Search (64 results, page 1 of 4)

  • × theme_ss:"Klassifikationssysteme im Online-Retrieval"
  • × year_i:[2000 TO 2010}
  1. Slavic, A.: On the nature and typology of documentary classifications and their use in a networked environment (2007) 0.13
    0.13331564 = product of:
      0.17775418 = sum of:
        0.01029941 = weight(_text_:information in 780) [ClassicSimilarity], result of:
          0.01029941 = score(doc=780,freq=2.0), product of:
            0.08850355 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.050415643 = queryNorm
            0.116372846 = fieldWeight in 780, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.046875 = fieldNorm(doc=780)
        0.066389285 = weight(_text_:standards in 780) [ClassicSimilarity], result of:
          0.066389285 = score(doc=780,freq=2.0), product of:
            0.22470023 = queryWeight, product of:
              4.4569545 = idf(docFreq=1393, maxDocs=44218)
              0.050415643 = queryNorm
            0.29545712 = fieldWeight in 780, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.4569545 = idf(docFreq=1393, maxDocs=44218)
              0.046875 = fieldNorm(doc=780)
        0.10106549 = sum of:
          0.060081743 = weight(_text_:organization in 780) [ClassicSimilarity], result of:
            0.060081743 = score(doc=780,freq=4.0), product of:
              0.17974974 = queryWeight, product of:
                3.5653565 = idf(docFreq=3399, maxDocs=44218)
                0.050415643 = queryNorm
              0.33425218 = fieldWeight in 780, product of:
                2.0 = tf(freq=4.0), with freq of:
                  4.0 = termFreq=4.0
                3.5653565 = idf(docFreq=3399, maxDocs=44218)
                0.046875 = fieldNorm(doc=780)
          0.04098374 = weight(_text_:22 in 780) [ClassicSimilarity], result of:
            0.04098374 = score(doc=780,freq=2.0), product of:
              0.17654699 = queryWeight, product of:
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.050415643 = queryNorm
              0.23214069 = fieldWeight in 780, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.046875 = fieldNorm(doc=780)
      0.75 = coord(3/4)
    
    Abstract
    Networked orientated standards for vocabulary publishing and exchange and proposals for terminological services and terminology registries will improve sharing and use of all knowledge organization systems in the networked information environment. This means that documentary classifications may also become more applicable for use outside their original domain of application. The paper summarises some characteristics common to documentary classifications and explains some terminological, functional and implementation aspects. The original purpose behind each classification scheme determines the functions that the vocabulary is designed to facilitate. These functions influence the structure, semantics and syntax, scheme coverage and format in which classification data are published and made available. The author suggests that attention should be paid to the differences between documentary classifications as these may determine their suitability for a certain purpose and may impose different requirements with respect to their use online. As we speak, many classifications are being created for knowledge organization and it may be important to promote expertise from the bibliographic domain with respect to building and using classification systems.
    Date
    22.12.2007 17:22:31
  2. Place, E.: International collaboration on Internet subject gateways (2000) 0.08
    0.08263725 = product of:
      0.110183 = sum of:
        0.014865918 = weight(_text_:information in 4584) [ClassicSimilarity], result of:
          0.014865918 = score(doc=4584,freq=6.0), product of:
            0.08850355 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.050415643 = queryNorm
            0.16796975 = fieldWeight in 4584, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.0390625 = fieldNorm(doc=4584)
        0.07824052 = weight(_text_:standards in 4584) [ClassicSimilarity], result of:
          0.07824052 = score(doc=4584,freq=4.0), product of:
            0.22470023 = queryWeight, product of:
              4.4569545 = idf(docFreq=1393, maxDocs=44218)
              0.050415643 = queryNorm
            0.34819958 = fieldWeight in 4584, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              4.4569545 = idf(docFreq=1393, maxDocs=44218)
              0.0390625 = fieldNorm(doc=4584)
        0.01707656 = product of:
          0.03415312 = sum of:
            0.03415312 = weight(_text_:22 in 4584) [ClassicSimilarity], result of:
              0.03415312 = score(doc=4584,freq=2.0), product of:
                0.17654699 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.050415643 = queryNorm
                0.19345059 = fieldWeight in 4584, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=4584)
          0.5 = coord(1/2)
      0.75 = coord(3/4)
    
    Abstract
    Eine ganze Anzahl von Bibliotheken in Europa befaßt sich mit der Entwicklung von Internet Subject Gateways - einer Serviceleistung, die den Nutzern helfen soll, qualitativ hochwertige Internetquellen zu finden. Subject Gateways wie SOSIG (The Social Science Information Gateway) sind bereits seit einigen Jahren im Internet verfügbar und stellen eine Alternative zu Internet-Suchmaschinen wie AltaVista und Verzeichnissen wie Yahoo dar. Bezeichnenderweise stützen sich Subject Gateways auf die Fertigkeiten, Verfahrensweisen und Standards der internationalen Bibliothekswelt und wenden diese auf Informationen aus dem Internet an. Dieses Referat will daher betonen, daß Bibliothekare/innen idealerweise eine vorherrschende Rolle im Aufbau von Suchservices für Internetquellen spielen und daß Information Gateways eine Möglichkeit dafür darstellen. Es wird einige der Subject Gateway-Initiativen in Europa umreißen und die Werkzeuge und Technologien beschreiben, die vom Projekt DESIRE entwickelt wurden, um die Entwicklung neuer Gateways in anderen Ländern zu unterstützen. Es wird auch erörtert, wie IMesh, eine Gruppe für Gateways aus der ganzen Welt eine internationale Strategie für Gateways anstrebt und versucht, Standards zur Umsetzung dieses Projekts zu entwickeln
    Date
    22. 6.2002 19:35:35
    Theme
    Information Gateway
  3. Denton, W.: Putting facets on the Web : an annotated bibliography (2003) 0.04
    0.037331354 = product of:
      0.04977514 = sum of:
        0.009595908 = weight(_text_:information in 2467) [ClassicSimilarity], result of:
          0.009595908 = score(doc=2467,freq=10.0), product of:
            0.08850355 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.050415643 = queryNorm
            0.10842399 = fieldWeight in 2467, product of:
              3.1622777 = tf(freq=10.0), with freq of:
                10.0 = termFreq=10.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.01953125 = fieldNorm(doc=2467)
        0.0276622 = weight(_text_:standards in 2467) [ClassicSimilarity], result of:
          0.0276622 = score(doc=2467,freq=2.0), product of:
            0.22470023 = queryWeight, product of:
              4.4569545 = idf(docFreq=1393, maxDocs=44218)
              0.050415643 = queryNorm
            0.123107135 = fieldWeight in 2467, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.4569545 = idf(docFreq=1393, maxDocs=44218)
              0.01953125 = fieldNorm(doc=2467)
        0.012517029 = product of:
          0.025034059 = sum of:
            0.025034059 = weight(_text_:organization in 2467) [ClassicSimilarity], result of:
              0.025034059 = score(doc=2467,freq=4.0), product of:
                0.17974974 = queryWeight, product of:
                  3.5653565 = idf(docFreq=3399, maxDocs=44218)
                  0.050415643 = queryNorm
                0.13927174 = fieldWeight in 2467, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  3.5653565 = idf(docFreq=3399, maxDocs=44218)
                  0.01953125 = fieldNorm(doc=2467)
          0.5 = coord(1/2)
      0.75 = coord(3/4)
    
