Search (886 results, page 2 of 45)

  • × type_ss:"el"
  1. Leresche, F.: Libraries and archives : sharing standards to facilitate access to cultural heritage (2008) 0.07
    0.06982242 = product of:
      0.13964485 = sum of:
        0.006866273 = weight(_text_:information in 1425) [ClassicSimilarity], result of:
          0.006866273 = score(doc=1425,freq=2.0), product of:
            0.08850355 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.050415643 = queryNorm
            0.0775819 = fieldWeight in 1425, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.03125 = fieldNorm(doc=1425)
        0.13277857 = weight(_text_:standards in 1425) [ClassicSimilarity], result of:
          0.13277857 = score(doc=1425,freq=18.0), product of:
            0.22470023 = queryWeight, product of:
              4.4569545 = idf(docFreq=1393, maxDocs=44218)
              0.050415643 = queryNorm
            0.59091425 = fieldWeight in 1425, product of:
              4.2426405 = tf(freq=18.0), with freq of:
                18.0 = termFreq=18.0
              4.4569545 = idf(docFreq=1393, maxDocs=44218)
              0.03125 = fieldNorm(doc=1425)
      0.5 = coord(2/4)
    
    Abstract
    This presentation shares the French experience of collaboration between archivists and librarians, led by working groups with the Association française de normalisation (AFNOR). With the arrival of the Web, the various heritage institutions are increasingly aware of their areas of commonality and the need for interoperability between their catalogues. This is particularly true for archives and libraries, which have developed standards for meeting their specific needs Regarding document description, but which are now seeking to establish a dialogue for defining a coherent set of standards to which professionals in both communities can refer. After discussing the characteristics of the collections held respectively in archives and libraries, this presentation will draw a portrait of the standards established by the two professional communities in the following areas: - description of documents - access points in descriptions and authority records - description of functions - identification of conservation institutions and collections It is concluded from this study that the standards developed by libraries on the one hand and by archives on the other are most often complementary and that each professional community is being driven to use the standards developed by the other, or would at least profit from doing so. A dialogue between the two professions is seen today as a necessity for fostering the compatibility and interoperability of standards and documentary tools. Despite this recognition of the need for collaboration, the development of standards is still largely a compartmentalized process, and the fact that normative work is conducted within professional associations is a contributing factor. The French experience shows, however, that it is possible to create working groups where archivists and librarians unite and develop a comprehensive view of the standards and initiatives conducted by each, with the goal of articulating them as best they can for the purpose of interoperability, yet respecting the specific requirements of each.
    Content
    Beitrag während: World library and information congress: 74th IFLA general conference and council, 10-14 August 2008, Québec, Canada.
  2. Heery, R.; Wagner, H.: ¬A metadata registry for the Semantic Web (2002) 0.07
    0.06597382 = product of:
      0.087965086 = sum of:
        0.00849658 = weight(_text_:information in 1210) [ClassicSimilarity], result of:
          0.00849658 = score(doc=1210,freq=4.0), product of:
            0.08850355 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.050415643 = queryNorm
            0.0960027 = fieldWeight in 1210, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.02734375 = fieldNorm(doc=1210)
        0.06707728 = weight(_text_:standards in 1210) [ClassicSimilarity], result of:
          0.06707728 = score(doc=1210,freq=6.0), product of:
            0.22470023 = queryWeight, product of:
              4.4569545 = idf(docFreq=1393, maxDocs=44218)
              0.050415643 = queryNorm
            0.29851896 = fieldWeight in 1210, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              4.4569545 = idf(docFreq=1393, maxDocs=44218)
              0.02734375 = fieldNorm(doc=1210)
        0.012391226 = product of:
          0.024782453 = sum of:
            0.024782453 = weight(_text_:organization in 1210) [ClassicSimilarity], result of:
              0.024782453 = score(doc=1210,freq=2.0), product of:
                0.17974974 = queryWeight, product of:
                  3.5653565 = idf(docFreq=3399, maxDocs=44218)
                  0.050415643 = queryNorm
                0.13787198 = fieldWeight in 1210, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5653565 = idf(docFreq=3399, maxDocs=44218)
                  0.02734375 = fieldNorm(doc=1210)
          0.5 = coord(1/2)
      0.75 = coord(3/4)
    
    Abstract
    * Agencies maintaining directories of data elements in a domain area in accordance with ISO/IEC 11179 (This standard specifies good practice for data element definition as well as the registration process. Example implementations are the National Health Information Knowledgebase hosted by the Australian Institute of Health and Welfare and the Environmental Data Registry hosted by the US Environmental Protection Agency.); * The xml.org directory of the Extended Markup Language (XML) document specifications facilitating re-use of Document Type Definition (DTD), hosted by the Organization for the Advancement of Structured Information Standards (OASIS); * The MetaForm database of Dublin Core usage and mappings maintained at the State and University Library in Goettingen; * The Semantic Web Agreement Group Dictionary, a database of terms for the Semantic Web that can be referred to by humans and software agents; * LEXML, a multi-lingual and multi-jurisdictional RDF Dictionary for the legal world; * The SCHEMAS registry maintained by the European Commission funded SCHEMAS project, which indexes several metadata element sets as well as a large number of activity reports describing metadata related activities and initiatives. Metadata registries essentially provide an index of terms. Given the distributed nature of the Web, there are a number of ways this can be accomplished. For example, the registry could link to terms and definitions in schemas published by implementers and stored locally by the schema maintainer. Alternatively, the registry might harvest various metadata schemas from their maintainers. Registries provide 'added value' to users by indexing schemas relevant to a particular 'domain' or 'community of use' and by simplifying the navigation of terms by enabling multiple schemas to be accessed from one view. An important benefit of this approach is an increase in the reuse of existing terms, rather than users having to reinvent them. Merging schemas to one view leads to harmonization between applications and helps avoid duplication of effort. Additionally, the establishment of registries to index terms actively being used in local implementations facilitates the metadata standards activity by providing implementation experience transferable to the standards-making process.
  3. Hunter, J.: MetaNet - a metadata term thesaurus to enable semantic interoperability between metadata domains (2001) 0.06
    0.06387309 = product of:
      0.08516412 = sum of:
        0.01213797 = weight(_text_:information in 6471) [ClassicSimilarity], result of:
          0.01213797 = score(doc=6471,freq=4.0), product of:
            0.08850355 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.050415643 = queryNorm
            0.13714671 = fieldWeight in 6471, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.0390625 = fieldNorm(doc=6471)
        0.0553244 = weight(_text_:standards in 6471) [ClassicSimilarity], result of:
          0.0553244 = score(doc=6471,freq=2.0), product of:
            0.22470023 = queryWeight, product of:
              4.4569545 = idf(docFreq=1393, maxDocs=44218)
              0.050415643 = queryNorm
            0.24621427 = fieldWeight in 6471, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.4569545 = idf(docFreq=1393, maxDocs=44218)
              0.0390625 = fieldNorm(doc=6471)
        0.017701752 = product of:
          0.035403505 = sum of:
            0.035403505 = weight(_text_:organization in 6471) [ClassicSimilarity], result of:
              0.035403505 = score(doc=6471,freq=2.0), product of:
                0.17974974 = queryWeight, product of:
                  3.5653565 = idf(docFreq=3399, maxDocs=44218)
                  0.050415643 = queryNorm
                0.19695997 = fieldWeight in 6471, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5653565 = idf(docFreq=3399, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=6471)
          0.5 = coord(1/2)
      0.75 = coord(3/4)
    
