Search (145 results, page 1 of 8)

  • × theme_ss:"Semantic Web"
  • × type_ss:"a"
  1. Subirats, I.; Prasad, A.R.D.; Keizer, J.; Bagdanov, A.: Implementation of rich metadata formats and demantic tools using DSpace (2008) 0.10
    0.09759783 = product of:
      0.13013044 = sum of:
        0.011892734 = weight(_text_:information in 2656) [ClassicSimilarity], result of:
          0.011892734 = score(doc=2656,freq=6.0), product of:
            0.08850355 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.050415643 = queryNorm
            0.1343758 = fieldWeight in 2656, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.03125 = fieldNorm(doc=2656)
        0.06259242 = weight(_text_:standards in 2656) [ClassicSimilarity], result of:
          0.06259242 = score(doc=2656,freq=4.0), product of:
            0.22470023 = queryWeight, product of:
              4.4569545 = idf(docFreq=1393, maxDocs=44218)
              0.050415643 = queryNorm
            0.27855965 = fieldWeight in 2656, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              4.4569545 = idf(docFreq=1393, maxDocs=44218)
              0.03125 = fieldNorm(doc=2656)
        0.055645294 = sum of:
          0.028322803 = weight(_text_:organization in 2656) [ClassicSimilarity], result of:
            0.028322803 = score(doc=2656,freq=2.0), product of:
              0.17974974 = queryWeight, product of:
                3.5653565 = idf(docFreq=3399, maxDocs=44218)
                0.050415643 = queryNorm
              0.15756798 = fieldWeight in 2656, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                3.5653565 = idf(docFreq=3399, maxDocs=44218)
                0.03125 = fieldNorm(doc=2656)
          0.027322493 = weight(_text_:22 in 2656) [ClassicSimilarity], result of:
            0.027322493 = score(doc=2656,freq=2.0), product of:
              0.17654699 = queryWeight, product of:
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.050415643 = queryNorm
              0.15476047 = fieldWeight in 2656, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.03125 = fieldNorm(doc=2656)
      0.75 = coord(3/4)
    
    Abstract
    This poster explores the customization of DSpace to allow the use of the AGRIS Application Profile metadata standard and the AGROVOC thesaurus. The objective is the adaptation of DSpace, through the least invasive code changes either in the form of plug-ins or add-ons, to the specific needs of the Agricultural Sciences and Technology community. Metadata standards such as AGRIS AP, and Knowledge Organization Systems such as the AGROVOC thesaurus, provide mechanisms for sharing information in a standardized manner by recommending the use of common semantics and interoperable syntax (Subirats et al., 2007). AGRIS AP was created to enhance the description, exchange and subsequent retrieval of agricultural Document-like Information Objects (DLIOs). It is a metadata schema which draws from Metadata standards such as Dublin Core (DC), the Australian Government Locator Service Metadata (AGLS) and the Agricultural Metadata Element Set (AgMES) namespaces. It allows sharing of information across dispersed bibliographic systems (FAO, 2005). AGROVOC68 is a multilingual structured thesaurus covering agricultural and related domains. Its main role is to standardize the indexing process in order to make searching simpler and more efficient. AGROVOC is developed by FAO (Lauser et al., 2006). The customization of the DSpace is taking place in several phases. First, the AGRIS AP metadata schema was mapped onto the metadata DSpace model, with several enhancements implemented to support AGRIS AP elements. Next, AGROVOC will be integrated as a controlled vocabulary accessed through a local SKOS or OWL file. Eventually the system will be configurable to access AGROVOC through local files or remotely via webservices. Finally, spell checking and tooltips will be incorporated in the user interface to support metadata editing. Adapting DSpace to support AGRIS AP and annotation using the semantically-rich AGROVOC thesaurus transform DSpace into a powerful, domain-specific system for annotation and exchange of bibliographic metadata in the agricultural domain.
    Source
    Metadata for semantic and social applications : proceedings of the International Conference on Dublin Core and Metadata Applications, Berlin, 22 - 26 September 2008, DC 2008: Berlin, Germany / ed. by Jane Greenberg and Wolfgang Klas
  2. Campbell, D.G.: Derrida, logocentrism, and the concept of warrant on the Semantic Web (2008) 0.09
    0.0945499 = product of:
      0.12606654 = sum of:
        0.017165681 = weight(_text_:information in 2507) [ClassicSimilarity], result of:
          0.017165681 = score(doc=2507,freq=8.0), product of:
            0.08850355 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.050415643 = queryNorm
            0.19395474 = fieldWeight in 2507, product of:
              2.828427 = tf(freq=8.0), with freq of:
                8.0 = termFreq=8.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.0390625 = fieldNorm(doc=2507)
        0.07824052 = weight(_text_:standards in 2507) [ClassicSimilarity], result of:
          0.07824052 = score(doc=2507,freq=4.0), product of:
            0.22470023 = queryWeight, product of:
              4.4569545 = idf(docFreq=1393, maxDocs=44218)
              0.050415643 = queryNorm
            0.34819958 = fieldWeight in 2507, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              4.4569545 = idf(docFreq=1393, maxDocs=44218)
              0.0390625 = fieldNorm(doc=2507)
        0.030660335 = product of:
          0.06132067 = sum of:
            0.06132067 = weight(_text_:organization in 2507) [ClassicSimilarity], result of:
              0.06132067 = score(doc=2507,freq=6.0), product of:
                0.17974974 = queryWeight, product of:
                  3.5653565 = idf(docFreq=3399, maxDocs=44218)
                  0.050415643 = queryNorm
                0.34114468 = fieldWeight in 2507, product of:
                  2.4494898 = tf(freq=6.0), with freq of:
                    6.0 = termFreq=6.0
                  3.5653565 = idf(docFreq=3399, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=2507)
          0.5 = coord(1/2)
      0.75 = coord(3/4)
    