    Abstract
    This is a classified, annotated bibliography about how to design faceted classification systems and make them usable on the World Wide Web. It is the first of three works I will be doing. The second, based on the material here and elsewhere, will discuss how to actually make the faceted system and put it online. The third will be a report of how I did just that, what worked, what didn't, and what I learned. Almost every article or book listed here begins with an explanation of what a faceted classification system is, so I won't (but see Steckel in Background below if you don't already know). They all agree that faceted systems are very appropriate for the web. Even pre-web articles (such as Duncan's in Background, below) assert that hypertext and facets will go together well. Combined, it is possible to take a set of documents and classify them or apply subject headings to describe what they are about, then build a navigational structure so that any user, no matter how he or she approaches the material, no matter what his or her goals, can move and search in a way that makes sense to them, but still get to the same useful results as someone else following a different path to the same goal. There is no one way that everyone will always use when looking for information. The more flexible the organization of the information, the more accommodating it is. Facets are more flexible for hypertext browsing than any enumerative or hierarchical system.
    Consider movie listings in newspapers. Most Canadian newspapers list movie showtimes in two large blocks, for the two major theatre chains. The listings are ordered by region (in large cities), then theatre, then movie, and finally by showtime. Anyone wondering where and when a particular movie is playing must scan the complete listings. Determining what movies are playing in the next half hour is very difficult. When movie listings went onto the web, most sites used a simple faceted organization, always with movie name and theatre, and perhaps with region or neighbourhood (thankfully, theatre chains were left out). They make it easy to pick a theatre and see what movies are playing there, or to pick a movie and see what theatres are showing it. To complete the system, the sites should allow users to browse by neighbourhood and showtime, and to order the results in any way they desired. Thus could people easily find answers to such questions as, "Where is the new James Bond movie playing?" "What's showing at the Roxy tonight?" "I'm going to be out in in Little Finland this afternoon with three hours to kill starting at 2 ... is anything interesting playing?" A hypertext, faceted classification system makes more useful information more easily available to the user. Reading the books and articles below in chronological order will show a certain progression: suggestions that faceting and hypertext might work well, confidence that facets would work well if only someone would make such a system, and finally the beginning of serious work on actually designing, building, and testing faceted web sites. There is a solid basis of how to make faceted classifications (see Vickery in Recommended), but their application online is just starting. Work on XFML (see Van Dijck's work in Recommended) the Exchangeable Faceted Metadata Language, will make this easier. If it follows previous patterns, parts of the Internet community will embrace the idea and make open source software available for others to reuse. It will be particularly beneficial if professionals in both information studies and computer science can work together to build working systems, standards, and code. Each can benefit from the other's expertise in what can be a very complicated and technical area. One particularly nice thing about this area of research is that people interested in combining facets and the web often have web sites where they post their writings.
    This bibliography is not meant to be exhaustive, but unfortunately it is not as complete as I wanted. Some books and articles are not be included, but they may be used in my future work. (These include two books and one article by B.C. Vickery: Faceted Classification Schemes (New Brunswick, NJ: Rutgers, 1966), Classification and Indexing in Science, 3rd ed. (London: Butterworths, 1975), and "Knowledge Representation: A Brief Review" (Journal of Documentation 42 no. 3 (September 1986): 145-159; and A.C. Foskett's "The Future of Faceted Classification" in The Future of Classification, edited by Rita Marcella and Arthur Maltby (Aldershot, England: Gower, 2000): 69-80). Nevertheless, I hope this bibliography will be useful for those both new to or familiar with faceted hypertext systems. Some very basic resources are listed, as well as some very advanced ones. Some example web sites are mentioned, but there is no detailed technical discussion of any software. The user interface to any web site is extremely important, and this is briefly mentioned in two or three places (for example the discussion of lawforwa.org (see Example Web Sites)). The larger question of how to display information graphically and with hypertext is outside the scope of this bibliography. There are five sections: Recommended, Background, Not Relevant, Example Web Sites, and Mailing Lists. Background material is either introductory, advanced, or of peripheral interest, and can be read after the Recommended resources if the reader wants to know more. The Not Relevant category contains articles that may appear in bibliographies but are not relevant for my purposes.
  4. National Seminar on Classification in the Digital Environment : Papers contributed to the National Seminar an Classification in the Digital Environment, Bangalore, 9-11 August 2001 (2001) 0.03
    0.034019094 = product of:
      0.06803819 = sum of:
        0.011892734 = weight(_text_:information in 2047) [ClassicSimilarity], result of:
          0.011892734 = score(doc=2047,freq=24.0), product of:
            0.08850355 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.050415643 = queryNorm
            0.1343758 = fieldWeight in 2047, product of:
              4.8989797 = tf(freq=24.0), with freq of:
                24.0 = termFreq=24.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.015625 = fieldNorm(doc=2047)
        0.056145452 = sum of:
          0.042484205 = weight(_text_:organization in 2047) [ClassicSimilarity], result of:
            0.042484205 = score(doc=2047,freq=18.0), product of:
              0.17974974 = queryWeight, product of:
                3.5653565 = idf(docFreq=3399, maxDocs=44218)
                0.050415643 = queryNorm
              0.23635197 = fieldWeight in 2047, product of:
                4.2426405 = tf(freq=18.0), with freq of:
                  18.0 = termFreq=18.0
                3.5653565 = idf(docFreq=3399, maxDocs=44218)
                0.015625 = fieldNorm(doc=2047)
          0.013661247 = weight(_text_:22 in 2047) [ClassicSimilarity], result of:
            0.013661247 = score(doc=2047,freq=2.0), product of:
              0.17654699 = queryWeight, product of:
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.050415643 = queryNorm
              0.07738023 = fieldWeight in 2047, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.015625 = fieldNorm(doc=2047)
      0.5 = coord(2/4)
    
