Search (317 results, page 1 of 16)

  • × theme_ss:"Retrievalalgorithmen"
  1. Burgin, R.: ¬The retrieval effectiveness of 5 clustering algorithms as a function of indexing exhaustivity (1995) 0.06
    0.060737852 = product of:
      0.0809838 = sum of:
        0.008582841 = weight(_text_:information in 3365) [ClassicSimilarity], result of:
          0.008582841 = score(doc=3365,freq=2.0), product of:
            0.08850355 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.050415643 = queryNorm
            0.09697737 = fieldWeight in 3365, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.0390625 = fieldNorm(doc=3365)
        0.0553244 = weight(_text_:standards in 3365) [ClassicSimilarity], result of:
          0.0553244 = score(doc=3365,freq=2.0), product of:
            0.22470023 = queryWeight, product of:
              4.4569545 = idf(docFreq=1393, maxDocs=44218)
              0.050415643 = queryNorm
            0.24621427 = fieldWeight in 3365, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.4569545 = idf(docFreq=1393, maxDocs=44218)
              0.0390625 = fieldNorm(doc=3365)
        0.01707656 = product of:
          0.03415312 = sum of:
            0.03415312 = weight(_text_:22 in 3365) [ClassicSimilarity], result of:
              0.03415312 = score(doc=3365,freq=2.0), product of:
                0.17654699 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.050415643 = queryNorm
                0.19345059 = fieldWeight in 3365, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=3365)
          0.5 = coord(1/2)
      0.75 = coord(3/4)
    
    Abstract
    The retrieval effectiveness of 5 hierarchical clustering methods (single link, complete link, group average, Ward's method, and weighted average) is examined as a function of indexing exhaustivity with 4 test collections (CR, Cranfield, Medlars, and Time). Evaluations of retrieval effectiveness, based on 3 measures of optimal retrieval performance, confirm earlier findings that the performance of a retrieval system based on single link clustering varies as a function of indexing exhaustivity but fail ti find similar patterns for other clustering methods. The data also confirm earlier findings regarding the poor performance of single link clustering is a retrieval environment. The poor performance of single link clustering appears to derive from that method's tendency to produce a small number of large, ill defined document clusters. By contrast, the data examined here found the retrieval performance of the other clustering methods to be general comparable. The data presented also provides an opportunity to examine the theoretical limits of cluster based retrieval and to compare these theoretical limits to the effectiveness of operational implementations. Performance standards of the 4 document collections examined were found to vary widely, and the effectiveness of operational implementations were found to be in the range defined as unacceptable. Further improvements in search strategies and document representations warrant investigations
    Date
    22. 2.1996 11:20:06
    Source
    Journal of the American Society for Information Science. 46(1995) no.8, S.562-572
  2. Furner, J.: ¬A unifying model of document relatedness for hybrid search engines (2003) 0.06
    0.055682447 = product of:
      0.11136489 = sum of:
        0.01029941 = weight(_text_:information in 2717) [ClassicSimilarity], result of:
          0.01029941 = score(doc=2717,freq=2.0), product of:
            0.08850355 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.050415643 = queryNorm
            0.116372846 = fieldWeight in 2717, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.046875 = fieldNorm(doc=2717)
        0.10106549 = sum of:
          0.060081743 = weight(_text_:organization in 2717) [ClassicSimilarity], result of:
            0.060081743 = score(doc=2717,freq=4.0), product of:
              0.17974974 = queryWeight, product of:
                3.5653565 = idf(docFreq=3399, maxDocs=44218)
                0.050415643 = queryNorm
              0.33425218 = fieldWeight in 2717, product of:
                2.0 = tf(freq=4.0), with freq of:
                  4.0 = termFreq=4.0
                3.5653565 = idf(docFreq=3399, maxDocs=44218)
                0.046875 = fieldNorm(doc=2717)
          0.04098374 = weight(_text_:22 in 2717) [ClassicSimilarity], result of:
            0.04098374 = score(doc=2717,freq=2.0), product of:
              0.17654699 = queryWeight, product of:
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.050415643 = queryNorm
              0.23214069 = fieldWeight in 2717, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.046875 = fieldNorm(doc=2717)
      0.5 = coord(2/4)
    
