Search (5 results, page 1 of 1)

  • × author_ss:"Niemi, T."
  • × author_ss:"Järvelin, K."
  1. Järvelin, K.; Kristensen, J.; Niemi, T.; Sormunen, E.; Keskustalo, H.: ¬A deductive data model for query expansion (1996) 0.02
    0.015395639 = product of:
      0.030791279 = sum of:
        0.01029941 = weight(_text_:information in 2230) [ClassicSimilarity], result of:
          0.01029941 = score(doc=2230,freq=2.0), product of:
            0.08850355 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.050415643 = queryNorm
            0.116372846 = fieldWeight in 2230, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.046875 = fieldNorm(doc=2230)
        0.02049187 = product of:
          0.04098374 = sum of:
            0.04098374 = weight(_text_:22 in 2230) [ClassicSimilarity], result of:
              0.04098374 = score(doc=2230,freq=2.0), product of:
                0.17654699 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.050415643 = queryNorm
                0.23214069 = fieldWeight in 2230, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046875 = fieldNorm(doc=2230)
          0.5 = coord(1/2)
      0.5 = coord(2/4)
    
    Source
    Proceedings of the 19th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval (ACM SIGIR '96), Zürich, Switzerland, August 18-22, 1996. Eds.: H.P. Frei et al
  2. Näppilä, T.; Järvelin, K.; Niemi, T.: ¬A tool for data cube construction from structurally heterogeneous XML documents (2008) 0.01
    0.014607265 = product of:
      0.02921453 = sum of:
        0.01213797 = weight(_text_:information in 1369) [ClassicSimilarity], result of:
          0.01213797 = score(doc=1369,freq=4.0), product of:
            0.08850355 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.050415643 = queryNorm
            0.13714671 = fieldWeight in 1369, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.0390625 = fieldNorm(doc=1369)
        0.01707656 = product of:
          0.03415312 = sum of:
            0.03415312 = weight(_text_:22 in 1369) [ClassicSimilarity], result of:
              0.03415312 = score(doc=1369,freq=2.0), product of:
                0.17654699 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.050415643 = queryNorm
                0.19345059 = fieldWeight in 1369, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=1369)
          0.5 = coord(1/2)
      0.5 = coord(2/4)
    
    Abstract
    Data cubes for OLAP (On-Line Analytical Processing) often need to be constructed from data located in several distributed and autonomous information sources. Such a data integration process is challenging due to semantic, syntactic, and structural heterogeneity among the data. While XML (extensible markup language) is the de facto standard for data exchange, the three types of heterogeneity remain. Moreover, popular path-oriented XML query languages, such as XQuery, require the user to know in much detail the structure of the documents to be processed and are, thus, effectively impractical in many real-world data integration tasks. Several Lowest Common Ancestor (LCA)-based XML query evaluation strategies have recently been introduced to provide a more structure-independent way to access XML documents. We shall, however, show that this approach leads in the context of certain - not uncommon - types of XML documents to undesirable results. This article introduces a novel high-level data extraction primitive that utilizes the purpose-built Smallest Possible Context (SPC) query evaluation strategy. We demonstrate, through a system prototype for OLAP data cube construction and a sample application in informetrics, that our approach has real advantages in data integration.
    Date
    9. 2.2008 17:22:42
    Source
    Journal of the American Society for Information Science and Technology. 59(2008) no.3, S.435-449
  3. Niemi, T.; Junkkari, M.; Järvelin, K.; Viita, S.: Advanced query language for manipulating complex entities (2004) 0.01
    0.006007989 = product of:
      0.024031956 = sum of:
        0.024031956 = weight(_text_:information in 4218) [ClassicSimilarity], result of:
          0.024031956 = score(doc=4218,freq=2.0), product of:
            0.08850355 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.050415643 = queryNorm
            0.27153665 = fieldWeight in 4218, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.109375 = fieldNorm(doc=4218)
      0.25 = coord(1/4)
    
    Source
    Information processing and management. 40(2004) no.6, S.869-
  4. Järvelin, K.; Niemi, T.: Deductive information retrieval based on classifications (1993) 0.01
    0.005149705 = product of:
      0.02059882 = sum of:
        0.02059882 = weight(_text_:information in 2229) [ClassicSimilarity], result of:
          0.02059882 = score(doc=2229,freq=8.0), product of:
            0.08850355 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.050415643 = queryNorm
            0.23274569 = fieldWeight in 2229, product of:
              2.828427 = tf(freq=8.0), with freq of:
                8.0 = termFreq=8.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.046875 = fieldNorm(doc=2229)
      0.25 = coord(1/4)
    
    Abstract
    Modern fact databses contain abundant data classified through several classifications. Typically, users msut consult these classifications in separate manuals or files, thus making their effective use difficult. Contemporary database systems do little support deductive use of classifications. In this study we show how deductive data management techniques can be applied to the utilization of data value classifications. Computation of transitive class relationships is of primary importance here. We define a representation of classifications which supports transitive computation and present an operation-oriented deductive query language tailored for classification-based deductive information retrieval. The operations of this language are on the same abstraction level as relational algebra operations and can be integrated with these to form a powerful and flexible query language for deductive information retrieval. We define the integration of these operations and demonstrate the usefulness of the language in terms of several sample queries
    Source
    Journal of the American Society for Information Science. 44(1993) no.10, S.557-578
  5. Niemi, T.; Hirvonen, L.; Järvelin, K.: Multidimensional data model and query language for informetrics (2003) 0.00
    0.0025748524 = product of:
      0.01029941 = sum of:
        0.01029941 = weight(_text_:information in 1753) [ClassicSimilarity], result of:
          0.01029941 = score(doc=1753,freq=2.0), product of:
            0.08850355 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.050415643 = queryNorm
            0.116372846 = fieldWeight in 1753, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.046875 = fieldNorm(doc=1753)
      0.25 = coord(1/4)
    
    Source
    Journal of the American Society for Information Science and technology. 54(2003) no.10, S.939-951