    Abstract
    Metadata interoperability is a fundamental requirement for access to information within networked knowledge organization systems. The Harmony international digital library project [1] has developed a common underlying data model (the ABC model) to enable the scalable mapping of metadata descriptions across domains and media types. The ABC model [2] provides a set of basic building blocks for metadata modeling and recognizes the importance of 'events' to describe unambiguously metadata for objects with a complex history. To test and evaluate the interoperability capabilities of this model, we applied it to some real multimedia examples and analysed the results of mapping from the ABC model to various different metadata domains using XSLT [3]. This work revealed serious limitations in the ability of XSLT to support flexible dynamic semantic mapping. To overcome this, we developed MetaNet [4], a metadata term thesaurus which provides the additional semantic knowledge that is non-existent within declarative XML-encoded metadata descriptions. This paper describes MetaNet, its RDF Schema [5] representation and a hybrid mapping approach which combines the structural and syntactic mapping capabilities of XSLT with the semantic knowledge of MetaNet, to enable flexible and dynamic mapping among metadata standards.
    Source
    Journal of digital information. 1(2001) no.8, art.# 42
  4. ISKO Encyclopedia of Knowledge Organization (2016) 0.06
    0.06350954 = product of:
      0.12701908 = sum of:
        0.077454165 = weight(_text_:standards in 3181) [ClassicSimilarity], result of:
          0.077454165 = score(doc=3181,freq=2.0), product of:
            0.22470023 = queryWeight, product of:
              4.4569545 = idf(docFreq=1393, maxDocs=44218)
              0.050415643 = queryNorm
            0.34469998 = fieldWeight in 3181, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.4569545 = idf(docFreq=1393, maxDocs=44218)
              0.0546875 = fieldNorm(doc=3181)
        0.049564905 = product of:
          0.09912981 = sum of:
            0.09912981 = weight(_text_:organization in 3181) [ClassicSimilarity], result of:
              0.09912981 = score(doc=3181,freq=8.0), product of:
                0.17974974 = queryWeight, product of:
                  3.5653565 = idf(docFreq=3399, maxDocs=44218)
                  0.050415643 = queryNorm
                0.5514879 = fieldWeight in 3181, product of:
                  2.828427 = tf(freq=8.0), with freq of:
                    8.0 = termFreq=8.0
                  3.5653565 = idf(docFreq=3399, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=3181)
          0.5 = coord(1/2)
      0.5 = coord(2/4)
    
    Abstract
    This is an online, open access encyclopedia of knowledge organization hosted by ISKO and produced by ISKO Scientific Advisory Council. It will contain entries about concepts, disciplines, organizations, systems, standards, and theories etc. including important domain specific systems. The encyclopedia is peer reviewed, all articles are signed by author(s), dated and versioned (new versions may be distinguished as, for example, Version 1.1 for minor changes of version 1 and Version 2 for major changes). We will try to get articles by the best experts in the subject of each article and to maintain a high scholarly standard. The first accepted version of each article will also be published in a new section of Knowledge Organization: Reviews of concepts in knowledge organization.
  5. Schoenbeck, O.; Schröter, M.; Werr, N.: Framework Informationskompetenz in der Hochschulbildung (2021) 0.06
    0.06326494 = product of:
      0.12652989 = sum of:
        0.01699316 = weight(_text_:information in 298) [ClassicSimilarity], result of:
          0.01699316 = score(doc=298,freq=4.0), product of:
            0.08850355 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.050415643 = queryNorm
            0.1920054 = fieldWeight in 298, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.0546875 = fieldNorm(doc=298)
        0.10953673 = weight(_text_:standards in 298) [ClassicSimilarity], result of:
          0.10953673 = score(doc=298,freq=4.0), product of:
            0.22470023 = queryWeight, product of:
              4.4569545 = idf(docFreq=1393, maxDocs=44218)
              0.050415643 = queryNorm
            0.4874794 = fieldWeight in 298, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              4.4569545 = idf(docFreq=1393, maxDocs=44218)
              0.0546875 = fieldNorm(doc=298)
      0.5 = coord(2/4)
    