    Abstract
    Previous work an search-engine design has indicated that information-seekers may benefit from being given the opportunity to exploit multiple sources of evidence of document relatedness. Few existing systems, however, give users more than minimal control over the selections that may be made among methods of exploitation. By applying the methods of "document network analysis" (DNA), a unifying, graph-theoretic model of content-, collaboration-, and context-based systems (CCC) may be developed in which the nature of the similarities between types of document relatedness and document ranking are clarified. The usefulness of the approach to system design suggested by this model may be tested by constructing and evaluating a prototype system (UCXtra) that allows searchers to maintain control over the multiple ways in which document collections may be ranked and re-ranked.
    Date
    11. 9.2004 17:32:22
    Series
    Advances in knowledge organization; vol.8
    Source
    Challenges in knowledge representation and organization for the 21st century: Integration of knowledge across boundaries. Proceedings of the 7th ISKO International Conference Granada, Spain, July 10-13, 2002. Ed.: M. López-Huertas
  3. Voorhees, E.M.: Implementing agglomerative hierarchic clustering algorithms for use in document retrieval (1986) 0.04
    0.04105504 = product of:
      0.08211008 = sum of:
        0.027465092 = weight(_text_:information in 402) [ClassicSimilarity], result of:
          0.027465092 = score(doc=402,freq=2.0), product of:
            0.08850355 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.050415643 = queryNorm
            0.3103276 = fieldWeight in 402, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.125 = fieldNorm(doc=402)
        0.054644987 = product of:
          0.109289974 = sum of:
            0.109289974 = weight(_text_:22 in 402) [ClassicSimilarity], result of:
              0.109289974 = score(doc=402,freq=2.0), product of:
                0.17654699 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.050415643 = queryNorm
                0.61904186 = fieldWeight in 402, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.125 = fieldNorm(doc=402)
          0.5 = coord(1/2)
      0.5 = coord(2/4)
    
    Source
    Information processing and management. 22(1986) no.6, S.465-476
  4. Baloh, P.; Desouza, K.C.; Hackney, R.: Contextualizing organizational interventions of knowledge management systems : a design science perspectiveA domain analysis (2012) 0.04
    0.03906973 = product of:
      0.07813946 = sum of:
        0.008582841 = weight(_text_:information in 241) [ClassicSimilarity], result of:
          0.008582841 = score(doc=241,freq=2.0), product of:
            0.08850355 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.050415643 = queryNorm
            0.09697737 = fieldWeight in 241, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.0390625 = fieldNorm(doc=241)
        0.06955662 = sum of:
          0.035403505 = weight(_text_:organization in 241) [ClassicSimilarity], result of:
            0.035403505 = score(doc=241,freq=2.0), product of:
              0.17974974 = queryWeight, product of:
                3.5653565 = idf(docFreq=3399, maxDocs=44218)
                0.050415643 = queryNorm
              0.19695997 = fieldWeight in 241, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                3.5653565 = idf(docFreq=3399, maxDocs=44218)
                0.0390625 = fieldNorm(doc=241)
          0.03415312 = weight(_text_:22 in 241) [ClassicSimilarity], result of:
            0.03415312 = score(doc=241,freq=2.0), product of:
              0.17654699 = queryWeight, product of:
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.050415643 = queryNorm
              0.19345059 = fieldWeight in 241, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.0390625 = fieldNorm(doc=241)
      0.5 = coord(2/4)
    