    Content
    The highly-structured data standards of the Semantic Web contain a promising venue for the migration of library subject access standards onto the World Wide Web. The new functionalities of the Web, however, along with the anticipated capabilities of intelligent Web agents, suggest that information on the Semantic Web will have much more flexibility, diversity and mutability. We need, therefore, a method for recognizing and assessing the principles whereby Semantic Web information can combine together in productive and useful ways. This paper will argue that the concept of warrant in traditional library science, can provide a useful means of translating library knowledge structures into Web-based knowledge structures. Using Derrida's concept of logocentrism, this paper suggests that what while "warrant" in library science traditionally alludes to the principles by which concepts are admitted into the design of a classification or access system, "warrant" on the Semantic Web alludes to the principles by which Web resources can be admitted into a network of information uses. Furthermore, library information practice suggests a far more complex network of warrant concepts that provide a subtlety and richness to knowledge organization that the Semantic Web has not yet attained.
    Series
    Advances in knowledge organization; vol.11
    Source
    Culture and identity in knowledge organization: Proceedings of the Tenth International ISKO Conference 5-8 August 2008, Montreal, Canada. Ed. by Clément Arsenault and Joseph T. Tennis
  3. Franklin, R.A.: Re-inventing subject access for the semantic web (2003) 0.09
    0.09350993 = product of:
      0.1246799 = sum of:
        0.01029941 = weight(_text_:information in 2556) [ClassicSimilarity], result of:
          0.01029941 = score(doc=2556,freq=2.0), product of:
            0.08850355 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.050415643 = queryNorm
            0.116372846 = fieldWeight in 2556, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.046875 = fieldNorm(doc=2556)
        0.093888626 = weight(_text_:standards in 2556) [ClassicSimilarity], result of:
          0.093888626 = score(doc=2556,freq=4.0), product of:
            0.22470023 = queryWeight, product of:
              4.4569545 = idf(docFreq=1393, maxDocs=44218)
              0.050415643 = queryNorm
            0.41783947 = fieldWeight in 2556, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              4.4569545 = idf(docFreq=1393, maxDocs=44218)
              0.046875 = fieldNorm(doc=2556)
        0.02049187 = product of:
          0.04098374 = sum of:
            0.04098374 = weight(_text_:22 in 2556) [ClassicSimilarity], result of:
              0.04098374 = score(doc=2556,freq=2.0), product of:
                0.17654699 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.050415643 = queryNorm
                0.23214069 = fieldWeight in 2556, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046875 = fieldNorm(doc=2556)
          0.5 = coord(1/2)
      0.75 = coord(3/4)
    
    Abstract
    First generation scholarly research on the Web lacked a firm system of authority control. Second generation Web research is beginning to model subject access with library science principles of bibliographic control and cataloguing. Harnessing the Web and organising the intellectual content with standards and controlled vocabulary provides precise search and retrieval capability, increasing relevance and efficient use of technology. Dublin Core metadata standards permit a full evaluation and cataloguing of Web resources appropriate to highly specific research needs and discovery. Current research points to a type of structure based on a system of faceted classification. This system allows the semantic and syntactic relationships to be defined. Controlled vocabulary, such as the Library of Congress Subject Headings, can be assigned, not in a hierarchical structure, but rather as descriptive facets of relating concepts. Web design features such as this are adding value to discovery and filtering out data that lack authority. The system design allows for scalability and extensibility, two technical features that are integral to future development of the digital library and resource discovery.
    Date
    30.12.2008 18:22:46
    Source
    Online information review. 27(2003) no.2, S.94-101
  4. Heery, R.; Wagner, H.: ¬A metadata registry for the Semantic Web (2002) 0.07
    0.06597382 = product of:
      0.087965086 = sum of:
        0.00849658 = weight(_text_:information in 1210) [ClassicSimilarity], result of:
          0.00849658 = score(doc=1210,freq=4.0), product of:
            0.08850355 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.050415643 = queryNorm
            0.0960027 = fieldWeight in 1210, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.02734375 = fieldNorm(doc=1210)
        0.06707728 = weight(_text_:standards in 1210) [ClassicSimilarity], result of:
          0.06707728 = score(doc=1210,freq=6.0), product of:
            0.22470023 = queryWeight, product of:
              4.4569545 = idf(docFreq=1393, maxDocs=44218)
              0.050415643 = queryNorm
            0.29851896 = fieldWeight in 1210, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              4.4569545 = idf(docFreq=1393, maxDocs=44218)
              0.02734375 = fieldNorm(doc=1210)
        0.012391226 = product of:
          0.024782453 = sum of:
            0.024782453 = weight(_text_:organization in 1210) [ClassicSimilarity], result of:
              0.024782453 = score(doc=1210,freq=2.0), product of:
                0.17974974 = queryWeight, product of:
                  3.5653565 = idf(docFreq=3399, maxDocs=44218)
                  0.050415643 = queryNorm
                0.13787198 = fieldWeight in 1210, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5653565 = idf(docFreq=3399, maxDocs=44218)
                  0.02734375 = fieldNorm(doc=1210)
          0.5 = coord(1/2)
      0.75 = coord(3/4)
    
