Search (22 results, page 1 of 2)

  • × type_ss:"p"
  1. Parent, I.: Serials standards in convergence : ISBD(S) developments (2000) 0.03
    0.033194643 = product of:
      0.13277857 = sum of:
        0.13277857 = weight(_text_:standards in 5411) [ClassicSimilarity], result of:
          0.13277857 = score(doc=5411,freq=2.0), product of:
            0.22470023 = queryWeight, product of:
              4.4569545 = idf(docFreq=1393, maxDocs=44218)
              0.050415643 = queryNorm
            0.59091425 = fieldWeight in 5411, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.4569545 = idf(docFreq=1393, maxDocs=44218)
              0.09375 = fieldNorm(doc=5411)
      0.25 = coord(1/4)
    
  2. Jaenecke, P.: Knowledge organization due to theory formation (1995) 0.03
    0.03139454 = product of:
      0.06278908 = sum of:
        0.013732546 = weight(_text_:information in 3751) [ClassicSimilarity], result of:
          0.013732546 = score(doc=3751,freq=2.0), product of:
            0.08850355 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.050415643 = queryNorm
            0.1551638 = fieldWeight in 3751, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.0625 = fieldNorm(doc=3751)
        0.049056537 = product of:
          0.098113075 = sum of:
            0.098113075 = weight(_text_:organization in 3751) [ClassicSimilarity], result of:
              0.098113075 = score(doc=3751,freq=6.0), product of:
                0.17974974 = queryWeight, product of:
                  3.5653565 = idf(docFreq=3399, maxDocs=44218)
                  0.050415643 = queryNorm
                0.5458315 = fieldWeight in 3751, product of:
                  2.4494898 = tf(freq=6.0), with freq of:
                    6.0 = termFreq=6.0
                  3.5653565 = idf(docFreq=3399, maxDocs=44218)
                  0.0625 = fieldNorm(doc=3751)
          0.5 = coord(1/2)
      0.5 = coord(2/4)
    
    Abstract
    Theory formation is regarded as a process of domain-internal knowledge organization. Misunderstandings about the concept 'theory' are explained. A theory is considered as a systematical representation of a domain realized by three closely related theory-forming actions: establishment of a suitable system of basic concepts, ordering of the experience or given experimental results, synthesizing of conflicting hypotheses. In this view, theory formation means an ambitious kind of knowledge representation. Its consequences are summarized and its importance for the human sciences and for society is emphasized
    Source
    Vortrag, anläßlich der Tagung 'EOCONSID '95: 2nd Meeting on Knowledge Organization in Information and Documentation Systems', Madrid, Nov. 16-17, 1995
  3. Noever, D.; Ciolino, M.: ¬The Turing deception (2022) 0.02
    0.02001835 = product of:
      0.0800734 = sum of:
        0.0800734 = product of:
          0.2402202 = sum of:
            0.2402202 = weight(_text_:3a in 862) [ClassicSimilarity], result of:
              0.2402202 = score(doc=862,freq=2.0), product of:
                0.42742437 = queryWeight, product of:
                  8.478011 = idf(docFreq=24, maxDocs=44218)
                  0.050415643 = queryNorm
                0.56201804 = fieldWeight in 862, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  8.478011 = idf(docFreq=24, maxDocs=44218)
                  0.046875 = fieldNorm(doc=862)
          0.33333334 = coord(1/3)
      0.25 = coord(1/4)
    
    Source
    https%3A%2F%2Farxiv.org%2Fabs%2F2212.06721&usg=AOvVaw3i_9pZm9y_dQWoHi6uv0EN
  4. Lehmann, F.: Semiosis complicates high-level ontology (2000) 0.02
    0.016597321 = product of:
      0.066389285 = sum of:
        0.066389285 = weight(_text_:standards in 5087) [ClassicSimilarity], result of:
          0.066389285 = score(doc=5087,freq=2.0), product of:
            0.22470023 = queryWeight, product of:
              4.4569545 = idf(docFreq=1393, maxDocs=44218)
              0.050415643 = queryNorm
            0.29545712 = fieldWeight in 5087, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.4569545 = idf(docFreq=1393, maxDocs=44218)
              0.046875 = fieldNorm(doc=5087)
      0.25 = coord(1/4)
    
    Abstract
    For automated question-answering, natural-language understanding, semantic integration of different databases/standards/thesauri/etc., you need a big complicated ontology of concepts and a logical language to combine them. Cyc (www.cyc.com) is such a system. It's good for your upper ontology to be systematic and clear, One way is to have a small number of well-defined distinctions at the top, by which all more specific concepts are partitioned. This is a system of "factors", or "facets" in Ranganathan's sense Iyer 1995) much like Aristotle's "differentia" in his "categories", as promoted in John Sowa's "ontological crystal". Practical considerations have driven Cyc's builders to mess up the neatness of such upper divisions. In particular, the simplicity of some very high "factors" is confounded, for practical use, by the occurrence in our world of semiosis and representation This talk will report on some of our experiences
  5. Isaac, A.; Raemy, J.A.; Meijers, E.; Valk, S. De; Freire, N.: Metadata aggregation via linked data : results of the Europeana Common Culture project (2020) 0.02
    0.016597321 = product of:
      0.066389285 = sum of:
        0.066389285 = weight(_text_:standards in 39) [ClassicSimilarity], result of:
          0.066389285 = score(doc=39,freq=2.0), product of:
            0.22470023 = queryWeight, product of:
              4.4569545 = idf(docFreq=1393, maxDocs=44218)
              0.050415643 = queryNorm
            0.29545712 = fieldWeight in 39, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.4569545 = idf(docFreq=1393, maxDocs=44218)
              0.046875 = fieldNorm(doc=39)
      0.25 = coord(1/4)
    