    Date
    2. 1.2004 10:35:22
    Footnote
    Rez. in: Knowledge organization 30(2003) no.1, S.40-42 (J.-E. Mai): "Introduction: This is a collection of papers presented at the National Seminar an Classification in the Digital Environment held in Bangalore, India, an August 9-11 2001. The collection contains 18 papers dealing with various issues related to knowledge organization and classification theory. The issue of transferring the knowledge, traditions, and theories of bibliographic classification to the digital environment is an important one, and I was excited to learn that proceedings from this seminar were available. Many of us experience frustration an a daily basis due to poorly constructed Web search mechanisms and Web directories. As a community devoted to making information easily accessible we have something to offer the Web community and a seminar an the topic was indeed much needed. Below are brief summaries of the 18 papers presented at the seminar. The order of the summaries follows the order of the papers in the proceedings. The titles of the paper are given in parentheses after the author's name. AHUJA and WESLEY (From "Subject" to "Need": Shift in Approach to Classifying Information an the Internet/Web) argue that traditional bibliographic classification systems fall in the digital environment. One problem is that bibliographic classification systems have been developed to organize library books an shelves and as such are unidimensional and tied to the paper-based environment. Another problem is that they are "subject" oriented in the sense that they assume a relatively stable universe of knowledge containing basic and fixed compartments of knowledge that can be identified and represented. Ahuja and Wesley suggest that classification in the digital environment should be need-oriented instead of subjectoriented ("One important link that binds knowledge and human being is his societal need. ... Hence, it will be ideal to organise knowledge based upon need instead of subject." (p. 10)).
    AHUJA and SATIJA (Relevance of Ranganathan's Classification Theory in the Age of Digital Libraries) note that traditional bibliographic classification systems have been applied in the digital environment with only limited success. They find that the "inherent flexibility of electronic manipulation of documents or their surrogates should allow a more organic approach to allocation of new subjects and appropriate linkages between subject hierarchies." (p. 18). Ahija and Satija also suggest that it is necessary to shift from a "subject" focus to a "need" focus when applying classification theory in the digital environment. They find Ranganathan's framework applicable in the digital environment. Although Ranganathan's focus is "subject oriented and hence emphasise the hierarchical and linear relationships" (p. 26), his framework "can be successfully adopted with certain modifications ... in the digital environment." (p. 26). SHAH and KUMAR (Model for System Unification of Geographical Schedules (Space Isolates)) report an a plan to develop a single schedule for geographical Subdivision that could be used across all classification systems. The authors argue that this is needed in order to facilitate interoperability in the digital environment. SAN SEGUNDO MANUEL (The Representation of Knowledge as a Symbolization of Productive Electronic Information) distills different approaches and definitions of the term "representation" as it relates to representation of knowledge in the library and information science literature and field. SHARADA (Linguistic and Document Classification: Paradigmatic Merger Possibilities) suggests the development of a universal indexing language. The foundation for the universal indexing language is Chomsky's Minimalist Program and Ranganathan's analytico-synthetic classification theory; Acording to the author, based an these approaches, it "should not be a problem" (p. 62) to develop a universal indexing language.
    SELVI (Knowledge Classification of Digital Information Materials with Special Reference to Clustering Technique) finds that it is essential to classify digital material since the amount of material that is becoming available is growing. Selvi suggests using automated classification to "group together those digital information materials or documents that are "most similar" (p. 65). This can be attained by using Cluster analysis methods. PRADHAN and THULASI (A Study of the Use of Classification and Indexing Systems by Web Resource Directories) compare and contrast the classificatory structures of Google, Yahoo, and Looksmart's directories and compare the directories to Dewey Decimal Classification, Library of Congress Classification and Colon Classification's classificatory structures. They find differentes between the directories' and the bibliographic classification systems' classificatory structures and principles. These differentes stem from the fact that bibliographic classification systems are used to "classify academic resources for the research community" (p. 83) and directories "aim to categorize a wider breath of information groups, entertainment, recreation, govt. information, commercial information" (p. 83). NEELAMEGHAN (Hierarchy, Hierarchical Relation and Hierarchical Arrangement) reviews the concept of hierarchy and the formation of hierarchical structures across a variety of domains. NEELAMEGHAN and PRADAD (Digitized Schemes for Subject Classification and Thesauri: Complementary Roles) demonstrate how thesaural relationships (NT, BT, and RT) can be applied to a classification scheme, the Colon Classification in this Gase. NEELAMEGHAN and ASUNDI (Metadata Framework for Describing Embodied Knowledge and Subject Content) propose to use the Generalized Facet Structure framework which is based an Ranganathan's General Theory of Knowledge Classification as a framework for describing the content of documents in a metadata element set for the representation of web documents. CHUDAMANI (Classified Catalogue as a Tool for Subject Based Information Retrieval in both Traditional and Electronic Library Environment) explains why the classified catalogue is superior to the alphabetic cata logue and argues that the same is true in the digital environment.
    PARAMESWARAN (Classification and Indexing: Impact of Classification Theory an PRECIS) reviews the PRECIS system and finds that "it Gould not escape from the impact of the theory of classification" (p. 131). The author further argues that the purpose of classification and subject indexing is the same and that both approaches depends an syntax. This leads to the conclusion that "there is an absolute syntax as the Indian theory of classification points out" (p. 131). SATYAPAL and SANJIVINI SATYAPAL (Classifying Documents According to Postulational Approach: 1. SA TSAN- A Computer Based Learning Package) and SATYAPAL and SANJIVINI SATYAPAL (Classifying Documents According to Postulational Approach: 2. Semi-Automatic Synthesis of CC Numbers) present an application to automate classification using a facet classification system, in this Gase, the Colon Classification system. GAIKAIWARI (An Interactive Application for Faceted Classification Systems) presents an application, called SRR, for managing and using a faceted classification scheme in a digital environment. IYER (Use of Instructional Technology to Support Traditional Classroom Learning: A Case Study) describes a course an "Information and Knowledge Organization" that she teaches at the University at Albany (SUNY). The course is a conceptual course that introduces the student to various aspects of knowledge organization. GOPINATH (Universal Classification: How can it be used?) lists fifteen uses of universal classifications and discusses the entities of a number of disciplines. GOPINATH (Knowledge Classification: The Theory of Classification) briefly reviews the foundations for research in automatic classification, summarizes the history of classification, and places Ranganathan's thought in the history of classification.
    Discussion The proceedings of the National Seminar an Classification in the Digital Environment give some insights. However, the depth of analysis and discussion is very uneven across the papers. Some of the papers have substantive research content while others appear to be notes used in the oral presentation. The treatments of the topics are very general in nature. Some papers have a very limited list of references while others have no bibliography. No index has been provided. The transfer of bibliographic knowledge organization theory to the digital environment is an important topic. However, as the papers at this conference have shown, it is also a difficult task. Of the 18 papers presented at this seminar an classification in the digital environment, only 4-5 papers actually deal directly with this important topic. The remaining papers deal with issues that are more or less relevant to classification in the digital environment without explicitly discussing the relation. The reason could be that the authors take up issues in knowledge organization that still need to be investigated and clarified before their application in the digital environment can be considered. Nonetheless, one wishes that the knowledge organization community would discuss the application of classification theory in the digital environment in greater detail. It is obvious from the comparisons of the classificatory structures of bibliographic classification systems and Web directories that these are different and that they probably should be different, since they serve different purposes. Interesting questions in the transformation of bibliographic classification theories to the digital environment are: "Given the existing principles in bibliographic knowledge organization, what are the optimum principles for organization of information, irrespectively of context?" and "What are the fundamental theoretical and practical principles for the construction of Web directories?" Unfortunately, the papers presented at this seminar do not attempt to answer or discuss these questions."
  5. Lim, E.: Southeast Asian subject gateways : an examination of their classification practices (2000) 0.03
    0.030791279 = product of:
      0.061582558 = sum of:
        0.02059882 = weight(_text_:information in 6040) [ClassicSimilarity], result of:
          0.02059882 = score(doc=6040,freq=2.0), product of:
            0.08850355 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.050415643 = queryNorm
            0.23274569 = fieldWeight in 6040, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.09375 = fieldNorm(doc=6040)
        0.04098374 = product of:
          0.08196748 = sum of:
            0.08196748 = weight(_text_:22 in 6040) [ClassicSimilarity], result of:
              0.08196748 = score(doc=6040,freq=2.0), product of:
                0.17654699 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.050415643 = queryNorm
                0.46428138 = fieldWeight in 6040, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.09375 = fieldNorm(doc=6040)
          0.5 = coord(1/2)
      0.5 = coord(2/4)
    