    Abstract
    * Agencies maintaining directories of data elements in a domain area in accordance with ISO/IEC 11179 (This standard specifies good practice for data element definition as well as the registration process. Example implementations are the National Health Information Knowledgebase hosted by the Australian Institute of Health and Welfare and the Environmental Data Registry hosted by the US Environmental Protection Agency.); * The xml.org directory of the Extended Markup Language (XML) document specifications facilitating re-use of Document Type Definition (DTD), hosted by the Organization for the Advancement of Structured Information Standards (OASIS); * The MetaForm database of Dublin Core usage and mappings maintained at the State and University Library in Goettingen; * The Semantic Web Agreement Group Dictionary, a database of terms for the Semantic Web that can be referred to by humans and software agents; * LEXML, a multi-lingual and multi-jurisdictional RDF Dictionary for the legal world; * The SCHEMAS registry maintained by the European Commission funded SCHEMAS project, which indexes several metadata element sets as well as a large number of activity reports describing metadata related activities and initiatives. Metadata registries essentially provide an index of terms. Given the distributed nature of the Web, there are a number of ways this can be accomplished. For example, the registry could link to terms and definitions in schemas published by implementers and stored locally by the schema maintainer. Alternatively, the registry might harvest various metadata schemas from their maintainers. Registries provide 'added value' to users by indexing schemas relevant to a particular 'domain' or 'community of use' and by simplifying the navigation of terms by enabling multiple schemas to be accessed from one view. An important benefit of this approach is an increase in the reuse of existing terms, rather than users having to reinvent them. Merging schemas to one view leads to harmonization between applications and helps avoid duplication of effort. Additionally, the establishment of registries to index terms actively being used in local implementations facilitates the metadata standards activity by providing implementation experience transferable to the standards-making process.
  5. Krause, J.: Semantic heterogeneity : comparing new semantic web approaches with those of digital libraries (2008) 0.06
    0.05676322 = product of:
      0.11352644 = sum of:
        0.09582469 = weight(_text_:standards in 1908) [ClassicSimilarity], result of:
          0.09582469 = score(doc=1908,freq=6.0), product of:
            0.22470023 = queryWeight, product of:
              4.4569545 = idf(docFreq=1393, maxDocs=44218)
              0.050415643 = queryNorm
            0.42645568 = fieldWeight in 1908, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              4.4569545 = idf(docFreq=1393, maxDocs=44218)
              0.0390625 = fieldNorm(doc=1908)
        0.017701752 = product of:
          0.035403505 = sum of:
            0.035403505 = weight(_text_:organization in 1908) [ClassicSimilarity], result of:
              0.035403505 = score(doc=1908,freq=2.0), product of:
                0.17974974 = queryWeight, product of:
                  3.5653565 = idf(docFreq=3399, maxDocs=44218)
                  0.050415643 = queryNorm
                0.19695997 = fieldWeight in 1908, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5653565 = idf(docFreq=3399, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=1908)
          0.5 = coord(1/2)
      0.5 = coord(2/4)
    
    Abstract
    Purpose - To demonstrate that newer developments in the semantic web community, particularly those based on ontologies (simple knowledge organization system and others) mitigate common arguments from the digital library (DL) community against participation in the Semantic web. Design/methodology/approach - The approach is a semantic web discussion focusing on the weak structure of the Web and the lack of consideration given to the semantic content during indexing. Findings - The points criticised by the semantic web and ontology approaches are the same as those of the DL "Shell model approach" from the mid-1990s, with emphasis on the centrality of its heterogeneity components (used, for example, in vascoda). The Shell model argument began with the "invisible web", necessitating the restructuring of DL approaches. The conclusion is that both approaches fit well together and that the Shell model, with its semantic heterogeneity components, can be reformulated on the semantic web basis. Practical implications - A reinterpretation of the DL approaches of semantic heterogeneity and adapting to standards and tools supported by the W3C should be the best solution. It is therefore recommended that - although most of the semantic web standards are not technologically refined for commercial applications at present - all individual DL developments should be checked for their adaptability to the W3C standards of the semantic web. Originality/value - A unique conceptual analysis of the parallel developments emanating from the digital library and semantic web communities.
  6. Monireh, E.; Sarker, M.K.; Bianchi, F.; Hitzler, P.; Doran, D.; Xie, N.: Reasoning over RDF knowledge bases using deep learning (2018) 0.05
    0.04765854 = product of:
      0.09531708 = sum of:
        0.07824052 = weight(_text_:standards in 4553) [ClassicSimilarity], result of:
          0.07824052 = score(doc=4553,freq=4.0), product of:
            0.22470023 = queryWeight, product of:
              4.4569545 = idf(docFreq=1393, maxDocs=44218)
              0.050415643 = queryNorm
            0.34819958 = fieldWeight in 4553, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              4.4569545 = idf(docFreq=1393, maxDocs=44218)
              0.0390625 = fieldNorm(doc=4553)
        0.01707656 = product of:
          0.03415312 = sum of:
            0.03415312 = weight(_text_:22 in 4553) [ClassicSimilarity], result of:
              0.03415312 = score(doc=4553,freq=2.0), product of:
                0.17654699 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.050415643 = queryNorm
                0.19345059 = fieldWeight in 4553, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=4553)
          0.5 = coord(1/2)
      0.5 = coord(2/4)
    
    Abstract
    Semantic Web knowledge representation standards, and in particular RDF and OWL, often come endowed with a formal semantics which is considered to be of fundamental importance for the field. Reasoning, i.e., the drawing of logical inferences from knowledge expressed in such standards, is traditionally based on logical deductive methods and algorithms which can be proven to be sound and complete and terminating, i.e. correct in a very strong sense. For various reasons, though, in particular the scalability issues arising from the ever increasing amounts of Semantic Web data available and the inability of deductive algorithms to deal with noise in the data, it has been argued that alternative means of reasoning should be investigated which bear high promise for high scalability and better robustness. From this perspective, deductive algorithms can be considered the gold standard regarding correctness against which alternative methods need to be tested. In this paper, we show that it is possible to train a Deep Learning system on RDF knowledge graphs, such that it is able to perform reasoning over new RDF knowledge graphs, with high precision and recall compared to the deductive gold standard.
    Date
    16.11.2018 14:22:01
  7. O'Hara, K.; Hall, W.: Semantic Web (2009) 0.04
    0.04473507 = product of:
      0.08947014 = sum of:
        0.012015978 = weight(_text_:information in 3871) [ClassicSimilarity], result of:
          0.012015978 = score(doc=3871,freq=2.0), product of:
            0.08850355 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.050415643 = queryNorm
            0.13576832 = fieldWeight in 3871, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.0546875 = fieldNorm(doc=3871)
        0.077454165 = weight(_text_:standards in 3871) [ClassicSimilarity], result of:
          0.077454165 = score(doc=3871,freq=2.0), product of:
            0.22470023 = queryWeight, product of:
              4.4569545 = idf(docFreq=1393, maxDocs=44218)
              0.050415643 = queryNorm
            0.34469998 = fieldWeight in 3871, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.4569545 = idf(docFreq=1393, maxDocs=44218)
              0.0546875 = fieldNorm(doc=3871)
      0.5 = coord(2/4)
    