    Abstract
    Im Mittelpunkt dieses Beitrags steht das 2016 von der Association of College & Research Libraries (ACRL) veröffentlichte Framework for Information Literacy for Higher Education, dessen Kernideen und Entwicklung aus Vorläufern wie den 2000 von der ACRL publizierten Information Literacy Competency Standards for Higher Education heraus skizziert werden. Die Rezeptionsgeschichte dieser Standards im deutschen Sprachraum wird vor dem Hintergrund der Geschichte ihrer (partiellen) Übersetzung nachgezeichnet und hieraus das Potenzial abgeleitet, das die nun vorliegende vollständige Übersetzung des Framework ins Deutsche für eine zeitgemäße Förderung von Informationskompetenz bietet. Die vielfältigen Herausforderungen einer solchen Übersetzung werden durch Einblicke in die Übersetzungswerkstatt exemplarisch reflektiert.
  6. Jackson, R.: Information Literacy and its relationship to cognitive development and reflective judgment (2008) 0.06
    0.057992067 = product of:
      0.115984134 = sum of:
        0.027465092 = weight(_text_:information in 111) [ClassicSimilarity], result of:
          0.027465092 = score(doc=111,freq=8.0), product of:
            0.08850355 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.050415643 = queryNorm
            0.3103276 = fieldWeight in 111, product of:
              2.828427 = tf(freq=8.0), with freq of:
                8.0 = termFreq=8.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.0625 = fieldNorm(doc=111)
        0.088519044 = weight(_text_:standards in 111) [ClassicSimilarity], result of:
          0.088519044 = score(doc=111,freq=2.0), product of:
            0.22470023 = queryWeight, product of:
              4.4569545 = idf(docFreq=1393, maxDocs=44218)
              0.050415643 = queryNorm
            0.39394283 = fieldWeight in 111, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.4569545 = idf(docFreq=1393, maxDocs=44218)
              0.0625 = fieldNorm(doc=111)
      0.5 = coord(2/4)
    
    Abstract
    This chapter maps the Association of College and Research Libraries' Information Competency Standards for Higher Education to the cognitive development levels developed by William G. Perry and Patricia King and Karen Kitchener to suggest which competencies are appropriate for which level of cognitive development.
    Series
    Special issue: Information Literacy: One key to education
    Theme
    Information
  7. Faro, S.; Francesconi, E.; Sandrucci, V.: Thesauri KOS analysis and selected thesaurus mapping methodology on the project case-study (2007) 0.06
    0.05792077 = product of:
      0.11584154 = sum of:
        0.088519044 = weight(_text_:standards in 2227) [ClassicSimilarity], result of:
          0.088519044 = score(doc=2227,freq=2.0), product of:
            0.22470023 = queryWeight, product of:
              4.4569545 = idf(docFreq=1393, maxDocs=44218)
              0.050415643 = queryNorm
            0.39394283 = fieldWeight in 2227, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.4569545 = idf(docFreq=1393, maxDocs=44218)
              0.0625 = fieldNorm(doc=2227)
        0.027322493 = product of:
          0.054644987 = sum of:
            0.054644987 = weight(_text_:22 in 2227) [ClassicSimilarity], result of:
              0.054644987 = score(doc=2227,freq=2.0), product of:
                0.17654699 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.050415643 = queryNorm
                0.30952093 = fieldWeight in 2227, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0625 = fieldNorm(doc=2227)
          0.5 = coord(1/2)
      0.5 = coord(2/4)
    
    Abstract
    - Introduction to the Thesaurus Interoperability problem - Analysis of the thesauri for the project case study - Overview of Schema/Ontology Mapping methodologies - The proposed approach for thesaurus mapping - Standards for implementing the proposed methodology
    Date
    7.11.2008 10:40:22
  8. Dunsire, G.; Willer, M.: Initiatives to make standard library metadata models and structures available to the Semantic Web (2010) 0.06
    0.056349926 = product of:
      0.11269985 = sum of:
        0.013732546 = weight(_text_:information in 3965) [ClassicSimilarity], result of:
          0.013732546 = score(doc=3965,freq=8.0), product of:
            0.08850355 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.050415643 = queryNorm
            0.1551638 = fieldWeight in 3965, product of:
              2.828427 = tf(freq=8.0), with freq of:
                8.0 = termFreq=8.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.03125 = fieldNorm(doc=3965)
        0.09896731 = weight(_text_:standards in 3965) [ClassicSimilarity], result of:
          0.09896731 = score(doc=3965,freq=10.0), product of:
            0.22470023 = queryWeight, product of:
              4.4569545 = idf(docFreq=1393, maxDocs=44218)
              0.050415643 = queryNorm
            0.4404415 = fieldWeight in 3965, product of:
              3.1622777 = tf(freq=10.0), with freq of:
                10.0 = termFreq=10.0
              4.4569545 = idf(docFreq=1393, maxDocs=44218)
              0.03125 = fieldNorm(doc=3965)
      0.5 = coord(2/4)
    