    Date
    22. 6.2002 19:42:47
    Theme
    Information Gateway
  6. Hennecke, J.: Workshop DDC and Knowledge Organization in the Digital Library (2000) 0.03
    0.026284594 = product of:
      0.05256919 = sum of:
        0.017165681 = weight(_text_:information in 4742) [ClassicSimilarity], result of:
          0.017165681 = score(doc=4742,freq=2.0), product of:
            0.08850355 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.050415643 = queryNorm
            0.19395474 = fieldWeight in 4742, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.078125 = fieldNorm(doc=4742)
        0.035403505 = product of:
          0.07080701 = sum of:
            0.07080701 = weight(_text_:organization in 4742) [ClassicSimilarity], result of:
              0.07080701 = score(doc=4742,freq=2.0), product of:
                0.17974974 = queryWeight, product of:
                  3.5653565 = idf(docFreq=3399, maxDocs=44218)
                  0.050415643 = queryNorm
                0.39391994 = fieldWeight in 4742, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5653565 = idf(docFreq=3399, maxDocs=44218)
                  0.078125 = fieldNorm(doc=4742)
          0.5 = coord(1/2)
      0.5 = coord(2/4)
    
    Theme
    Information Gateway
  7. LaBarre, K.: Adventures in faceted classification: a brave new world or a world of confusion? (2004) 0.03
    0.026020419 = product of:
      0.052040838 = sum of:
        0.01699316 = weight(_text_:information in 2634) [ClassicSimilarity], result of:
          0.01699316 = score(doc=2634,freq=4.0), product of:
            0.08850355 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.050415643 = queryNorm
            0.1920054 = fieldWeight in 2634, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.0546875 = fieldNorm(doc=2634)
        0.03504768 = product of:
          0.07009536 = sum of:
            0.07009536 = weight(_text_:organization in 2634) [ClassicSimilarity], result of:
              0.07009536 = score(doc=2634,freq=4.0), product of:
                0.17974974 = queryWeight, product of:
                  3.5653565 = idf(docFreq=3399, maxDocs=44218)
                  0.050415643 = queryNorm
                0.38996086 = fieldWeight in 2634, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  3.5653565 = idf(docFreq=3399, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=2634)
          0.5 = coord(1/2)
      0.5 = coord(2/4)
    