    Abstract
    The "semantic web (SW)" is a vision of a web of linked data, allowing querying, integration, and sharing of data from distributed sources in heterogeneous formats, using ontologies to provide an associated and explicit semantic interpretation. This entry describes the series of layered formalisms and standards that underlie this vision, and chronicles their historical and ongoing development. A number of applications, scientific and otherwise, academic and commercial, are reviewed. The SW has often been a controversial enterprise, and some of the controversies are reviewed, and misconceptions defused.
    Source
    Encyclopedia of library and information sciences. 3rd ed. Ed.: M.J. Bates
  8. Yahoo kündigt semantische Suche an (2008) 0.04
    0.040477425 = product of:
      0.08095485 = sum of:
        0.014565565 = weight(_text_:information in 1840) [ClassicSimilarity], result of:
          0.014565565 = score(doc=1840,freq=4.0), product of:
            0.08850355 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.050415643 = queryNorm
            0.16457605 = fieldWeight in 1840, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.046875 = fieldNorm(doc=1840)
        0.066389285 = weight(_text_:standards in 1840) [ClassicSimilarity], result of:
          0.066389285 = score(doc=1840,freq=2.0), product of:
            0.22470023 = queryWeight, product of:
              4.4569545 = idf(docFreq=1393, maxDocs=44218)
              0.050415643 = queryNorm
            0.29545712 = fieldWeight in 1840, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.4569545 = idf(docFreq=1393, maxDocs=44218)
              0.046875 = fieldNorm(doc=1840)
      0.5 = coord(2/4)
    
    Content
    "Yahoo hat angekündigt einige der wesentlichen Standards des semantischen Webs in seine Suchmaschine zu integrieren. Das Unternehmen will einige semantische Web-Indexate in seine Suchtechnik einbauen. Anstatt eine lange Liste von Links auszuspucken, könnte eine semantische Suchmaschine verstehen, welche Art von Objekt oder Person gesucht wird und zusätzliche Information anbieten. Die neue Technologie könnte etablierte Angebote unter Druck setzen, erwarten Experten. Google setzt nach wie vor auf konventionelle Technologie. Der Schachzug des Unternehmens könnte der Verbreitung der Technologie erheblichen Auftrieb geben. Trotz des bemerkenswerten Fortschritts des semantischen Webs der vergangenen Jahre habe der durchschnittliche User davon noch nichts bemerkt, meint Amit Kumar, Product Management Director bei Yahoo. Yahoo habe nun gemerkt, dass sich das langsam ändere. Wie in den Anfangstagen des Web würden viele Menschen Daten mit Kennzeichnungen und Indextermen versehen, die semantische Suchmaschinen brauchen, um das Web zu durchsuchen. Yahoo hat erkannt, dass es nun genug Informationen als Grundlage für eine semantische Websuche gibt."
    Source
    Information - Wissenschaft und Praxis. 59(2008) H.3, S.156
  9. Macgregor, G.: Introduction to a special issue on digital libraries and the semantic web : context, applications and research (2008) 0.04
    0.038344346 = product of:
      0.07668869 = sum of:
        0.01029941 = weight(_text_:information in 1904) [ClassicSimilarity], result of:
          0.01029941 = score(doc=1904,freq=2.0), product of:
            0.08850355 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.050415643 = queryNorm
            0.116372846 = fieldWeight in 1904, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.046875 = fieldNorm(doc=1904)
        0.066389285 = weight(_text_:standards in 1904) [ClassicSimilarity], result of:
          0.066389285 = score(doc=1904,freq=2.0), product of:
            0.22470023 = queryWeight, product of:
              4.4569545 = idf(docFreq=1393, maxDocs=44218)
              0.050415643 = queryNorm
            0.29545712 = fieldWeight in 1904, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.4569545 = idf(docFreq=1393, maxDocs=44218)
              0.046875 = fieldNorm(doc=1904)
      0.5 = coord(2/4)
    
    Abstract
    Purpose - The purpose of this article is to introduce the papers in the special issue which explores some of the potential, opportunities and challenges to be found in greater library and information science alignment with semantic web developments. Design/methodology/approach - The article is a general review of the papers in the issue. Findings - For many digital libraries or cultural institutions, the semantic web offers an opportunity to better expose valuable digital resources pertaining to research, culture or history, using common standards and technologies in a collaborative and "joined up" way. The papers in this issue "paint a rainbow", exploring the issues through elements of case studies, reviews research and conceptual expositions and viewpoints. Originality/value - The article emphasises how the practical implications of semantic web research or developments for digital libraries and repositories is important for LIS professionals.
  10. Assumpção, F.S.; Santarem Segundo, J.E.; Ventura Amorim da Costa Santos, P.L.: RDA element sets and RDA value vocabularies : vocabularies for resource description in the Semantic Web (2015) 0.04
    0.038344346 = product of:
      0.07668869 = sum of:
        0.01029941 = weight(_text_:information in 2389) [ClassicSimilarity], result of:
          0.01029941 = score(doc=2389,freq=2.0), product of:
            0.08850355 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.050415643 = queryNorm
            0.116372846 = fieldWeight in 2389, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.046875 = fieldNorm(doc=2389)
        0.066389285 = weight(_text_:standards in 2389) [ClassicSimilarity], result of:
          0.066389285 = score(doc=2389,freq=2.0), product of:
            0.22470023 = queryWeight, product of:
              4.4569545 = idf(docFreq=1393, maxDocs=44218)
              0.050415643 = queryNorm
            0.29545712 = fieldWeight in 2389, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.4569545 = idf(docFreq=1393, maxDocs=44218)
              0.046875 = fieldNorm(doc=2389)
      0.5 = coord(2/4)
    