    Abstract
    This paper describes recent initiatives to make standard library metadata models and structures available to the Semantic Web, including IFLA standards such as Functional Requirements for Bibliographic Records (FRBR), Functional Requirements for Authority Data (FRAD), and International Standard Bibliographic Description (ISBD) along with the infrastructure that supports them. The FRBR Review Group is currently developing representations of FRAD and the entityrelationship model of FRBR in resource description framework (RDF) applications, using a combination of RDF, RDF Schema (RDFS), Simple Knowledge Organisation System (SKOS) and Web Ontology Language (OWL), cross-relating both models where appropriate. The ISBD/XML Task Group is investigating the representation of ISBD in RDF. The IFLA Namespaces project is developing an administrative and technical infrastructure to support such initiatives and encourage uptake of standards by other agencies. The paper describes similar initiatives with related external standards such as RDA - resource description and access, REICAT (the new Italian cataloguing rules) and CIDOC Conceptual Reference Model (CRM). The DCMI RDA Task Group is working with the Joint Steering Committee for RDA to develop Semantic Web representations of RDA structural elements, which are aligned with FRBR and FRAD, and controlled metadata content vocabularies. REICAT is also based on FRBR, and an object-oriented version of FRBR has been integrated with CRM, which itself has an RDF representation. CRM was initially based on the metadata needs of the museum community, and is now seeking extension to the archives community with the eventual aim of developing a model common to the main cultural information domains of archives, libraries and museums. The Vocabulary Mapping Framework (VMF) project has developed a Semantic Web tool to automatically generate mappings between metadata models from the information communities, including publishers. The tool is based on several standards, including CRM, FRAD, FRBR, MARC21 and RDA.
    The paper discusses the importance of these initiatives in releasing as linked data the very large quantities of rich, professionally-generated metadata stored in formats based on these standards, such as UNIMARC and MARC21, addressing such issues as critical mass for semantic and statistical inferencing, integration with user- and machine-generated metadata, and authenticity, veracity and trust. The paper also discusses related initiatives to release controlled vocabularies, including the Dewey Decimal Classification (DDC), ISBD, Library of Congress Name Authority File (LCNAF), Library of Congress Subject Headings (LCSH), Rameau (French subject headings), Universal Decimal Classification (UDC), and the Virtual International Authority File (VIAF) as linked data. Finally, the paper discusses the potential collective impact of these initiatives on metadata workflows and management systems.
    Content
    Vortrag im Rahmen der Session 93. Cataloguing der WORLD LIBRARY AND INFORMATION CONGRESS: 76TH IFLA GENERAL CONFERENCE AND ASSEMBLY, 10-15 August 2010, Gothenburg, Sweden - 149. Information Technology, Cataloguing, Classification and Indexing with Knowledge Management
  9. Schoenbeck, O.; Schröter, M.; Werr, N.: Making of oder Lost in translation? : Das Framework for Information Literacy for Higher Education - Herausforderungen bei der Übersetzung ins Deutsche und der bibliothekarischen Anwendung (2021) 0.06
    0.055863865 = product of:
      0.11172773 = sum of:
        0.017839102 = weight(_text_:information in 297) [ClassicSimilarity], result of:
          0.017839102 = score(doc=297,freq=6.0), product of:
            0.08850355 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.050415643 = queryNorm
            0.20156369 = fieldWeight in 297, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.046875 = fieldNorm(doc=297)
        0.093888626 = weight(_text_:standards in 297) [ClassicSimilarity], result of:
          0.093888626 = score(doc=297,freq=4.0), product of:
            0.22470023 = queryWeight, product of:
              4.4569545 = idf(docFreq=1393, maxDocs=44218)
              0.050415643 = queryNorm
            0.41783947 = fieldWeight in 297, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              4.4569545 = idf(docFreq=1393, maxDocs=44218)
              0.046875 = fieldNorm(doc=297)
      0.5 = coord(2/4)
    
    Abstract
    Im Mittelpunkt dieses Beitrags steht das 2016 von der Association of College & Research Libraries (ACRL) veröffentlichte Framework for Information Literacy for Higher Education, dessen Kernideen und Entwicklung aus Vorläufern wie den 2000 von der ACRL publizierten Information Literacy Competency Standards for Higher Education heraus skizziert werden. Die Rezeptionsgeschichte dieser Standards im deutschen Sprachraum wird vor dem Hintergrund der Geschichte ihrer (partiellen) Übersetzung nachgezeichnet und hieraus das Potenzial abgeleitet, das die nun vorliegende vollständige Übersetzung des Framework ins Deutsche für eine zeitgemäße Förderung von Informationskompetenz bietet. Die vielfältigen Herausforderungen einer solchen Übersetzung werden durch Einblicke in die Übersetzungswerkstatt exemplarisch reflektiert.
  10. Siripan, P.: Metadata and trends of cataloging in Thai libraries (1999) 0.05
    0.053969897 = product of:
      0.107939795 = sum of:
        0.019420752 = weight(_text_:information in 4183) [ClassicSimilarity], result of:
          0.019420752 = score(doc=4183,freq=4.0), product of:
            0.08850355 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.050415643 = queryNorm
            0.21943474 = fieldWeight in 4183, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.0625 = fieldNorm(doc=4183)
        0.088519044 = weight(_text_:standards in 4183) [ClassicSimilarity], result of:
          0.088519044 = score(doc=4183,freq=2.0), product of:
            0.22470023 = queryWeight, product of:
              4.4569545 = idf(docFreq=1393, maxDocs=44218)
              0.050415643 = queryNorm
            0.39394283 = fieldWeight in 4183, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.4569545 = idf(docFreq=1393, maxDocs=44218)
              0.0625 = fieldNorm(doc=4183)
      0.5 = coord(2/4)
    
    Abstract
    A status of cataloging in Thailand shows a movement toward the use of information technology. The international standards for cataloging are being used and modified to effectively organize the information resources. An expanded scope of resources needed cataloging now covers cataloging the Web resources. The paper mentions Thailand's participation in the international working group on the use of metadata for libraries
  11. Balakrishnan, U.; Voß, J.: ¬The Cocoda mapping tool (2015) 0.05
    0.05322557 = product of:
      0.07096743 = sum of:
        0.014716507 = weight(_text_:information in 4205) [ClassicSimilarity], result of:
          0.014716507 = score(doc=4205,freq=12.0), product of:
            0.08850355 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.050415643 = queryNorm
            0.16628155 = fieldWeight in 4205, product of:
              3.4641016 = tf(freq=12.0), with freq of:
                12.0 = termFreq=12.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.02734375 = fieldNorm(doc=4205)
        0.038727082 = weight(_text_:standards in 4205) [ClassicSimilarity], result of:
          0.038727082 = score(doc=4205,freq=2.0), product of:
            0.22470023 = queryWeight, product of:
              4.4569545 = idf(docFreq=1393, maxDocs=44218)
              0.050415643 = queryNorm
            0.17234999 = fieldWeight in 4205, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.4569545 = idf(docFreq=1393, maxDocs=44218)
              0.02734375 = fieldNorm(doc=4205)
        0.01752384 = product of:
          0.03504768 = sum of:
            0.03504768 = weight(_text_:organization in 4205) [ClassicSimilarity], result of:
              0.03504768 = score(doc=4205,freq=4.0), product of:
                0.17974974 = queryWeight, product of:
                  3.5653565 = idf(docFreq=3399, maxDocs=44218)
                  0.050415643 = queryNorm
                0.19498043 = fieldWeight in 4205, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  3.5653565 = idf(docFreq=3399, maxDocs=44218)
                  0.02734375 = fieldNorm(doc=4205)
          0.5 = coord(1/2)
      0.75 = coord(3/4)
    