    Series
    Advances in knowledge organization; vol.9
    Source
    Knowledge organization and the global information society: Proceedings of the 8th International ISKO Conference 13-16 July 2004, London, UK. Ed.: I.C. McIlwaine
    Theme
    Information Gateway
  8. Hajdu Barát, A.: Usability and the user interfaces of classical information retrieval languages (2006) 0.03
    0.026020419 = product of:
      0.052040838 = sum of:
        0.01699316 = weight(_text_:information in 232) [ClassicSimilarity], result of:
          0.01699316 = score(doc=232,freq=4.0), product of:
            0.08850355 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.050415643 = queryNorm
            0.1920054 = fieldWeight in 232, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.0546875 = fieldNorm(doc=232)
        0.03504768 = product of:
          0.07009536 = sum of:
            0.07009536 = weight(_text_:organization in 232) [ClassicSimilarity], result of:
              0.07009536 = score(doc=232,freq=4.0), product of:
                0.17974974 = queryWeight, product of:
                  3.5653565 = idf(docFreq=3399, maxDocs=44218)
                  0.050415643 = queryNorm
                0.38996086 = fieldWeight in 232, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  3.5653565 = idf(docFreq=3399, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=232)
          0.5 = coord(1/2)
      0.5 = coord(2/4)
    
    Abstract
    This paper examines some traditional information searching methods and their role in Hungarian OPACs. What challenges are there in the digital and online environment? How do users work with them and do they give users satisfactory results? What kinds of techniques are users employing? In this paper I examine the user interfaces of UDC, thesauri, subject headings etc. in the Hungarian library. The key question of the paper is whether a universal system or local solutions is the best approach for searching in the digital environment.
    Series
    Advances in knowledge organization; vol.10
    Source
    Knowledge organization for a global learning society: Proceedings of the 9th International ISKO Conference, 4-7 July 2006, Vienna, Austria. Hrsg.: G. Budin, C. Swertz u. K. Mitgutsch
  9. Saeed, H.; Chaudry, A.S.: Potential of bibliographic tools to organize knowledge on the Internet : the use of Dewey Decimal classification scheme for organizing Web-based information resources (2001) 0.03
    0.025678985 = product of:
      0.05135797 = sum of:
        0.014565565 = weight(_text_:information in 6739) [ClassicSimilarity], result of:
          0.014565565 = score(doc=6739,freq=4.0), product of:
            0.08850355 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.050415643 = queryNorm
            0.16457605 = fieldWeight in 6739, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.046875 = fieldNorm(doc=6739)
        0.036792405 = product of:
          0.07358481 = sum of:
            0.07358481 = weight(_text_:organization in 6739) [ClassicSimilarity], result of:
              0.07358481 = score(doc=6739,freq=6.0), product of:
                0.17974974 = queryWeight, product of:
                  3.5653565 = idf(docFreq=3399, maxDocs=44218)
                  0.050415643 = queryNorm
                0.40937364 = fieldWeight in 6739, product of:
                  2.4494898 = tf(freq=6.0), with freq of:
                    6.0 = termFreq=6.0
                  3.5653565 = idf(docFreq=3399, maxDocs=44218)
                  0.046875 = fieldNorm(doc=6739)
          0.5 = coord(1/2)
      0.5 = coord(2/4)
    
    Abstract
    Possibilities are being explored to use traditional bibliographic tools, like Dewey Decimal Classification (DDC), Library of Congress Classification (LCC), Library of Congress Subject Headings (LCSH), and Universal Decimal Classification (UDC), to improve the organization of information resources on the Internet. The most recent edition of DDC, with its enhanced features, has greater potential than other traditional approaches. A review of selected Web sites that use DDC to organize Web resources indicates, however, that the full potential of the DDC scheme for this purpose has not been realized. While the review found that the DDC classification structure was more effective when compared with other knowledge organization systems, we conclude that DDC needs to be further enhanced to make it more suitable for this application. As widely reported in the professional literature, OCLC has conducted research on the potential of DDC for organizing Web resources. Such research, however, is experimental and should be supplemented by empirical studies with user participation.
    Source
    Knowledge organization. 28(2001) no.1, S.17-26
  10. Reiner, U.: Automatische DDC-Klassifizierung von bibliografischen Titeldatensätzen (2009) 0.03
    0.025659401 = product of:
      0.051318802 = sum of:
        0.017165681 = weight(_text_:information in 611) [ClassicSimilarity], result of:
          0.017165681 = score(doc=611,freq=2.0), product of:
            0.08850355 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.050415643 = queryNorm
            0.19395474 = fieldWeight in 611, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.078125 = fieldNorm(doc=611)
        0.03415312 = product of:
          0.06830624 = sum of:
            0.06830624 = weight(_text_:22 in 611) [ClassicSimilarity], result of:
              0.06830624 = score(doc=611,freq=2.0), product of:
                0.17654699 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.050415643 = queryNorm
                0.38690117 = fieldWeight in 611, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.078125 = fieldNorm(doc=611)
          0.5 = coord(1/2)
      0.5 = coord(2/4)
    
    Content
    Präsentation zum Vortrag anlässlich des 98. Deutscher Bibliothekartag in Erfurt: Ein neuer Blick auf Bibliotheken; TK10: Information erschließen und recherchieren Inhalte erschließen - mit neuen Tools
    Date
    22. 8.2009 12:54:24
  11. Peereboom, M.: DutchESS : Dutch Electronic Subject Service - a Dutch national collaborative effort (2000) 0.03
    0.02555398 = product of:
      0.05110796 = sum of:
        0.023785468 = weight(_text_:information in 4869) [ClassicSimilarity], result of:
          0.023785468 = score(doc=4869,freq=6.0), product of:
            0.08850355 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.050415643 = queryNorm
            0.2687516 = fieldWeight in 4869, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.0625 = fieldNorm(doc=4869)
        0.027322493 = product of:
          0.054644987 = sum of:
            0.054644987 = weight(_text_:22 in 4869) [ClassicSimilarity], result of:
              0.054644987 = score(doc=4869,freq=2.0), product of:
                0.17654699 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.050415643 = queryNorm
                0.30952093 = fieldWeight in 4869, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0625 = fieldNorm(doc=4869)
          0.5 = coord(1/2)
      0.5 = coord(2/4)
    