    Abstract
    Considering the need for metadata standards suitable for the Semantic Web, this paper describes the RDA Element Sets and the RDA Value Vocabularies that were created from attributes and relationships defined in Resource Description and Access (RDA). First, we present the vocabularies included in RDA Element Sets: the vocabularies of classes, of properties and of properties unconstrained by FRBR entities; and then we present the RDA Value Vocabularies, which are under development. As a conclusion, we highlight that these vocabularies can be used to meet the needs of different contexts due to the unconstrained properties and to the independence of the vocabularies of properties from the vocabularies of values and vice versa.
    Series
    Communications in computer and information science; 544
  11. Sequeda, J.F.: Integrating relational databases with the Semantic Web : a reflection (2017) 0.04
    0.038344346 = product of:
      0.07668869 = sum of:
        0.01029941 = weight(_text_:information in 3935) [ClassicSimilarity], result of:
          0.01029941 = score(doc=3935,freq=2.0), product of:
            0.08850355 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.050415643 = queryNorm
            0.116372846 = fieldWeight in 3935, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.046875 = fieldNorm(doc=3935)
        0.066389285 = weight(_text_:standards in 3935) [ClassicSimilarity], result of:
          0.066389285 = score(doc=3935,freq=2.0), product of:
            0.22470023 = queryWeight, product of:
              4.4569545 = idf(docFreq=1393, maxDocs=44218)
              0.050415643 = queryNorm
            0.29545712 = fieldWeight in 3935, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.4569545 = idf(docFreq=1393, maxDocs=44218)
              0.046875 = fieldNorm(doc=3935)
      0.5 = coord(2/4)
    
    Abstract
    From the beginning it was understood that the success of the Semantic Web hinges on integrating the vast amount of data stored in Relational Databases. This manuscript reflects on the last 10 years of our research results to integrate Relational Databases with the Semantic Web. Since 2007, our research has led us to answer the following question: How and to what extent can Relational Databases be Integrated with the Semantic Web? The answer comes in two parts. We start by presenting how to get from Relational Databases to the Semantic Web via mappings, such as the W3C Direct Mapping and R2RML standards. Subsequently, we present how the Semantic Web can access Relational Databases. We finalize with how Relational Databases and Semantic Web technologies are being used practice for data integration and discuss open challenges.
    Series
    Lecture Notes in Computer Scienc;10370) (Information Systems and Applications, incl. Internet/Web, and HCI
  12. Birkenbihl, K.: Standards für das Semantic Web (2006) 0.04
    0.038329873 = product of:
      0.1533195 = sum of:
        0.1533195 = weight(_text_:standards in 5788) [ClassicSimilarity], result of:
          0.1533195 = score(doc=5788,freq=6.0), product of:
            0.22470023 = queryWeight, product of:
              4.4569545 = idf(docFreq=1393, maxDocs=44218)
              0.050415643 = queryNorm
            0.68232906 = fieldWeight in 5788, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              4.4569545 = idf(docFreq=1393, maxDocs=44218)
              0.0625 = fieldNorm(doc=5788)
      0.25 = coord(1/4)
    
    Abstract
    Semantic Web - das ist die Anwendung von Wissenstechnologie im World Wide Web. Dieses Kapitel beschreibt in einigen einführenden Absätzen die Aufgabe und Entstehung von Standards. Sodann gibt es einen Überblick über die Technologien und Standards, die für das Web und seine Erweiterung zum Semantic Web entwickelt und eingesetzt werden. Diese werden überwiegend vom World Wide Web Consortium (W3C) [35] definiert. Abschließend folgen einige Bemerkungen zur weiteren Entwicklung des Semantic Web.
  13. Siwecka, D.: Knowledge organization systems used in European national libraries towards interoperability of the semantic Web (2018) 0.04
    0.035189077 = product of:
      0.070378155 = sum of:
        0.013732546 = weight(_text_:information in 4815) [ClassicSimilarity], result of:
          0.013732546 = score(doc=4815,freq=2.0), product of:
            0.08850355 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.050415643 = queryNorm
            0.1551638 = fieldWeight in 4815, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.0625 = fieldNorm(doc=4815)
        0.056645606 = product of:
          0.11329121 = sum of:
            0.11329121 = weight(_text_:organization in 4815) [ClassicSimilarity], result of:
              0.11329121 = score(doc=4815,freq=8.0), product of:
                0.17974974 = queryWeight, product of:
                  3.5653565 = idf(docFreq=3399, maxDocs=44218)
                  0.050415643 = queryNorm
                0.6302719 = fieldWeight in 4815, product of:
                  2.828427 = tf(freq=8.0), with freq of:
                    8.0 = termFreq=8.0
                  3.5653565 = idf(docFreq=3399, maxDocs=44218)
                  0.0625 = fieldNorm(doc=4815)
          0.5 = coord(1/2)
      0.5 = coord(2/4)
    