    Abstract
    Since the 90s, we have seen an explosion of information and with it there is an increase in the need for data and information aggregation systems that store and manage information. However, most of the information sources apply different Knowledge Organizations Systems (KOS) to describe the content of stored data. This heterogeneous mix of KOS in different systems complicate access and seamless sharing of information and knowledge. Concordances also known as cross-concordances or terminology mappings map different (KOS) to each other for improvement of information retrieval in such heterogeneous mix of systems. (Mayr 2010, Keil 2012). Also for coherent indexing with different terminologies, mappings are considered to be a valuable and essential working tool. However, despite efforts at standardization (e.g. SKOS, ISO 25964-2, Keil 2012, Soergel 2011); there is a significant scarcity of concordances that has led an inability to establish uniform exchange formats as well as methods and tools for maintaining mappings and making them easily accessible. This is particularly true in the field of library classification schemes. In essence, there is a lack of infrastructure for provision/exchange of concordances, their management and quality assessment as well as tools that would enable semi-automatic generation of mappings. The project "coli-conc" therefore aims to address this gap by creating the necessary infrastructure. This includes the specification of a data format for exchange of concordances (JSKOS), specification and implementation of web APIs to query concordance databases (JSKOS-API), and a modular web application to enable uniform access to knowledge organization systems, concordances and concordance assessments (Cocoda).
    The focus of the project "coli-conc" lies in semi-automatic creation of mappings between different KOS in general and the two important library classification schemes in particular - Dewey classification system (DDC) and Regensburg classification system (RVK). In the year 2000, the national libraries of Germany, Austria and Switzerland adopted DDC in an endeavor to develop a nation-wide classification scheme. But historically, in the German speaking regions, the academic libraries have been using their own home-grown systems, the most prominent and popular being the RVK. However, with the launch of DDC, building concordances between DDC and RVK has become an imperative, although it is still rare. The delay in building comprehensive concordances between these two systems has been because of major challenges posed by the sheer largeness of these two systems (38.000 classes in DDC and ca. 860.000 classes in RVK), the strong disparity in their respective structure, the variation in the perception and representation of the concepts. The challenge is compounded geometrically for any manual attempt in this direction. Although there have been efforts on automatic mappings (OAEI Library Track 2012 -- 2014 and e.g. Pfeffer 2013) in the recent years; such concordances carry the risks of inaccurate mappings, and the approaches are rather more suitable for mapping suggestions than for automatic generation of concordances (Lauser 2008; Reiner 2010). The project "coli-conc" will facilitate the creation, evaluation, and reuse of mappings with a public collection of concordances and a web application of mapping management. The proposed presentation will give an introduction to the tools and standards created and planned in the project "coli-conc". This includes preliminary work on DDC concordances (Balakrishnan 2013), an overview of the software concept, technical architecture (Voß 2015) and a demonstration of the Cocoda web application.
    Content
    Vortrag anlässlich: 14th European Networked Knowledge Organization Systems (NKOS) Workshop, TPDL 2015 Conference in Poznan, Poland, Friday 18th September 2015. Vgl. auch: http://eprints.rclis.org/28007/. Vgl. auch: http://coli-conc.gbv.de/.
  12. Koch, T.; Vizine-Goetz, D.: Automatic classification and content navigation support for Web services : DESIRE II cooperates with OCLC (1998) 0.05
    0.051118307 = product of:
      0.10223661 = sum of:
        0.077454165 = weight(_text_:standards in 1568) [ClassicSimilarity], result of:
          0.077454165 = score(doc=1568,freq=2.0), product of:
            0.22470023 = queryWeight, product of:
              4.4569545 = idf(docFreq=1393, maxDocs=44218)
              0.050415643 = queryNorm
            0.34469998 = fieldWeight in 1568, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.4569545 = idf(docFreq=1393, maxDocs=44218)
              0.0546875 = fieldNorm(doc=1568)
        0.024782453 = product of:
          0.049564905 = sum of:
            0.049564905 = weight(_text_:organization in 1568) [ClassicSimilarity], result of:
              0.049564905 = score(doc=1568,freq=2.0), product of:
                0.17974974 = queryWeight, product of:
                  3.5653565 = idf(docFreq=3399, maxDocs=44218)
                  0.050415643 = queryNorm
                0.27574396 = fieldWeight in 1568, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5653565 = idf(docFreq=3399, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=1568)
          0.5 = coord(1/2)
      0.5 = coord(2/4)
    