    Abstract
    This article gives an overview of the design and organisation of DutchESS, a Dutch information subject gateway created as a national collaborative effort of the National Library and a number of academic libraries. The combined centralised and distributed model of DutchESS is discussed, as well as its selection policy, its metadata format, classification scheme and retrieval options. Also some options for future collaboration on an international level are explored
    Date
    22. 6.2002 19:39:23
    Source
    Online information review. 24(2000) no.1, S.46-48
    Theme
    Information Gateway
  12. Lee, H.-L.; Olson, H.A.: Hierarchical navigation : an exploration of Yahoo! directories (2005) 0.03
    0.025319844 = product of:
      0.05063969 = sum of:
        0.02059882 = weight(_text_:information in 3991) [ClassicSimilarity], result of:
          0.02059882 = score(doc=3991,freq=8.0), product of:
            0.08850355 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.050415643 = queryNorm
            0.23274569 = fieldWeight in 3991, product of:
              2.828427 = tf(freq=8.0), with freq of:
                8.0 = termFreq=8.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.046875 = fieldNorm(doc=3991)
        0.030040871 = product of:
          0.060081743 = sum of:
            0.060081743 = weight(_text_:organization in 3991) [ClassicSimilarity], result of:
              0.060081743 = score(doc=3991,freq=4.0), product of:
                0.17974974 = queryWeight, product of:
                  3.5653565 = idf(docFreq=3399, maxDocs=44218)
                  0.050415643 = queryNorm
                0.33425218 = fieldWeight in 3991, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  3.5653565 = idf(docFreq=3399, maxDocs=44218)
                  0.046875 = fieldNorm(doc=3991)
          0.5 = coord(1/2)
      0.5 = coord(2/4)
    
    Abstract
    Although researchers have theorized the critical importance of classification in the organization of information, the classification approach seems to have given way to the alphabetical subject approach in retrieval tools widely used in libraries, and research an how users utilize classification or classification-like arrangements in information seeking has been scant. To better understand whether searchers consider classificatory structures a viable alternative to information retrieval, this article reports an a study of how 24 library and information science students used Yahoo! directories, a popular search service resembling classification, in completing an assigned simple task. Several issues emerged from the students' reporting of their search process and a comparison between hierarchical navigation and keyword searching: citation order of facets, precision vs. recall, and other factors influencing searchers' successes and preferences. The latter included search expertise, knowledge of the discipline, and time required to complete the search. Without a definitive conclusion, we suggest a number of directoons for further research.
    Source
    Knowledge organization. 32(2005) no.1, S.10-24
  13. LaBarre, K.: ¬A multi faceted view : use of facet analysis in the practice of website organization and access (2006) 0.03
    0.025134712 = product of:
      0.050269425 = sum of:
        0.014865918 = weight(_text_:information in 257) [ClassicSimilarity], result of:
          0.014865918 = score(doc=257,freq=6.0), product of:
            0.08850355 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.050415643 = queryNorm
            0.16796975 = fieldWeight in 257, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.0390625 = fieldNorm(doc=257)
        0.035403505 = product of:
          0.07080701 = sum of:
            0.07080701 = weight(_text_:organization in 257) [ClassicSimilarity], result of:
              0.07080701 = score(doc=257,freq=8.0), product of:
                0.17974974 = queryWeight, product of:
                  3.5653565 = idf(docFreq=3399, maxDocs=44218)
                  0.050415643 = queryNorm
                0.39391994 = fieldWeight in 257, product of:
                  2.828427 = tf(freq=8.0), with freq of:
                    8.0 = termFreq=8.0
                  3.5653565 = idf(docFreq=3399, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=257)
          0.5 = coord(1/2)
      0.5 = coord(2/4)
    
    Abstract
    In 2001, information architects and knowledge management specialists charged with designing websites and access to corporate knowledge bases seemingly re-discovered a legacy form of information organization and access: faceted analytico-synthetic theory (FAST). Instrumental in creating new and different ways for people to engage with the digital content of the Web, the members of this group have clearly recognized that faceted approaches have the potential to improve access to information on the web. Some of these practitioners explicitly use the forms and language of FAST, while others seem to mimic the forms implicitly (Adkisson, 2003). The focus of this ongoing research study is two-fold. First, access and organizational structures in a stratified random sample of 200 DMOZ websites were examined for evidence of the use of FAST. Second, in the context of unstructured interviews, the understanding and use of FAST among a group of eighteen practitioners is uncovered. This is a preliminary report of the website component capture and interview phases of this research study. Future work will involve formalizing a set of feature guidelines drawn from the initial phases of this research study. Preliminary observations will be drawn from the first phase of this study.
    Series
    Advances in knowledge organization; vol.10
    Source
    Knowledge organization for a global learning society: Proceedings of the 9th International ISKO Conference, 4-7 July 2006, Vienna, Austria. Hrsg.: G. Budin, C. Swertz u. K. Mitgutsch
  14. Binding, C.; Tudhope, D.: Integrating faceted structure into the search process (2004) 0.02
    0.023545908 = product of:
      0.047091816 = sum of:
        0.01029941 = weight(_text_:information in 2627) [ClassicSimilarity], result of:
          0.01029941 = score(doc=2627,freq=2.0), product of:
            0.08850355 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.050415643 = queryNorm
            0.116372846 = fieldWeight in 2627, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.046875 = fieldNorm(doc=2627)
        0.036792405 = product of:
          0.07358481 = sum of:
            0.07358481 = weight(_text_:organization in 2627) [ClassicSimilarity], result of:
              0.07358481 = score(doc=2627,freq=6.0), product of:
                0.17974974 = queryWeight, product of:
                  3.5653565 = idf(docFreq=3399, maxDocs=44218)
                  0.050415643 = queryNorm
                0.40937364 = fieldWeight in 2627, product of:
                  2.4494898 = tf(freq=6.0), with freq of:
                    6.0 = termFreq=6.0
                  3.5653565 = idf(docFreq=3399, maxDocs=44218)
                  0.046875 = fieldNorm(doc=2627)
          0.5 = coord(1/2)
      0.5 = coord(2/4)
    