    Series
    Advances in knowledge organization; vol.16
    Source
    Challenges and opportunities for knowledge organization in the digital age: proceedings of the Fifteenth International ISKO Conference, 9-11 July 2018, Porto, Portugal / organized by: International Society for Knowledge Organization (ISKO), ISKO Spain and Portugal Chapter, University of Porto - Faculty of Arts and Humanities, Research Centre in Communication, Information and Digital Culture (CIC.digital) - Porto. Eds.: F. Ribeiro u. M.E. Cerveira
  14. Wenige, L.: ¬The application of linked data resources for library recommender systems (2017) 0.04
    0.035188597 = product of:
      0.07037719 = sum of:
        0.020812286 = weight(_text_:information in 3500) [ClassicSimilarity], result of:
          0.020812286 = score(doc=3500,freq=6.0), product of:
            0.08850355 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.050415643 = queryNorm
            0.23515764 = fieldWeight in 3500, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.0546875 = fieldNorm(doc=3500)
        0.049564905 = product of:
          0.09912981 = sum of:
            0.09912981 = weight(_text_:organization in 3500) [ClassicSimilarity], result of:
              0.09912981 = score(doc=3500,freq=8.0), product of:
                0.17974974 = queryWeight, product of:
                  3.5653565 = idf(docFreq=3399, maxDocs=44218)
                  0.050415643 = queryNorm
                0.5514879 = fieldWeight in 3500, product of:
                  2.828427 = tf(freq=8.0), with freq of:
                    8.0 = termFreq=8.0
                  3.5653565 = idf(docFreq=3399, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=3500)
          0.5 = coord(1/2)
      0.5 = coord(2/4)
    
    Source
    Theorie, Semantik und Organisation von Wissen: Proceedings der 13. Tagung der Deutschen Sektion der Internationalen Gesellschaft für Wissensorganisation (ISKO) und dem 13. Internationalen Symposium der Informationswissenschaft der Higher Education Association for Information Science (HI) Potsdam (19.-20.03.2013): 'Theory, Information and Organization of Knowledge' / Proceedings der 14. Tagung der Deutschen Sektion der Internationalen Gesellschaft für Wissensorganisation (ISKO) und Natural Language & Information Systems (NLDB) Passau (16.06.2015): 'Lexical Resources for Knowledge Organization' / Proceedings des Workshops der Deutschen Sektion der Internationalen Gesellschaft für Wissensorganisation (ISKO) auf der SEMANTICS Leipzig (1.09.2014): 'Knowledge Organization and Semantic Web' / Proceedings des Workshops der Polnischen und Deutschen Sektion der Internationalen Gesellschaft für Wissensorganisation (ISKO) Cottbus (29.-30.09.2011): 'Economics of Knowledge Production and Organization'. Hrsg. von W. Babik, H.P. Ohly u. K. Weber
  15. Kushwaha, N.; Vyas, O.P.: SemMovieRec : extraction of semantic features of DBpedia for recommender system (2017) 0.04
    0.035188597 = product of:
      0.07037719 = sum of:
        0.020812286 = weight(_text_:information in 3501) [ClassicSimilarity], result of:
          0.020812286 = score(doc=3501,freq=6.0), product of:
            0.08850355 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.050415643 = queryNorm
            0.23515764 = fieldWeight in 3501, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.0546875 = fieldNorm(doc=3501)
        0.049564905 = product of:
          0.09912981 = sum of:
            0.09912981 = weight(_text_:organization in 3501) [ClassicSimilarity], result of:
              0.09912981 = score(doc=3501,freq=8.0), product of:
                0.17974974 = queryWeight, product of:
                  3.5653565 = idf(docFreq=3399, maxDocs=44218)
                  0.050415643 = queryNorm
                0.5514879 = fieldWeight in 3501, product of:
                  2.828427 = tf(freq=8.0), with freq of:
                    8.0 = termFreq=8.0
                  3.5653565 = idf(docFreq=3399, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=3501)
          0.5 = coord(1/2)
      0.5 = coord(2/4)
    
    Source
    Theorie, Semantik und Organisation von Wissen: Proceedings der 13. Tagung der Deutschen Sektion der Internationalen Gesellschaft für Wissensorganisation (ISKO) und dem 13. Internationalen Symposium der Informationswissenschaft der Higher Education Association for Information Science (HI) Potsdam (19.-20.03.2013): 'Theory, Information and Organization of Knowledge' / Proceedings der 14. Tagung der Deutschen Sektion der Internationalen Gesellschaft für Wissensorganisation (ISKO) und Natural Language & Information Systems (NLDB) Passau (16.06.2015): 'Lexical Resources for Knowledge Organization' / Proceedings des Workshops der Deutschen Sektion der Internationalen Gesellschaft für Wissensorganisation (ISKO) auf der SEMANTICS Leipzig (1.09.2014): 'Knowledge Organization and Semantic Web' / Proceedings des Workshops der Polnischen und Deutschen Sektion der Internationalen Gesellschaft für Wissensorganisation (ISKO) Cottbus (29.-30.09.2011): 'Economics of Knowledge Production and Organization'. Hrsg. von W. Babik, H.P. Ohly u. K. Weber
  16. Marcondes, C.H.: Representing and organizing scientific knowledge in biomedical articles with Semantic Web technologies (2017) 0.04
    0.035188597 = product of:
      0.07037719 = sum of:
        0.020812286 = weight(_text_:information in 3503) [ClassicSimilarity], result of:
          0.020812286 = score(doc=3503,freq=6.0), product of:
            0.08850355 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.050415643 = queryNorm
            0.23515764 = fieldWeight in 3503, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.0546875 = fieldNorm(doc=3503)
        0.049564905 = product of:
          0.09912981 = sum of:
            0.09912981 = weight(_text_:organization in 3503) [ClassicSimilarity], result of:
              0.09912981 = score(doc=3503,freq=8.0), product of:
                0.17974974 = queryWeight, product of:
                  3.5653565 = idf(docFreq=3399, maxDocs=44218)
                  0.050415643 = queryNorm
                0.5514879 = fieldWeight in 3503, product of:
                  2.828427 = tf(freq=8.0), with freq of:
                    8.0 = termFreq=8.0
                  3.5653565 = idf(docFreq=3399, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=3503)
          0.5 = coord(1/2)
      0.5 = coord(2/4)
    
