSimilarity], result of:
          0.01213797 = score(doc=1229,freq=4.0), product of:
            0.08850355 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.050415643 = queryNorm
            0.13714671 = fieldWeight in 1229, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.0390625 = fieldNorm(doc=1229)
      0.25 = coord(1/4)
    
    Abstract
    Data collected by social media platforms have been introduced as new sources for indicators to help measure the impact of scholarly research in ways that are complementary to traditional citation analysis. Data generated from social media activities can be used to reflect broad types of impact. This article aims to provide systematic evidence about how often Twitter is used to disseminate information about journal articles in the biomedical sciences. The analysis is based on 1.4 million documents covered by both PubMed and Web of Science and published between 2010 and 2012. The number of tweets containing links to these documents was analyzed and compared to citations to evaluate the degree to which certain journals, disciplines, and specialties were represented on Twitter and how far tweets correlate with citation impact. With less than 10% of PubMed articles mentioned on Twitter, its uptake is low in general but differs between journals and specialties. Correlations between tweets and citations are low, implying that impact metrics based on tweets are different from those based on citations. A framework using the coverage of articles and the correlation between Twitter mentions and citations is proposed to facilitate the evaluation of novel social-media-based metrics.
    Source
    Journal of the Association for Information Science and Technology. 65(2014) no.4, S.656-669
  11. Mohammadi, E.; Thelwall, M.; Haustein, S.; Larivière, V.: Who reads research articles? : an altmetrics analysis of Mendeley user categories (2015) 0.00
    0.0030344925 = product of:
      0.01213797 = sum of:
        0.01213797 = weight(_text_:information in 2162) [ClassicSimilarity], result of:
          0.01213797 = score(doc=2162,freq=4.0), product of:
            0.08850355 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.050415643 = queryNorm
            0.13714671 = fieldWeight in 2162, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.0390625 = fieldNorm(doc=2162)
      0.25 = coord(1/4)
    
    Abstract
    Little detailed information is known about who reads research articles and the contexts in which research articles are read. Using data about people who register in Mendeley as readers of articles, this article explores different types of users of Clinical Medicine, Engineering and Technology, Social Science, Physics, and Chemistry articles inside and outside academia. The majority of readers for all disciplines were PhD students, postgraduates, and postdocs but other types of academics were also represented. In addition, many Clinical Medicine articles were read by medical professionals. The highest correlations between citations and Mendeley readership counts were found for types of users who often authored academic articles, except for associate professors in some sub-disciplines. This suggests that Mendeley readership can reflect usage similar to traditional citation impact if the data are restricted to readers who are also authors without the delay of impact measured by citation counts. At the same time, Mendeley statistics can also reveal the hidden impact of some research articles, such as educational value for nonauthor users inside academia or the impact of research articles on practice for readers outside academia.
    Source
    Journal of the Association for Information Science and Technology. 66(2015) no.9, S.1832-1846
  12. Larivière, V.; Gingras, Y.: ¬The impact factor's Matthew Effect : a natural experiment in bibliometrics (2010) 0.00
    0.0025748524 = product of:
      0.01029941 = sum of:
        0.01029941 = weight(_text_:information in 3338) [ClassicSimilarity], result of:
          0.01029941 = score(doc=3338,freq=2.0), product of:
            0.08850355 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.050415643 = queryNorm
            0.116372846 = fieldWeight in 3338, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.046875 = fieldNorm(doc=3338)
      0.25 = coord(1/4)
    
    Source
    Journal of the American Society for Information Science and Technology. 61(2010) no.2, S.424-427
  13. Lachance, C.; Poirier, S.; Larivière, V.: ¬The kiss of death? : the effect of being cited in a review on subsequent citations (2014) 0.00
    0.0025748524 = product of:
      0.01029941 = sum of:
        0.01029941 = weight(_text_:information in 1310) [ClassicSimilarity], result of:
          0.01029941 = score(doc=1310,freq=2.0), product of:
            0.08850355 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.050415643 = queryNorm
            0.116372846 = fieldWeight in 1310, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.046875 = fieldNorm(doc=1310)
      0.25 = coord(1/4)
    
    Source
    Journal of the Association for Information Science and Technology. 65(2014) no.7, S.1501-1505
  14. Larivière, V.; Gingras, Y.; Sugimoto, C.R.; Tsou, A.: Team size matters : collaboration and scientific impact since 1900 (2015) 0.00
    0.0025748524 = product of:
      0.01029941 = sum of:
        0.01029941 = weight(_text_:information in 2035) [ClassicSimilarity], result of:
          0.01029941 = score(doc=2035,freq=2.0), product of:
            0.08850355 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.050415643 = queryNorm
            0.116372846 = fieldWeight in 2035, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.046875 = fieldNorm(doc=2035)
      0.25 = coord(1/4)
    