    Abstract
    We address how individuals' (workers) knowledge needs influence the design of knowledge management systems (KMS), enabling knowledge creation and utilization. It is evident that KMS technologies and activities are indiscriminately deployed in most organizations with little regard to the actual context of their adoption. Moreover, it is apparent that the extant literature pertaining to knowledge management projects is frequently deficient in identifying the variety of factors indicative for successful KMS. This presents an obvious business practice and research gap that requires a critical analysis of the necessary intervention that will actually improve how workers can leverage and form organization-wide knowledge. This research involved an extensive review of the literature, a grounded theory methodological approach and rigorous data collection and synthesis through an empirical case analysis (Parsons Brinckerhoff and Samsung). The contribution of this study is the formulation of a model for designing KMS based upon the design science paradigm, which aspires to create artifacts that are interdependent of people and organizations. The essential proposition is that KMS design and implementation must be contextualized in relation to knowledge needs and that these will differ for various organizational settings. The findings present valuable insights and further understanding of the way in which KMS design efforts should be focused.
    Date
    11. 6.2012 14:22:34
    Source
    Journal of the American Society for Information Science and Technology. 63(2012) no.5, S.948-966
  5. Back, J.: ¬An evaluation of relevancy ranking techniques used by Internet search engines (2000) 0.04
    0.03592316 = product of:
      0.07184632 = sum of:
        0.024031956 = weight(_text_:information in 3445) [ClassicSimilarity], result of:
          0.024031956 = score(doc=3445,freq=2.0), product of:
            0.08850355 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.050415643 = queryNorm
            0.27153665 = fieldWeight in 3445, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.109375 = fieldNorm(doc=3445)
        0.047814365 = product of:
          0.09562873 = sum of:
            0.09562873 = weight(_text_:22 in 3445) [ClassicSimilarity], result of:
              0.09562873 = score(doc=3445,freq=2.0), product of:
                0.17654699 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.050415643 = queryNorm
                0.5416616 = fieldWeight in 3445, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.109375 = fieldNorm(doc=3445)
          0.5 = coord(1/2)
      0.5 = coord(2/4)
    
    Date
    25. 8.2005 17:42:22
    Source
    Library and information research news. 24(2000) no.77, S.30-34
  6. Clarke, C.L.A.; Cormack, G.V.; Burkowski, F.J.: Shortest substring ranking : multitext experiments for TREC-4 (1996) 0.03
    0.033194643 = product of:
      0.13277857 = sum of:
        0.13277857 = weight(_text_:standards in 549) [ClassicSimilarity], result of:
          0.13277857 = score(doc=549,freq=2.0), product of:
            0.22470023 = queryWeight, product of:
              4.4569545 = idf(docFreq=1393, maxDocs=44218)
              0.050415643 = queryNorm
            0.59091425 = fieldWeight in 549, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.4569545 = idf(docFreq=1393, maxDocs=44218)
              0.09375 = fieldNorm(doc=549)
      0.25 = coord(1/4)
    
    Imprint
    Gaithersburgh, MD : National Institute of Standards and Technology
  7. Savoy, J.; Ndarugendamwo, M.; Vrajitoru, D.: Report on the TREC-4 experiment : combining probabilistic and vector-space schemes (1996) 0.03
    0.033194643 = product of:
      0.13277857 = sum of:
        0.13277857 = weight(_text_:standards in 7574) [ClassicSimilarity], result of:
          0.13277857 = score(doc=7574,freq=2.0), product of:
            0.22470023 = queryWeight, product of:
              4.4569545 = idf(docFreq=1393, maxDocs=44218)
              0.050415643 = queryNorm
            0.59091425 = fieldWeight in 7574, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.4569545 = idf(docFreq=1393, maxDocs=44218)
              0.09375 = fieldNorm(doc=7574)
      0.25 = coord(1/4)
    
    Imprint
    Gaithersburgh, MD : National Institute of Standards and Technology
  8. Belkin, N.J.; Cool, C.; Koenemann, J.; Ng, K.B.; Park, S.: Using relevance feedback and ranking in interactive searching (1996) 0.03
    0.033194643 = product of:
      0.13277857 = sum of:
        0.13277857 = weight(_text_:standards in 7588) [ClassicSimilarity], result of:
          0.13277857 = score(doc=7588,freq=2.0), product of:
            0.22470023 = queryWeight, product of:
              4.4569545 = idf(docFreq=1393, maxDocs=44218)
              0.050415643 = queryNorm
            0.59091425 = fieldWeight in 7588, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.4569545 = idf(docFreq=1393, maxDocs=44218)
              0.09375 = fieldNorm(doc=7588)
      0.25 = coord(1/4)
    