    Source
    Theorie, Semantik und Organisation von Wissen: Proceedings der 13. Tagung der Deutschen Sektion der Internationalen Gesellschaft für Wissensorganisation (ISKO) und dem 13. Internationalen Symposium der Informationswissenschaft der Higher Education Association for Information Science (HI) Potsdam (19.-20.03.2013): 'Theory, Information and Organization of Knowledge' / Proceedings der 14. Tagung der Deutschen Sektion der Internationalen Gesellschaft für Wissensorganisation (ISKO) und Natural Language & Information Systems (NLDB) Passau (16.06.2015): 'Lexical Resources for Knowledge Organization' / Proceedings des Workshops der Deutschen Sektion der Internationalen Gesellschaft für Wissensorganisation (ISKO) auf der SEMANTICS Leipzig (1.09.2014): 'Knowledge Organization and Semantic Web' / Proceedings des Workshops der Polnischen und Deutschen Sektion der Internationalen Gesellschaft für Wissensorganisation (ISKO) Cottbus (29.-30.09.2011): 'Economics of Knowledge Production and Organization'. Hrsg. von W. Babik, H.P. Ohly u. K. Weber
  17. De Luca, E.W.: Using multilingual lexical resources for extending the linked data cloud (2017) 0.04
    0.035188597 = product of:
      0.07037719 = sum of:
        0.020812286 = weight(_text_:information in 3506) [ClassicSimilarity], result of:
          0.020812286 = score(doc=3506,freq=6.0), product of:
            0.08850355 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.050415643 = queryNorm
            0.23515764 = fieldWeight in 3506, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.0546875 = fieldNorm(doc=3506)
        0.049564905 = product of:
          0.09912981 = sum of:
            0.09912981 = weight(_text_:organization in 3506) [ClassicSimilarity], result of:
              0.09912981 = score(doc=3506,freq=8.0), product of:
                0.17974974 = queryWeight, product of:
                  3.5653565 = idf(docFreq=3399, maxDocs=44218)
                  0.050415643 = queryNorm
                0.5514879 = fieldWeight in 3506, product of:
                  2.828427 = tf(freq=8.0), with freq of:
                    8.0 = termFreq=8.0
                  3.5653565 = idf(docFreq=3399, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=3506)
          0.5 = coord(1/2)
      0.5 = coord(2/4)
    
    Source
    Theorie, Semantik und Organisation von Wissen: Proceedings der 13. Tagung der Deutschen Sektion der Internationalen Gesellschaft für Wissensorganisation (ISKO) und dem 13. Internationalen Symposium der Informationswissenschaft der Higher Education Association for Information Science (HI) Potsdam (19.-20.03.2013): 'Theory, Information and Organization of Knowledge' / Proceedings der 14. Tagung der Deutschen Sektion der Internationalen Gesellschaft für Wissensorganisation (ISKO) und Natural Language & Information Systems (NLDB) Passau (16.06.2015): 'Lexical Resources for Knowledge Organization' / Proceedings des Workshops der Deutschen Sektion der Internationalen Gesellschaft für Wissensorganisation (ISKO) auf der SEMANTICS Leipzig (1.09.2014): 'Knowledge Organization and Semantic Web' / Proceedings des Workshops der Polnischen und Deutschen Sektion der Internationalen Gesellschaft für Wissensorganisation (ISKO) Cottbus (29.-30.09.2011): 'Economics of Knowledge Production and Organization'. Hrsg. von W. Babik, H.P. Ohly u. K. Weber
  18. Stahn, L.-L.: Vocabulary alignment für archäologische KOS (2017) 0.04
    0.035188597 = product of:
      0.07037719 = sum of:
        0.020812286 = weight(_text_:information in 3511) [ClassicSimilarity], result of:
          0.020812286 = score(doc=3511,freq=6.0), product of:
            0.08850355 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.050415643 = queryNorm
            0.23515764 = fieldWeight in 3511, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.0546875 = fieldNorm(doc=3511)
        0.049564905 = product of:
          0.09912981 = sum of:
            0.09912981 = weight(_text_:organization in 3511) [ClassicSimilarity], result of:
              0.09912981 = score(doc=3511,freq=8.0), product of:
                0.17974974 = queryWeight, product of:
                  3.5653565 = idf(docFreq=3399, maxDocs=44218)
                  0.050415643 = queryNorm
                0.5514879 = fieldWeight in 3511, product of:
                  2.828427 = tf(freq=8.0), with freq of:
                    8.0 = termFreq=8.0
                  3.5653565 = idf(docFreq=3399, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=3511)
          0.5 = coord(1/2)
      0.5 = coord(2/4)
    