    Abstract
    The nature of search requirements is perceived to be changing, fuelled by a growing dissatisfaction with the marginal accuracy and often overwhelming quantity of results from simple keyword matching techniques. Traditional search interfaces fail to acknowledge and utilise the implicit underlying structure present within a typical keyword query. Faceted structure can (and should) perform a significant role in this area - acting as the basis for mediation between searcher and indexer, and guiding query formulation and reformulation by interactively educating the user about the native domain. This paper discusses the possible benefits of applying faceted knowledge organization systems to enhance query structure, query visualisation and the overall query process, drawing an the outcomes of a recently completed research project.
    Series
    Advances in knowledge organization; vol.9
    Source
    Knowledge organization and the global information society: Proceedings of the 8th International ISKO Conference 13-16 July 2004, London, UK. Ed.: I.C. McIlwaine
  15. Slavic, A.; Cordeiro, M.I.: Core requirements for automation of analytico-synthetic classifications (2004) 0.02
    0.022303218 = product of:
      0.044606436 = sum of:
        0.014565565 = weight(_text_:information in 2651) [ClassicSimilarity], result of:
          0.014565565 = score(doc=2651,freq=4.0), product of:
            0.08850355 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.050415643 = queryNorm
            0.16457605 = fieldWeight in 2651, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.046875 = fieldNorm(doc=2651)
        0.030040871 = product of:
          0.060081743 = sum of:
            0.060081743 = weight(_text_:organization in 2651) [ClassicSimilarity], result of:
              0.060081743 = score(doc=2651,freq=4.0), product of:
                0.17974974 = queryWeight, product of:
                  3.5653565 = idf(docFreq=3399, maxDocs=44218)
                  0.050415643 = queryNorm
                0.33425218 = fieldWeight in 2651, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  3.5653565 = idf(docFreq=3399, maxDocs=44218)
                  0.046875 = fieldNorm(doc=2651)
          0.5 = coord(1/2)
      0.5 = coord(2/4)
    
    Abstract
    The paper analyses the importance of data presentation and modelling and its role in improving the management, use and exchange of analytico-synthetic classifications in automated systems. Inefficiencies, in this respect, hinder the automation of classification systems that offer the possibility of building compound index/search terms. The lack of machine readable data expressing the semantics and structure of a classification vocabulary has negative effects on information management and retrieval, thus restricting the potential of both automated systems and classifications themselves. The authors analysed the data representation structure of three general analytico-synthetic classification systems (BC2-Bliss Bibliographic Classification; BSO-Broad System of Ordering; UDC-Universal Decimal Classification) and put forward some core requirements for classification data representation
    Series
    Advances in knowledge organization; vol.9
    Source
    Knowledge organization and the global information society: Proceedings of the 8th International ISKO Conference 13-16 July 2004, London, UK. Ed.: I.C. McIlwaine
  16. Slavic, A.: UDC in subject gateways : experiment or opportunity? (2006) 0.02
    0.021399152 = product of:
      0.042798303 = sum of:
        0.01213797 = weight(_text_:information in 4879) [ClassicSimilarity], result of:
          0.01213797 = score(doc=4879,freq=4.0), product of:
            0.08850355 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.050415643 = queryNorm
            0.13714671 = fieldWeight in 4879, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.0390625 = fieldNorm(doc=4879)
        0.030660335 = product of:
          0.06132067 = sum of:
            0.06132067 = weight(_text_:organization in 4879) [ClassicSimilarity], result of:
              0.06132067 = score(doc=4879,freq=6.0), product of:
                0.17974974 = queryWeight, product of:
                  3.5653565 = idf(docFreq=3399, maxDocs=44218)
                  0.050415643 = queryNorm
                0.34114468 = fieldWeight in 4879, product of:
                  2.4494898 = tf(freq=6.0), with freq of:
                    6.0 = termFreq=6.0
                  3.5653565 = idf(docFreq=3399, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=4879)
          0.5 = coord(1/2)
      0.5 = coord(2/4)
    
    Abstract
    The paper gives a short overview of the history of use of UDC in Internet subject gateways (SGs) with an English interface, from 1993 to 2006. There were in total, nine quality controlled SGs that were functional for shorter or longer periods of time. Their typology and functionality is described. Quality SGs have evolved and the role of classification has changed accordingly from supporting subject organization on the interface and automatic categorization of resources, towards supporting a semantic linking, control and vocabulary mapping between different indexing systems in subject hubs and federated SGs. In this period, many SGs ceased to exist and little information remains available regarding their status. SGs currently using UDC, for some part of their resource organization, do not use a UDC subject hierarchy at the interface and its role in resource indexing has become more difficult to observe. Since 2000, UDC has become more prevalent in East European SGs, portals and hubs, which are outside the scope of this research. This paper is an attempt to provide a record on this particular application of UDC and to offer some consideration of the changes in requirements when it comes to the use of library classification in resource discovery.
    Source
    Knowledge organization. 33(2006) no.2, S.67-85
    Theme
    Information Gateway
  17. Van Dijck, P.: Introduction to XFML (2003) 0.02
    0.02052752 = product of:
      0.04105504 = sum of:
        0.013732546 = weight(_text_:information in 2474) [ClassicSimilarity], result of:
          0.013732546 = score(doc=2474,freq=2.0), product of:
            0.08850355 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.050415643 = queryNorm
            0.1551638 = fieldWeight in 2474, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.0625 = fieldNorm(doc=2474)
        0.027322493 = product of:
          0.054644987 = sum of:
            0.054644987 = weight(_text_:22 in 2474) [ClassicSimilarity], result of:
              0.054644987 = score(doc=2474,freq=2.0), product of:
                0.17654699 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.050415643 = queryNorm
                0.30952093 = fieldWeight in 2474, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0625 = fieldNorm(doc=2474)
          0.5 = coord(1/2)
      0.5 = coord(2/4)
    