    Imprint
    Gaithersburgh, MD : National Institute of Standards and Technology
  9. Guerrero-Bote, V.P.; Moya Anegón, F. de; Herrero Solana, V.: Document organization using Kohonen's algorithm (2002) 0.03
    0.03191998 = product of:
      0.06383996 = sum of:
        0.023785468 = weight(_text_:information in 2564) [ClassicSimilarity], result of:
          0.023785468 = score(doc=2564,freq=6.0), product of:
            0.08850355 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.050415643 = queryNorm
            0.2687516 = fieldWeight in 2564, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.0625 = fieldNorm(doc=2564)
        0.040054493 = product of:
          0.080108985 = sum of:
            0.080108985 = weight(_text_:organization in 2564) [ClassicSimilarity], result of:
              0.080108985 = score(doc=2564,freq=4.0), product of:
                0.17974974 = queryWeight, product of:
                  3.5653565 = idf(docFreq=3399, maxDocs=44218)
                  0.050415643 = queryNorm
                0.44566956 = fieldWeight in 2564, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  3.5653565 = idf(docFreq=3399, maxDocs=44218)
                  0.0625 = fieldNorm(doc=2564)
          0.5 = coord(1/2)
      0.5 = coord(2/4)
    
    Abstract
    The classification of documents from a bibliographic database is a task that is linked to processes of information retrieval based on partial matching. A method is described of vectorizing reference documents from LISA which permits their topological organization using Kohonen's algorithm. As an example a map is generated of 202 documents from LISA, and an analysis is made of the possibilities of this type of neural network with respect to the development of information retrieval systems based on graphical browsing.
    Source
    Information processing and management. 38(2002) no.1, S.79-89
  10. Losada, D.E.; Barreiro, A.: Emebedding term similarity and inverse document frequency into a logical model of information retrieval (2003) 0.03
    0.027393792 = product of:
      0.054787584 = sum of:
        0.027465092 = weight(_text_:information in 1422) [ClassicSimilarity], result of:
          0.027465092 = score(doc=1422,freq=8.0), product of:
            0.08850355 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.050415643 = queryNorm
            0.3103276 = fieldWeight in 1422, product of:
              2.828427 = tf(freq=8.0), with freq of:
                8.0 = termFreq=8.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.0625 = fieldNorm(doc=1422)
        0.027322493 = product of:
          0.054644987 = sum of:
            0.054644987 = weight(_text_:22 in 1422) [ClassicSimilarity], result of:
              0.054644987 = score(doc=1422,freq=2.0), product of:
                0.17654699 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.050415643 = queryNorm
                0.30952093 = fieldWeight in 1422, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0625 = fieldNorm(doc=1422)
          0.5 = coord(1/2)
      0.5 = coord(2/4)
    
    Abstract
    We propose a novel approach to incorporate term similarity and inverse document frequency into a logical model of information retrieval. The ability of the logic to handle expressive representations along with the use of such classical notions are promising characteristics for IR systems. The approach proposed here has been efficiently implemented and experiments against test collections are presented.
    Date
    22. 3.2003 19:27:23
    Footnote
    Beitrag eines Themenheftes: Mathematical, logical, and formal methods in information retrieval
    Source
    Journal of the American Society for Information Science and technology. 54(2003) no.4, S.285-301
  11. Ding, Y.; Chowdhury, G.; Foo, S.: Organsising keywords in a Web search environment : a methodology based on co-word analysis (2000) 0.03
    0.026535526 = product of:
      0.05307105 = sum of:
        0.02303018 = weight(_text_:information in 105) [ClassicSimilarity], result of:
          0.02303018 = score(doc=105,freq=10.0), product of:
            0.08850355 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.050415643 = queryNorm
            0.2602176 = fieldWeight in 105, product of:
              3.1622777 = tf(freq=10.0), with freq of:
                10.0 = termFreq=10.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.046875 = fieldNorm(doc=105)
        0.030040871 = product of:
          0.060081743 = sum of:
            0.060081743 = weight(_text_:organization in 105) [ClassicSimilarity], result of:
              0.060081743 = score(doc=105,freq=4.0), product of:
                0.17974974 = queryWeight, product of:
                  3.5653565 = idf(docFreq=3399, maxDocs=44218)
                  0.050415643 = queryNorm
                0.33425218 = fieldWeight in 105, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  3.5653565 = idf(docFreq=3399, maxDocs=44218)
                  0.046875 = fieldNorm(doc=105)
          0.5 = coord(1/2)
      0.5 = coord(2/4)
    