    Source
    Theorie, Semantik und Organisation von Wissen: Proceedings der 13. Tagung der Deutschen Sektion der Internationalen Gesellschaft für Wissensorganisation (ISKO) und dem 13. Internationalen Symposium der Informationswissenschaft der Higher Education Association for Information Science (HI) Potsdam (19.-20.03.2013): 'Theory, Information and Organization of Knowledge' / Proceedings der 14. Tagung der Deutschen Sektion der Internationalen Gesellschaft für Wissensorganisation (ISKO) und Natural Language & Information Systems (NLDB) Passau (16.06.2015): 'Lexical Resources for Knowledge Organization' / Proceedings des Workshops der Deutschen Sektion der Internationalen Gesellschaft für Wissensorganisation (ISKO) auf der SEMANTICS Leipzig (1.09.2014): 'Knowledge Organization and Semantic Web' / Proceedings des Workshops der Polnischen und Deutschen Sektion der Internationalen Gesellschaft für Wissensorganisation (ISKO) Cottbus (29.-30.09.2011): 'Economics of Knowledge Production and Organization'. Hrsg. von W. Babik, H.P. Ohly u. K. Weber
  19. Zhitomirsky-Geffet, M.; Bar-Ilan, J.: Towards maximal unification of semantically diverse ontologies for controversial domains (2014) 0.03
    0.032677837 = product of:
      0.06535567 = sum of:
        0.009710376 = weight(_text_:information in 1634) [ClassicSimilarity], result of:
          0.009710376 = score(doc=1634,freq=4.0), product of:
            0.08850355 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.050415643 = queryNorm
            0.10971737 = fieldWeight in 1634, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.03125 = fieldNorm(doc=1634)
        0.055645294 = sum of:
          0.028322803 = weight(_text_:organization in 1634) [ClassicSimilarity], result of:
            0.028322803 = score(doc=1634,freq=2.0), product of:
              0.17974974 = queryWeight, product of:
                3.5653565 = idf(docFreq=3399, maxDocs=44218)
                0.050415643 = queryNorm
              0.15756798 = fieldWeight in 1634, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                3.5653565 = idf(docFreq=3399, maxDocs=44218)
                0.03125 = fieldNorm(doc=1634)
          0.027322493 = weight(_text_:22 in 1634) [ClassicSimilarity], result of:
            0.027322493 = score(doc=1634,freq=2.0), product of:
              0.17654699 = queryWeight, product of:
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.050415643 = queryNorm
              0.15476047 = fieldWeight in 1634, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.03125 = fieldNorm(doc=1634)
      0.5 = coord(2/4)
    
    Abstract
    Purpose - Ontologies are prone to wide semantic variability due to subjective points of view of their composers. The purpose of this paper is to propose a new approach for maximal unification of diverse ontologies for controversial domains by their relations. Design/methodology/approach - Effective matching or unification of multiple ontologies for a specific domain is crucial for the success of many semantic web applications, such as semantic information retrieval and organization, document tagging, summarization and search. To this end, numerous automatic and semi-automatic techniques were proposed in the past decade that attempt to identify similar entities, mostly classes, in diverse ontologies for similar domains. Apparently, matching individual entities cannot result in full integration of ontologies' semantics without matching their inter-relations with all other-related classes (and instances). However, semantic matching of ontological relations still constitutes a major research challenge. Therefore, in this paper the authors propose a new paradigm for assessment of maximal possible matching and unification of ontological relations. To this end, several unification rules for ontological relations were devised based on ontological reference rules, and lexical and textual entailment. These rules were semi-automatically implemented to extend a given ontology with semantically matching relations from another ontology for a similar domain. Then, the ontologies were unified through these similar pairs of relations. The authors observe that these rules can be also facilitated to reveal the contradictory relations in different ontologies. Findings - To assess the feasibility of the approach two experiments were conducted with different sets of multiple personal ontologies on controversial domains constructed by trained subjects. The results for about 50 distinct ontology pairs demonstrate a good potential of the methodology for increasing inter-ontology agreement. Furthermore, the authors show that the presented methodology can lead to a complete unification of multiple semantically heterogeneous ontologies. Research limitations/implications - This is a conceptual study that presents a new approach for semantic unification of ontologies by a devised set of rules along with the initial experimental evidence of its feasibility and effectiveness. However, this methodology has to be fully automatically implemented and tested on a larger dataset in future research. Practical implications - This result has implication for semantic search, since a richer ontology, comprised of multiple aspects and viewpoints of the domain of knowledge, enhances discoverability and improves search results. Originality/value - To the best of the knowledge, this is the first study to examine and assess the maximal level of semantic relation-based ontology unification.
    Date
    20. 1.2015 18:30:22
    Source
    Aslib journal of information management. 66(2014) no.5, S.494-518
  20. Burke, M.: ¬The semantic web and the digital library (2009) 0.03
    0.03195362 = product of:
      0.06390724 = sum of:
        0.008582841 = weight(_text_:information in 2962) [ClassicSimilarity], result of:
          0.008582841 = score(doc=2962,freq=2.0), product of:
            0.08850355 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.050415643 = queryNorm
            0.09697737 = fieldWeight in 2962, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.0390625 = fieldNorm(doc=2962)
        0.0553244 = weight(_text_:standards in 2962) [ClassicSimilarity], result of:
          0.0553244 = score(doc=2962,freq=2.0), product of:
            0.22470023 = queryWeight, product of:
              4.4569545 = idf(docFreq=1393, maxDocs=44218)
              0.050415643 = queryNorm
            0.24621427 = fieldWeight in 2962, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.4569545 = idf(docFreq=1393, maxDocs=44218)
              0.0390625 = fieldNorm(doc=2962)
      0.5 = coord(2/4)
    
    Abstract
    Purpose - The purpose of this paper is to discuss alternative definitions of and approaches to the semantic web. It aims to clarify the relationship between the semantic web, Web 2.0 and Library 2.0. Design/methodology/approach - The paper is based on a literature review and evaluation of systems with semantic web features. It identifies and describes semantic web projects of relevance to libraries and evaluates the usefulness of JeromeDL and other social semantic digital library systems. It discusses actual and potential applications for libraries and makes recommendations for actions needed by researchers and practitioners. Findings - The paper concludes that the library community has a lot to offer to, and benefit from, the semantic web, but there is limited interest in the library community. It recommends that there be greater collaboration between semantic web researchers and project developers, library management systems providers and the library community. Librarians should get involved in the development of semantic web standards, for example, metadata and taxonomies. Originality/value - The paper clarifies the distinction between semantic web and Web 2.0 in a digital library environment. It evaluates and predicts future developments for operational systems.
    Footnote
    Beitrag in einem Special Issue: Irish Library and Information Schools: University College Dublin

Years

Languages

  • e 116
  • d 28
  • f 1
  • More… Less…

Types