    Abstract
    Van Dijck builds up an example of actual XFML by showing how to organize tourist information about what restaurants in what cities feature which kind of music: <facet id="city">City</facet> and <topic id="ny" facetid="city"><name>New York</name></topic> combine to mean that New York is the name of a city internally represented as "ny". It is written in the usual clear and practical style of articles on xml.com. Highly recommended as an introduction for anyone interested in XFML.
    Source
    http://www.xml.com/lpt/a/2003/01/22/xfml.html
  18. Chowdhury, S.; Chowdhury, G.G.: Using DDC to create a visual knowledge map as an aid to online information retrieval (2004) 0.02
    0.020313032 = product of:
      0.040626064 = sum of:
        0.020598818 = weight(_text_:information in 2643) [ClassicSimilarity], result of:
          0.020598818 = score(doc=2643,freq=18.0), product of:
            0.08850355 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.050415643 = queryNorm
            0.23274568 = fieldWeight in 2643, product of:
              4.2426405 = tf(freq=18.0), with freq of:
                18.0 = termFreq=18.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.03125 = fieldNorm(doc=2643)
        0.020027246 = product of:
          0.040054493 = sum of:
            0.040054493 = weight(_text_:organization in 2643) [ClassicSimilarity], result of:
              0.040054493 = score(doc=2643,freq=4.0), product of:
                0.17974974 = queryWeight, product of:
                  3.5653565 = idf(docFreq=3399, maxDocs=44218)
                  0.050415643 = queryNorm
                0.22283478 = fieldWeight in 2643, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  3.5653565 = idf(docFreq=3399, maxDocs=44218)
                  0.03125 = fieldNorm(doc=2643)
          0.5 = coord(1/2)
      0.5 = coord(2/4)
    
    Content
    1. Introduction Web search engines and digital libraries usually expect the users to use search terms that most accurately represent their information needs. Finding the most appropriate search terms to represent an information need is an age old problem in information retrieval. Keyword or phrase search may produce good search results as long as the search terms or phrase(s) match those used by the authors and have been chosen for indexing by the concerned information retrieval system. Since this does not always happen, a large number of false drops are produced by information retrieval systems. The retrieval results become worse in very large systems that deal with millions of records, such as the Web search engines and digital libraries. Vocabulary control tools are used to improve the performance of text retrieval systems. Thesauri, the most common type of vocabulary control tool used in information retrieval, appeared in the late fifties, designed for use with the emerging post-coordinate indexing systems of that time. They are used to exert terminology control in indexing, and to aid in searching by allowing the searcher to select appropriate search terms. A large volume of literature exists describing the design features, and experiments with the use, of thesauri in various types of information retrieval systems (see for example, Furnas et.al., 1987; Bates, 1986, 1998; Milstead, 1997, and Shiri et al., 2002).
    Series
    Advances in knowledge organization; vol.9
    Source
    Knowledge organization and the global information society: Proceedings of the 8th International ISKO Conference 13-16 July 2004, London, UK. Ed.: I.C. McIlwaine
  19. Broughton, V.; Lane, H.: ¬The Bliss Bibliographic Classification in action : moving from a special to a universal faceted classification via a digital platform (2004) 0.02
    0.019621588 = product of:
      0.039243177 = sum of:
        0.008582841 = weight(_text_:information in 2633) [ClassicSimilarity], result of:
          0.008582841 = score(doc=2633,freq=2.0), product of:
            0.08850355 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.050415643 = queryNorm
            0.09697737 = fieldWeight in 2633, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.0390625 = fieldNorm(doc=2633)
        0.030660335 = product of:
          0.06132067 = sum of:
            0.06132067 = weight(_text_:organization in 2633) [ClassicSimilarity], result of:
              0.06132067 = score(doc=2633,freq=6.0), product of:
                0.17974974 = queryWeight, product of:
                  3.5653565 = idf(docFreq=3399, maxDocs=44218)
                  0.050415643 = queryNorm
                0.34114468 = fieldWeight in 2633, product of:
                  2.4494898 = tf(freq=6.0), with freq of:
                    6.0 = termFreq=6.0
                  3.5653565 = idf(docFreq=3399, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=2633)
          0.5 = coord(1/2)
      0.5 = coord(2/4)
    
    Abstract
    This paper examines the differences in the functional requirements of a faceted classification system when used in a conventional print-based environment (where the emphasis is on the browse function of the classification) as compared to its application to digital collections (where the retrieval function is paramount). The use of the second edition of Bliss's Bibliographic Classification (BC2) as a general classification for the physical organization of undergraduate collections in the University of Cambridge is described. The development of an online tool for indexing of digital resources using the Bliss terminologies is also described, and the advantages of facet analysis for data structuring and system syntax within the prototype tool are discussed. The move from the print-based environment to the digital makes different demands an both the content and the syntax of the classification, and while the conceptual structure remains similar, manipulation of the scheme and the process of content description can be markedly different.
    Series
    Advances in knowledge organization; vol.9
    Source
    Knowledge organization and the global information society: Proceedings of the 8th International ISKO Conference 13-16 July 2004, London, UK. Ed.: I.C. McIlwaine
  20. Adcock, L.: Building a virtual music library : towards a convergence of classification within Internet-based catalogues (2001) 0.02
    0.018399216 = product of:
      0.036798432 = sum of:
        0.012015978 = weight(_text_:information in 6955) [ClassicSimilarity], result of:
          0.012015978 = score(doc=6955,freq=2.0), product of:
            0.08850355 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.050415643 = queryNorm
            0.13576832 = fieldWeight in 6955, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.0546875 = fieldNorm(doc=6955)
        0.024782453 = product of:
          0.049564905 = sum of:
            0.049564905 = weight(_text_:organization in 6955) [ClassicSimilarity], result of:
              0.049564905 = score(doc=6955,freq=2.0), product of:
                0.17974974 = queryWeight, product of:
                  3.5653565 = idf(docFreq=3399, maxDocs=44218)
                  0.050415643 = queryNorm
                0.27574396 = fieldWeight in 6955, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5653565 = idf(docFreq=3399, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=6955)
          0.5 = coord(1/2)
      0.5 = coord(2/4)
    
    Abstract
    This paper aims to explore the changes in the role of classification and the opportunities presented for classification in the twenty-first century, especially in respect to the development of information technology. The issues arose as part of the EC funded MIRACLE project that represents the foundation for a virtual music library to serve visually impaired people. The MIRACLE partners chose the UDC as the common classification for the converging music catalogues. This paper investigates the nature of adaptation required by each participating library and the way in which the classification is used as a searching tool. Further developments in the use of IT-assisted classification are proposed
    Source
    Knowledge organization. 28(2001) no.2, S.66-74

Languages

  • e 58
  • d 6

Types

  • a 52
  • el 9
  • m 4
  • s 2
  • x 1
  • More… Less…