    Abstract
    The rapid development of the Internet and World Wide Web has caused some critical problem for information retrieval. Researchers have made several attempts to solve these problems. Thesauri and subject heading lists as traditional information retrieval tools have been criticised for their efficiency to tackle these newly emerging problems. This paper proposes an information retrieval tool generated by cocitation analysis, comprising keyword clusters with relationships based on the co-occurrences of keywords in the literature. Such a tool can play the role of an associative thesaurus that can provide information about the keywords in a domain that might be useful for information searching and query expansion
    Series
    Advances in knowledge organization; vol.7
    Source
    Dynamism and stability in knowledge organization: Proceedings of the 6th International ISKO-Conference, 10-13 July 2000, Toronto, Canada. Ed.: C. Beghtol et al
  12. Herrera-Viedma, E.; Cordón, O.; Herrera, J.C.; Luqe, M.: ¬An IRS based on multi-granular lnguistic information (2003) 0.03
    0.026535526 = product of:
      0.05307105 = sum of:
        0.02303018 = weight(_text_:information in 2740) [ClassicSimilarity], result of:
          0.02303018 = score(doc=2740,freq=10.0), product of:
            0.08850355 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.050415643 = queryNorm
            0.2602176 = fieldWeight in 2740, product of:
              3.1622777 = tf(freq=10.0), with freq of:
                10.0 = termFreq=10.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.046875 = fieldNorm(doc=2740)
        0.030040871 = product of:
          0.060081743 = sum of:
            0.060081743 = weight(_text_:organization in 2740) [ClassicSimilarity], result of:
              0.060081743 = score(doc=2740,freq=4.0), product of:
                0.17974974 = queryWeight, product of:
                  3.5653565 = idf(docFreq=3399, maxDocs=44218)
                  0.050415643 = queryNorm
                0.33425218 = fieldWeight in 2740, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  3.5653565 = idf(docFreq=3399, maxDocs=44218)
                  0.046875 = fieldNorm(doc=2740)
          0.5 = coord(1/2)
      0.5 = coord(2/4)
    
    Abstract
    An information retrieval system (IRS) based on fuzzy multi-granular linguistic information is proposed. The system has an evaluation method to process multi-granular linguistic information, in such a way that the inputs to the IRS are represented in a different linguistic domain than the outputs. The system accepts Boolean queries whose terms are weighted by means of the ordinal linguistic values represented by the linguistic variable "Importance" assessed an a label set S. The system evaluates the weighted queries according to a threshold semantic and obtains the linguistic retrieval status values (RSV) of documents represented by a linguistic variable "Relevance" expressed in a different label set S'. The advantage of this linguistic IRS with respect to others is that the use of the multi-granular linguistic information facilitates and improves the IRS-user interaction
    Series
    Advances in knowledge organization; vol.8
    Source
    Challenges in knowledge representation and organization for the 21st century: Integration of knowledge across boundaries. Proceedings of the 7th ISKO International Conference Granada, Spain, July 10-13, 2002. Ed.: M. López-Huertas
  13. Chang, C.-H.; Hsu, C.-C.: Integrating query expansion and conceptual relevance feedback for personalized Web information retrieval (1998) 0.02
    0.023969568 = product of:
      0.047939137 = sum of:
        0.024031956 = weight(_text_:information in 1319) [ClassicSimilarity], result of:
          0.024031956 = score(doc=1319,freq=8.0), product of:
            0.08850355 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.050415643 = queryNorm
            0.27153665 = fieldWeight in 1319, product of:
              2.828427 = tf(freq=8.0), with freq of:
                8.0 = termFreq=8.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.0546875 = fieldNorm(doc=1319)
        0.023907183 = product of:
          0.047814365 = sum of:
            0.047814365 = weight(_text_:22 in 1319) [ClassicSimilarity], result of:
              0.047814365 = score(doc=1319,freq=2.0), product of:
                0.17654699 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.050415643 = queryNorm
                0.2708308 = fieldWeight in 1319, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=1319)
          0.5 = coord(1/2)
      0.5 = coord(2/4)
    