    Abstract
    Emerging standards in knowledge representation and organization are preparing the way for distributed vocabulary support in Internet search services. NetLab researchers are exploring several innovative solutions for searching and browsing in the subject-based Internet gateway, Electronic Engineering Library, Sweden (EELS). The implementation of the EELS service is described, specifically, the generation of the robot-gathered database 'All' engineering and the automated application of the Ei thesaurus and classification scheme. NetLab and OCLC researchers are collaborating to investigate advanced solutions to automated classification in the DESIRE II context. A plan for furthering the development of distributed vocabulary support in Internet search services is offered.
  13. Putkey, T.: Using SKOS to express faceted classification on the Semantic Web (2011) 0.05
    0.051098473 = product of:
      0.0681313 = sum of:
        0.009710376 = weight(_text_:information in 311) [ClassicSimilarity], result of:
          0.009710376 = score(doc=311,freq=4.0), product of:
            0.08850355 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.050415643 = queryNorm
            0.10971737 = fieldWeight in 311, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.03125 = fieldNorm(doc=311)
        0.044259522 = weight(_text_:standards in 311) [ClassicSimilarity], result of:
          0.044259522 = score(doc=311,freq=2.0), product of:
            0.22470023 = queryWeight, product of:
              4.4569545 = idf(docFreq=1393, maxDocs=44218)
              0.050415643 = queryNorm
            0.19697142 = fieldWeight in 311, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.4569545 = idf(docFreq=1393, maxDocs=44218)
              0.03125 = fieldNorm(doc=311)
        0.014161401 = product of:
          0.028322803 = sum of:
            0.028322803 = weight(_text_:organization in 311) [ClassicSimilarity], result of:
              0.028322803 = score(doc=311,freq=2.0), product of:
                0.17974974 = queryWeight, product of:
                  3.5653565 = idf(docFreq=3399, maxDocs=44218)
                  0.050415643 = queryNorm
                0.15756798 = fieldWeight in 311, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5653565 = idf(docFreq=3399, maxDocs=44218)
                  0.03125 = fieldNorm(doc=311)
          0.5 = coord(1/2)
      0.75 = coord(3/4)
    
    Abstract
    This paper looks at Simple Knowledge Organization System (SKOS) to investigate how a faceted classification can be expressed in RDF and shared on the Semantic Web. Statement of the Problem Faceted classification outlines facets as well as subfacets and facet values. Hierarchical relationships and associative relationships are established in a faceted classification. RDF is used to describe how a specific URI has a relationship to a facet value. Not only does RDF decompose "information into pieces," but by incorporating facet values RDF also given the URI the hierarchical and associative relationships expressed in the faceted classification. Combining faceted classification and RDF creates more knowledge than if the two stood alone. An application understands the subjectpredicate-object relationship in RDF and can display hierarchical and associative relationships based on the object (facet) value. This paper continues to investigate if the above idea is indeed useful, used, and applicable. If so, how can a faceted classification be expressed in RDF? What would this expression look like? Literature Review This paper used the same articles as the paper A Survey of Faceted Classification: History, Uses, Drawbacks and the Semantic Web (Putkey, 2010). In that paper, appropriate resources were discovered by searching in various databases for "faceted classification" and "faceted search," either in the descriptor or title fields. Citations were also followed to find more articles as well as searching the Internet for the same terms. To retrieve the documents about RDF, searches combined "faceted classification" and "RDF, " looking for these words in either the descriptor or title.
    Methodology Based on information from research papers, more research was done on SKOS and examples of SKOS and shared faceted classifications in the Semantic Web and about SKOS and how to express SKOS in RDF/XML. Once confident with these ideas, the author used a faceted taxonomy created in a Vocabulary Design class and encoded it using SKOS. Instead of writing RDF in a program such as Notepad, a thesaurus tool was used to create the taxonomy according to SKOS standards and then export the thesaurus in RDF/XML format. These processes and tools are then analyzed. Results The initial statement of the problem was simply an extension of the survey paper done earlier in this class. To continue on with the research, more research was done into SKOS - a standard for expressing thesauri, taxonomies and faceted classifications so they can be shared on the semantic web.
  14. Tudhope, D.: Knowledge Organization System Services : brief review of NKOS activities and possibility of KOS registries (2007) 0.05
    0.050532743 = product of:
      0.20213097 = sum of:
        0.20213097 = sum of:
          0.120163485 = weight(_text_:organization in 100) [ClassicSimilarity], result of:
            0.120163485 = score(doc=100,freq=4.0), product of:
              0.17974974 = queryWeight, product of:
                3.5653565 = idf(docFreq=3399, maxDocs=44218)
                0.050415643 = queryNorm
              0.66850436 = fieldWeight in 100, product of:
                2.0 = tf(freq=4.0), with freq of:
                  4.0 = termFreq=4.0
                3.5653565 = idf(docFreq=3399, maxDocs=44218)
                0.09375 = fieldNorm(doc=100)
          0.08196748 = weight(_text_:22 in 100) [ClassicSimilarity], result of:
            0.08196748 = score(doc=100,freq=2.0), product of:
              0.17654699 = queryWeight, product of:
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.050415643 = queryNorm
              0.46428138 = fieldWeight in 100, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.09375 = fieldNorm(doc=100)
      0.25 = coord(1/4)
    
    Content
    Beitrag anläßlich des Seminars "Tools for knowledge organization - ISKO UK Seminar", 4. September 2007.
    Date
    22. 9.2007 15:41:14
  15. Garshol, L.M.: Living with topic maps and RDF : Topic maps, RDF, DAML, OIL, OWL, TMCL (2003) 0.05
    0.049133226 = product of:
      0.09826645 = sum of:
        0.020812286 = weight(_text_:information in 3886) [ClassicSimilarity], result of:
          0.020812286 = score(doc=3886,freq=6.0), product of:
            0.08850355 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.050415643 = queryNorm
            0.23515764 = fieldWeight in 3886, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.0546875 = fieldNorm(doc=3886)
        0.077454165 = weight(_text_:standards in 3886) [ClassicSimilarity], result of:
          0.077454165 = score(doc=3886,freq=2.0), product of:
            0.22470023 = queryWeight, product of:
              4.4569545 = idf(docFreq=1393, maxDocs=44218)
              0.050415643 = queryNorm
            0.34469998 = fieldWeight in 3886, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.4569545 = idf(docFreq=1393, maxDocs=44218)
              0.0546875 = fieldNorm(doc=3886)
      0.5 = coord(2/4)
    