    Source
    Journal of the Association for Information Science and Technology. 66(2015) no.7, S.1323-1332
  15. Hu, B.; Dong, X.; Zhang, C.; Bowman, T.D.; Ding, Y.; Milojevic, S.; Ni, C.; Yan, E.; Larivière, V.: ¬A lead-lag analysis of the topic evolution patterns for preprints and publications (2015) 0.00
    0.0025748524 = product of:
      0.01029941 = sum of:
        0.01029941 = weight(_text_:information in 2337) [ClassicSimilarity], result of:
          0.01029941 = score(doc=2337,freq=2.0), product of:
            0.08850355 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.050415643 = queryNorm
            0.116372846 = fieldWeight in 2337, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.046875 = fieldNorm(doc=2337)
      0.25 = coord(1/4)
    
    Source
    Journal of the Association for Information Science and Technology. 66(2015) no.12, S.2643-2656
  16. Sugimoto, C.R.; Work, S.; Larivière, V.; Haustein, S.: Scholarly use of social media and altmetrics : A review of the literature (2017) 0.00
    0.0025748524 = product of:
      0.01029941 = sum of:
        0.01029941 = weight(_text_:information in 3781) [ClassicSimilarity], result of:
          0.01029941 = score(doc=3781,freq=2.0), product of:
            0.08850355 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.050415643 = queryNorm
            0.116372846 = fieldWeight in 3781, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.046875 = fieldNorm(doc=3781)
      0.25 = coord(1/4)
    
    Source
    Journal of the Association for Information Science and Technology. 68(2017) no.9, S.2037-2062
  17. Shu, F.; Julien, C.-A.; Larivière, V.: Does the Web of Science accurately represent chinese scientific performance? (2019) 0.00
    0.0025748524 = product of:
      0.01029941 = sum of:
        0.01029941 = weight(_text_:information in 5388) [ClassicSimilarity], result of:
          0.01029941 = score(doc=5388,freq=2.0), product of:
            0.08850355 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.050415643 = queryNorm
            0.116372846 = fieldWeight in 5388, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.046875 = fieldNorm(doc=5388)
      0.25 = coord(1/4)
    
    Source
    Journal of the Association for Information Science and Technology. 70(2019) no.10, S.1138-1152
  18. Larivière, V.; Archambault, V.; Gingras, Y.; Vignola-Gagné, E.: ¬The place of serials in referencing practices : comparing natural sciences and engineering with social sciences and humanities (2006) 0.00
    0.0021457102 = product of:
      0.008582841 = sum of:
        0.008582841 = weight(_text_:information in 5107) [ClassicSimilarity], result of:
          0.008582841 = score(doc=5107,freq=2.0), product of:
            0.08850355 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.050415643 = queryNorm
            0.09697737 = fieldWeight in 5107, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.0390625 = fieldNorm(doc=5107)
      0.25 = coord(1/4)
    
    Source
    Journal of the American Society for Information Science and Technology. 57(2006) no.8, S.997-1004
  19. Larivière, V.; Archambault, E.; Gingras, Y.: Long-term variations in the aging of scientific literature : from exponential growth to steady-state science (1900-2004) (2008) 0.00
    0.0021457102 = product of:
      0.008582841 = sum of:
        0.008582841 = weight(_text_:information in 1357) [ClassicSimilarity], result of:
          0.008582841 = score(doc=1357,freq=2.0), product of:
            0.08850355 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.050415643 = queryNorm
            0.09697737 = fieldWeight in 1357, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.0390625 = fieldNorm(doc=1357)
      0.25 = coord(1/4)
    
    Source
    Journal of the American Society for Information Science and Technology. 59(2008) no.2, S.288-296
  20. Larivière, V.; Gingras, Y.: On the relationship between interdisciplinarity and scientific impact (2009) 0.00
    0.0021457102 = product of:
      0.008582841 = sum of:
        0.008582841 = weight(_text_:information in 3316) [ClassicSimilarity], result of:
          0.008582841 = score(doc=3316,freq=2.0), product of:
            0.08850355 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.050415643 = queryNorm
            0.09697737 = fieldWeight in 3316, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.0390625 = fieldNorm(doc=3316)
      0.25 = coord(1/4)
    
    Source
    Journal of the American Society for Information Science and Technology. 61(2010) no.1, S.126-131