    Abstract
    Keyword based querying has been an immediate and efficient way to specify and retrieve related information that the user inquired. However, conventional document ranking based on an automatic assessment of document relevance to the query may not be the best approach when little information is given. Proposes an idea to integrate 2 existing techniques, query expansion and relevance feedback to achieve a concept-based information search for the Web
    Date
    1. 8.1996 22:08:06
  14. Crestani, F.; Dominich, S.; Lalmas, M.; Rijsbergen, C.J.K. van: Mathematical, logical, and formal methods in information retrieval : an introduction to the special issue (2003) 0.02
    0.022860084 = product of:
      0.045720167 = sum of:
        0.025228297 = weight(_text_:information in 1451) [ClassicSimilarity], result of:
          0.025228297 = score(doc=1451,freq=12.0), product of:
            0.08850355 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.050415643 = queryNorm
            0.2850541 = fieldWeight in 1451, product of:
              3.4641016 = tf(freq=12.0), with freq of:
                12.0 = termFreq=12.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.046875 = fieldNorm(doc=1451)
        0.02049187 = product of:
          0.04098374 = sum of:
            0.04098374 = weight(_text_:22 in 1451) [ClassicSimilarity], result of:
              0.04098374 = score(doc=1451,freq=2.0), product of:
                0.17654699 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.050415643 = queryNorm
                0.23214069 = fieldWeight in 1451, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046875 = fieldNorm(doc=1451)
          0.5 = coord(1/2)
      0.5 = coord(2/4)
    
    Abstract
    Research an the use of mathematical, logical, and formal methods, has been central to Information Retrieval research for a long time. Research in this area is important not only because it helps enhancing retrieval effectiveness, but also because it helps clarifying the underlying concepts of Information Retrieval. In this article we outline some of the major aspects of the subject, and summarize the papers of this special issue with respect to how they relate to these aspects. We conclude by highlighting some directions of future research, which are needed to better understand the formal characteristics of Information Retrieval.
    Date
    22. 3.2003 19:27:36
    Footnote
    Einführung zu den Beiträgen eines Themenheftes: Mathematical, logical, and formal methods in information retrieval
    Source
    Journal of the American Society for Information Science and technology. 54(2003) no.4, S.281-284
  15. Klas, C.-P.; Fuhr, N.; Schaefer, A.: Evaluating strategic support for information access in the DAFFODIL system (2004) 0.02
    0.022860084 = product of:
      0.045720167 = sum of:
        0.025228297 = weight(_text_:information in 2419) [ClassicSimilarity], result of:
          0.025228297 = score(doc=2419,freq=12.0), product of:
            0.08850355 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.050415643 = queryNorm
            0.2850541 = fieldWeight in 2419, product of:
              3.4641016 = tf(freq=12.0), with freq of:
                12.0 = termFreq=12.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.046875 = fieldNorm(doc=2419)
        0.02049187 = product of:
          0.04098374 = sum of:
            0.04098374 = weight(_text_:22 in 2419) [ClassicSimilarity], result of:
              0.04098374 = score(doc=2419,freq=2.0), product of:
                0.17654699 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.050415643 = queryNorm
                0.23214069 = fieldWeight in 2419, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046875 = fieldNorm(doc=2419)
          0.5 = coord(1/2)
      0.5 = coord(2/4)
    
    Abstract
    The digital library system Daffodil is targeted at strategic support of users during the information search process. For searching, exploring and managing digital library objects it provides user-customisable information seeking patterns over a federation of heterogeneous digital libraries. In this paper evaluation results with respect to retrieval effectiveness, efficiency and user satisfaction are presented. The analysis focuses on strategic support for the scientific work-flow. Daffodil supports the whole work-flow, from data source selection over information seeking to the representation, organisation and reuse of information. By embedding high level search functionality into the scientific work-flow, the user experiences better strategic system support due to a more systematic work process. These ideas have been implemented in Daffodil followed by a qualitative evaluation. The evaluation has been conducted with 28 participants, ranging from information seeking novices to experts. The results are promising, as they support the chosen model.
    Date
    16.11.2008 16:22:48
  16. Carpineto, C.; Romano, G.: Information retrieval through hybrid navigation of lattice representations (1996) 0.02
    0.022797368 = product of:
      0.045594737 = sum of:
        0.020812286 = weight(_text_:information in 7434) [ClassicSimilarity], result of:
          0.020812286 = score(doc=7434,freq=6.0), product of:
            0.08850355 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.050415643 = queryNorm
            0.23515764 = fieldWeight in 7434, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.0546875 = fieldNorm(doc=7434)
        0.024782453 = product of:
          0.049564905 = sum of:
            0.049564905 = weight(_text_:organization in 7434) [ClassicSimilarity], result of:
              0.049564905 = score(doc=7434,freq=2.0), product of:
                0.17974974 = queryWeight, product of:
                  3.5653565 = idf(docFreq=3399, maxDocs=44218)
                  0.050415643 = queryNorm
                0.27574396 = fieldWeight in 7434, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5653565 = idf(docFreq=3399, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=7434)
          0.5 = coord(1/2)
      0.5 = coord(2/4)
    