    Abstract
    This paper is about the relationship between the topic map and RDF standards families. It compares the two technologies and looks at ways to make it easier for users to live in a world where both technologies are used. This is done by looking at how to convert information back and forth between the two technologies, how to convert schema information, and how to do queries across both information representations. Ways to achieve all of these goals are presented. This paper extends and improves on earlier work on the same subject, described in [Garshol01b]. This paper was first published in the proceedings of XML Europe 2003, 5-8 May 2003, organized by IDEAlliance, London, UK.
  16. Svensson, L.: Linked data in der Deutschen Nationalbibliothek (und auch anderswo ...) (2013) 0.05
    0.049133226 = product of:
      0.09826645 = sum of:
        0.020812286 = weight(_text_:information in 991) [ClassicSimilarity], result of:
          0.020812286 = score(doc=991,freq=6.0), product of:
            0.08850355 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.050415643 = queryNorm
            0.23515764 = fieldWeight in 991, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.0546875 = fieldNorm(doc=991)
        0.077454165 = weight(_text_:standards in 991) [ClassicSimilarity], result of:
          0.077454165 = score(doc=991,freq=2.0), product of:
            0.22470023 = queryWeight, product of:
              4.4569545 = idf(docFreq=1393, maxDocs=44218)
              0.050415643 = queryNorm
            0.34469998 = fieldWeight in 991, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.4569545 = idf(docFreq=1393, maxDocs=44218)
              0.0546875 = fieldNorm(doc=991)
      0.5 = coord(2/4)
    
    Abstract
    Das World Wide Web hat den Informations- austausch grundlegend verändert. Auch Archive, Bibliotheken und Museen stellen ihre Information ins WWW. Wir haben oft nur eigene Datensilos. Die Zukunft ist aber eher ein organisationsübergreifendes Netzwerk. Durch Linked Data können wir Information netzwerkartig wiederverwenden. Das Konzept basiert auf vier einfachen Prinzipen: - Use URIs as names for things - Use HTTP URIs so that people can look up those names. - When someone looks up a URI, provide useful information, using the standards (RDF*, SPARQL) - Include links to other URIs. so that they can discover more things.
  17. Noerr, P.: ¬The Digital Library Tool Kit (2001) 0.05
    0.048965394 = product of:
      0.065287195 = sum of:
        0.006866273 = weight(_text_:information in 6774) [ClassicSimilarity], result of:
          0.006866273 = score(doc=6774,freq=2.0), product of:
            0.08850355 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.050415643 = queryNorm
            0.0775819 = fieldWeight in 6774, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.03125 = fieldNorm(doc=6774)
        0.044259522 = weight(_text_:standards in 6774) [ClassicSimilarity], result of:
          0.044259522 = score(doc=6774,freq=2.0), product of:
            0.22470023 = queryWeight, product of:
              4.4569545 = idf(docFreq=1393, maxDocs=44218)
              0.050415643 = queryNorm
            0.19697142 = fieldWeight in 6774, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.4569545 = idf(docFreq=1393, maxDocs=44218)
              0.03125 = fieldNorm(doc=6774)
        0.014161401 = product of:
          0.028322803 = sum of:
            0.028322803 = weight(_text_:organization in 6774) [ClassicSimilarity], result of:
              0.028322803 = score(doc=6774,freq=2.0), product of:
                0.17974974 = queryWeight, product of:
                  3.5653565 = idf(docFreq=3399, maxDocs=44218)
                  0.050415643 = queryNorm
                0.15756798 = fieldWeight in 6774, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5653565 = idf(docFreq=3399, maxDocs=44218)
                  0.03125 = fieldNorm(doc=6774)
          0.5 = coord(1/2)
      0.75 = coord(3/4)
    
    Abstract
    This second edition is an update and expansion of the original April 1998 edition. It contains more of everything. In particular, the resources section has been expanded and updated. This document is designed to help those who are contemplating setting up a digital library. Whether this is a first time computerization effort or an extension of an existing library's services, there are questions to be answered, deci-sions to be made, and work to be done. This document covers all those stages and more. The first section (Chapter 1) is a series of questions to ask yourself and your organization. The questions are designed generally to raise issues rather than to provide definitive answers. The second section (Chapters 2-5) discusses the planning and implementation of a digital library. It raises some issues which are specific, and contains information to help answer the specifics and a host of other aspects of a digital li-brary project. The third section (Chapters 6 -7) includes resources and a look at current research, existing digital library systems, and the future. These chapters enable you to find additional resources and help, as well as show you where to look for interesting examples of the current state of the art
    Footnote
    This Digital Library Tool Kit was sponsored by Sun Microsystems, Inc. to address some of the leading questions that academic institutions, public libraries, government agencies, and museums face in trying to develop, manage, and distribute digital content. The evolution of Java programming, digital object standards, Internet access, electronic commerce, and digital media management models is causing educators, CIOs, and librarians to rethink many of their traditional goals and modes of operation. New audiences, continuous access to collections, and enhanced services to user communities are enabled. As one of the leading technology providers to education and library communities, Sun is pleased to present this comprehensive introduction to digital libraries
  18. Baker, T.; Bermès, E.; Coyle, K.; Dunsire, G.; Isaac, A.; Murray, P.; Panzer, M.; Schneider, J.; Singer, R.; Summers, E.; Waites, W.; Young, J.; Zeng, M.: Library Linked Data Incubator Group Final Report (2011) 0.05
    0.04769266 = product of:
      0.09538532 = sum of:
        0.006866273 = weight(_text_:information in 4796) [ClassicSimilarity], result of:
          0.006866273 = score(doc=4796,freq=2.0), product of:
            0.08850355 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.050415643 = queryNorm
            0.0775819 = fieldWeight in 4796, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.03125 = fieldNorm(doc=4796)
        0.088519044 = weight(_text_:standards in 4796) [ClassicSimilarity], result of:
          0.088519044 = score(doc=4796,freq=8.0), product of:
            0.22470023 = queryWeight, product of:
              4.4569545 = idf(docFreq=1393, maxDocs=44218)
              0.050415643 = queryNorm
            0.39394283 = fieldWeight in 4796, product of:
              2.828427 = tf(freq=8.0), with freq of:
                8.0 = termFreq=8.0
              4.4569545 = idf(docFreq=1393, maxDocs=44218)
              0.03125 = fieldNorm(doc=4796)
      0.5 = coord(2/4)
    