    Abstract
    Presents a comprehensive approach to automatic organization and hybrid navigation of text databases. An organizing stage builds a particular lattice representation of the data, through text indexing followed by lattice clustering of the indexed texts. The lattice representation supports the navigation state of the system, a visual retrieval interface that combines 3 main retrieval strategies: browsing, querying, and bounding. Such a hybrid paradigm permits high flexibility in trading off information exploration and retrieval, and had good retrieval performance. Compares information retrieval using lattice-based hybrid navigation with conventional Boolean querying. Experiments conducted on 2 medium-sized bibliographic databases showed that the performance of lattice retrieval was comparable to or better than Boolean retrieval
  17. Song, D.; Bruza, P.D.: Towards context sensitive information inference (2003) 0.02
    0.02277131 = product of:
      0.04554262 = sum of:
        0.028466063 = weight(_text_:information in 1428) [ClassicSimilarity], result of:
          0.028466063 = score(doc=1428,freq=22.0), product of:
            0.08850355 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.050415643 = queryNorm
            0.32163754 = fieldWeight in 1428, product of:
              4.690416 = tf(freq=22.0), with freq of:
                22.0 = termFreq=22.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.0390625 = fieldNorm(doc=1428)
        0.01707656 = product of:
          0.03415312 = sum of:
            0.03415312 = weight(_text_:22 in 1428) [ClassicSimilarity], result of:
              0.03415312 = score(doc=1428,freq=2.0), product of:
                0.17654699 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.050415643 = queryNorm
                0.19345059 = fieldWeight in 1428, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=1428)
          0.5 = coord(1/2)
      0.5 = coord(2/4)
    
    Abstract
    Humans can make hasty, but generally robust judgements about what a text fragment is, or is not, about. Such judgements are termed information inference. This article furnishes an account of information inference from a psychologistic stance. By drawing an theories from nonclassical logic and applied cognition, an information inference mechanism is proposed that makes inferences via computations of information flow through an approximation of a conceptual space. Within a conceptual space information is represented geometrically. In this article, geometric representations of words are realized as vectors in a high dimensional semantic space, which is automatically constructed from a text corpus. Two approaches were presented for priming vector representations according to context. The first approach uses a concept combination heuristic to adjust the vector representation of a concept in the light of the representation of another concept. The second approach computes a prototypical concept an the basis of exemplar trace texts and moves it in the dimensional space according to the context. Information inference is evaluated by measuring the effectiveness of query models derived by information flow computations. Results show that information flow contributes significantly to query model effectiveness, particularly with respect to precision. Moreover, retrieval effectiveness compares favorably with two probabilistic query models, and another based an semantic association. More generally, this article can be seen as a contribution towards realizing operational systems that mimic text-based human reasoning.
    Date
    22. 3.2003 19:35:46
    Footnote
    Beitrag eines Themenheftes: Mathematical, logical, and formal methods in information retrieval
    Source
    Journal of the American Society for Information Science and technology. 54(2003) no.4, S.321-334
  18. Schamber, L.; Bateman, J.: Relevance criteria uses and importance : progress in development of a measurement scale (1999) 0.02
    0.02213614 = product of:
      0.04427228 = sum of:
        0.02303018 = weight(_text_:information in 6691) [ClassicSimilarity], result of:
          0.02303018 = score(doc=6691,freq=10.0), product of:
            0.08850355 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.050415643 = queryNorm
            0.2602176 = fieldWeight in 6691, product of:
              3.1622777 = tf(freq=10.0), with freq of:
                10.0 = termFreq=10.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.046875 = fieldNorm(doc=6691)
        0.021242103 = product of:
          0.042484205 = sum of:
            0.042484205 = weight(_text_:organization in 6691) [ClassicSimilarity], result of:
              0.042484205 = score(doc=6691,freq=2.0), product of:
                0.17974974 = queryWeight, product of:
                  3.5653565 = idf(docFreq=3399, maxDocs=44218)
                  0.050415643 = queryNorm
                0.23635197 = fieldWeight in 6691, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5653565 = idf(docFreq=3399, maxDocs=44218)
                  0.046875 = fieldNorm(doc=6691)
          0.5 = coord(1/2)
      0.5 = coord(2/4)
    
    Abstract
    The criteria employed by end-users in making relevance judgments can be powerful and useful indicators of the values users ascribe to a variety of factors in their information seeking and use situations. This paper describes intermediate results in a long-term project intended to develop a measurement scale based on users' relevance criteria. The five tests that are reported here have involved 350 users in an effort to progressively refine and validate the scale content. The range of research questions and types of users and information environments have gradually been expanded to assess the adaptability and transferability of the instrument. The instrument provides quantitative data, notably criterion importance ratings that can be analyzed using several techniques. The substantive findings confirm those of previous studies on relevance evaluation behavior
    Imprint
    Medford, NJ : Information Today
    Series
    Proceedings of the American Society for Information Science; vol.36
    Source
    Knowledge: creation, organization and use. Proceedings of the 62nd Annual Meeting of the American Society for Information Science, 31.10.-4.11.1999. Ed.: L. Woods
  19. Faloutsos, C.: Signature files (1992) 0.02
    0.02052752 = product of:
      0.04105504 = sum of:
        0.013732546 = weight(_text_:information in 3499) [ClassicSimilarity], result of:
          0.013732546 = score(doc=3499,freq=2.0), product of:
            0.08850355 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.050415643 = queryNorm
            0.1551638 = fieldWeight in 3499, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.0625 = fieldNorm(doc=3499)
        0.027322493 = product of:
          0.054644987 = sum of:
            0.054644987 = weight(_text_:22 in 3499) [ClassicSimilarity], result of:
              0.054644987 = score(doc=3499,freq=2.0), product of:
                0.17654699 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.050415643 = queryNorm
                0.30952093 = fieldWeight in 3499, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0625 = fieldNorm(doc=3499)
          0.5 = coord(1/2)
      0.5 = coord(2/4)
    
    Date
    7. 5.1999 15:22:48
    Source
    Information retrieval: data structures and algorithms. Ed.: W.B. Frakes u. R. Baeza-Yates
  20. Bornmann, L.; Mutz, R.: From P100 to P100' : a new citation-rank approach (2014) 0.02
    0.02052752 = product of:
      0.04105504 = sum of:
        0.013732546 = weight(_text_:information in 1431) [ClassicSimilarity], result of:
          0.013732546 = score(doc=1431,freq=2.0), product of:
            0.08850355 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.050415643 = queryNorm
            0.1551638 = fieldWeight in 1431, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.0625 = fieldNorm(doc=1431)
        0.027322493 = product of:
          0.054644987 = sum of:
            0.054644987 = weight(_text_:22 in 1431) [ClassicSimilarity], result of:
              0.054644987 = score(doc=1431,freq=2.0), product of:
                0.17654699 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.050415643 = queryNorm
                0.30952093 = fieldWeight in 1431, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0625 = fieldNorm(doc=1431)
          0.5 = coord(1/2)
      0.5 = coord(2/4)
    
    Date
    22. 8.2014 17:05:18
    Source
    Journal of the Association for Information Science and Technology. 65(2014) no.9, S.1939-1943

Languages

  • e 292
  • d 21
  • chi 1
  • m 1
  • sp 1
  • More… Less…

Types

  • a 294
  • m 12
  • el 6
  • s 5
  • r 3
  • p 2
  • x 2
  • More… Less…