    Abstract
    The mission of the W3C Library Linked Data Incubator Group, chartered from May 2010 through August 2011, has been "to help increase global interoperability of library data on the Web, by bringing together people involved in Semantic Web activities - focusing on Linked Data - in the library community and beyond, building on existing initiatives, and identifying collaboration tracks for the future." In Linked Data [LINKEDDATA], data is expressed using standards such as Resource Description Framework (RDF) [RDF], which specifies relationships between things, and Uniform Resource Identifiers (URIs, or "Web addresses") [URI]. This final report of the Incubator Group examines how Semantic Web standards and Linked Data principles can be used to make the valuable information assets that library create and curate - resources such as bibliographic data, authorities, and concept schemes - more visible and re-usable outside of their original library context on the wider Web. The Incubator Group began by eliciting reports on relevant activities from parties ranging from small, independent projects to national library initiatives (see the separate report, Library Linked Data Incubator Group: Use Cases) [USECASE]. These use cases provided the starting point for the work summarized in the report: an analysis of the benefits of library Linked Data, a discussion of current issues with regard to traditional library data, existing library Linked Data initiatives, and legal rights over library data; and recommendations for next steps. The report also summarizes the results of a survey of current Linked Data technologies and an inventory of library Linked Data resources available today (see also the more detailed report, Library Linked Data Incubator Group: Datasets, Value Vocabularies, and Metadata Element Sets) [VOCABDATASET].
    Key recommendations of the report are: - That library leaders identify sets of data as possible candidates for early exposure as Linked Data and foster a discussion about Open Data and rights; - That library standards bodies increase library participation in Semantic Web standardization, develop library data standards that are compatible with Linked Data, and disseminate best-practice design patterns tailored to library Linked Data; - That data and systems designers design enhanced user services based on Linked Data capabilities, create URIs for the items in library datasets, develop policies for managing RDF vocabularies and their URIs, and express library data by re-using or mapping to existing Linked Data vocabularies; - That librarians and archivists preserve Linked Data element sets and value vocabularies and apply library experience in curation and long-term preservation to Linked Data datasets.
  19. Monireh, E.; Sarker, M.K.; Bianchi, F.; Hitzler, P.; Doran, D.; Xie, N.: Reasoning over RDF knowledge bases using deep learning (2018) 0.05
    0.04765854 = product of:
      0.09531708 = sum of:
        0.07824052 = weight(_text_:standards in 4553) [ClassicSimilarity], result of:
          0.07824052 = score(doc=4553,freq=4.0), product of:
            0.22470023 = queryWeight, product of:
              4.4569545 = idf(docFreq=1393, maxDocs=44218)
              0.050415643 = queryNorm
            0.34819958 = fieldWeight in 4553, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              4.4569545 = idf(docFreq=1393, maxDocs=44218)
              0.0390625 = fieldNorm(doc=4553)
        0.01707656 = product of:
          0.03415312 = sum of:
            0.03415312 = weight(_text_:22 in 4553) [ClassicSimilarity], result of:
              0.03415312 = score(doc=4553,freq=2.0), product of:
                0.17654699 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.050415643 = queryNorm
                0.19345059 = fieldWeight in 4553, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=4553)
          0.5 = coord(1/2)
      0.5 = coord(2/4)
    
    Abstract
    Semantic Web knowledge representation standards, and in particular RDF and OWL, often come endowed with a formal semantics which is considered to be of fundamental importance for the field. Reasoning, i.e., the drawing of logical inferences from knowledge expressed in such standards, is traditionally based on logical deductive methods and algorithms which can be proven to be sound and complete and terminating, i.e. correct in a very strong sense. For various reasons, though, in particular the scalability issues arising from the ever increasing amounts of Semantic Web data available and the inability of deductive algorithms to deal with noise in the data, it has been argued that alternative means of reasoning should be investigated which bear high promise for high scalability and better robustness. From this perspective, deductive algorithms can be considered the gold standard regarding correctness against which alternative methods need to be tested. In this paper, we show that it is possible to train a Deep Learning system on RDF knowledge graphs, such that it is able to perform reasoning over new RDF knowledge graphs, with high precision and recall compared to the deductive gold standard.
    Date
    16.11.2018 14:22:01
  20. Andersen, J.: Analyzing the role of knowledge organization in scholarly communication : an inquiry into the intellectual foundation of knowledge organization (2004) 0.05
    0.047091816 = product of:
      0.09418363 = sum of:
        0.02059882 = weight(_text_:information in 2348) [ClassicSimilarity], result of:
          0.02059882 = score(doc=2348,freq=2.0), product of:
            0.08850355 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.050415643 = queryNorm
            0.23274569 = fieldWeight in 2348, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.09375 = fieldNorm(doc=2348)
        0.07358481 = product of:
          0.14716962 = sum of:
            0.14716962 = weight(_text_:organization in 2348) [ClassicSimilarity], result of:
              0.14716962 = score(doc=2348,freq=6.0), product of:
                0.17974974 = queryWeight, product of:
                  3.5653565 = idf(docFreq=3399, maxDocs=44218)
                  0.050415643 = queryNorm
                0.8187473 = fieldWeight in 2348, product of:
                  2.4494898 = tf(freq=6.0), with freq of:
                    6.0 = termFreq=6.0
                  3.5653565 = idf(docFreq=3399, maxDocs=44218)
                  0.09375 = fieldNorm(doc=2348)
          0.5 = coord(1/2)
      0.5 = coord(2/4)
    
    Abstract
    A publication on the foundation of knowledge organization
    Theme
    Information

Years

Languages

Types

  • a 423
  • r 24
  • i 19
  • m 19
  • s 18
  • x 17
  • n 12
  • b 5
  • p 5
  • More… Less…

Themes