    Abstract
    Digital cultural heritage resources are widely available on the web through the digital libraries of heritage institutions. To address the difficulties of discoverability in cultural heritage, the common practice is metadata aggregation, where centralized efforts like Europeana facilitate discoverability by collecting the resources' metadata. We present the results of the linked data aggregation task conducted within the Europeana Common Culture project, which attempted an innovative approach to aggregation based on linked data made available by cultural heritage institutions. This task ran for one year with participation of eleven organizations, involving the three member roles of the Europeana network: data providers, intermediary aggregators, and the central aggregation hub, Europeana. We report on the challenges that were faced by data providers, the standards and specifications applied, and the resulting aggregated metadata.
  6. Großjohann, K.: Gathering-, Harvesting-, Suchmaschinen (1996) 0.01
    0.014489941 = product of:
      0.057959765 = sum of:
        0.057959765 = product of:
          0.11591953 = sum of:
            0.11591953 = weight(_text_:22 in 3227) [ClassicSimilarity], result of:
              0.11591953 = score(doc=3227,freq=4.0), product of:
                0.17654699 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.050415643 = queryNorm
                0.6565931 = fieldWeight in 3227, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.09375 = fieldNorm(doc=3227)
          0.5 = coord(1/2)
      0.25 = coord(1/4)
    
    Date
    7. 2.1996 22:38:41
    Pages
    22 S
  7. Luo, L.; Ju, J.; Li, Y.-F.; Haffari, G.; Xiong, B.; Pan, S.: ChatRule: mining logical rules with large language models for knowledge graph reasoning (2023) 0.01
    0.0128297005 = product of:
      0.025659401 = sum of:
        0.008582841 = weight(_text_:information in 1171) [ClassicSimilarity], result of:
          0.008582841 = score(doc=1171,freq=2.0), product of:
            0.08850355 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.050415643 = queryNorm
            0.09697737 = fieldWeight in 1171, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.0390625 = fieldNorm(doc=1171)
        0.01707656 = product of:
          0.03415312 = sum of:
            0.03415312 = weight(_text_:22 in 1171) [ClassicSimilarity], result of:
              0.03415312 = score(doc=1171,freq=2.0), product of:
                0.17654699 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.050415643 = queryNorm
                0.19345059 = fieldWeight in 1171, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=1171)
          0.5 = coord(1/2)
      0.5 = coord(2/4)
    
    Abstract
    Logical rules are essential for uncovering the logical connections between relations, which could improve the reasoning performance and provide interpretable results on knowledge graphs (KGs). Although there have been many efforts to mine meaningful logical rules over KGs, existing methods suffer from the computationally intensive searches over the rule space and a lack of scalability for large-scale KGs. Besides, they often ignore the semantics of relations which is crucial for uncovering logical connections. Recently, large language models (LLMs) have shown impressive performance in the field of natural language processing and various applications, owing to their emergent ability and generalizability. In this paper, we propose a novel framework, ChatRule, unleashing the power of large language models for mining logical rules over knowledge graphs. Specifically, the framework is initiated with an LLM-based rule generator, leveraging both the semantic and structural information of KGs to prompt LLMs to generate logical rules. To refine the generated rules, a rule ranking module estimates the rule quality by incorporating facts from existing KGs. Last, a rule validator harnesses the reasoning ability of LLMs to validate the logical correctness of ranked rules through chain-of-thought reasoning. ChatRule is evaluated on four large-scale KGs, w.r.t. different rule quality metrics and downstream tasks, showing the effectiveness and scalability of our method.
    Date
    23.11.2023 19:07:22
  8. Wätjen, H.-J.: Mensch oder Maschine? : Auswahl und Erschließung vonm Informationsressourcen im Internet (1996) 0.01
    0.00853828 = product of:
      0.03415312 = sum of:
        0.03415312 = product of:
          0.06830624 = sum of:
            0.06830624 = weight(_text_:22 in 3161) [ClassicSimilarity], result of:
              0.06830624 = score(doc=3161,freq=2.0), product of:
                0.17654699 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.050415643 = queryNorm
                0.38690117 = fieldWeight in 3161, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.078125 = fieldNorm(doc=3161)
          0.5 = coord(1/2)
      0.25 = coord(1/4)
    
    Date
    2. 2.1996 15:40:22
  9. Peponakis, M.; Mastora, A.; Kapidakis, S.; Doerr, M.: Expressiveness and machine processability of Knowledge Organization Systems (KOS) : an analysis of concepts and relations (2020) 0.01
    0.0076650837 = product of:
      0.030660335 = sum of:
        0.030660335 = product of:
          0.06132067 = sum of:
            0.06132067 = weight(_text_:organization in 5787) [ClassicSimilarity], result of:
              0.06132067 = score(doc=5787,freq=6.0), product of:
                0.17974974 = queryWeight, product of:
                  3.5653565 = idf(docFreq=3399, maxDocs=44218)
                  0.050415643 = queryNorm
                0.34114468 = fieldWeight in 5787, product of:
                  2.4494898 = tf(freq=6.0), with freq of:
                    6.0 = termFreq=6.0
                  3.5653565 = idf(docFreq=3399, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=5787)
          0.5 = coord(1/2)
      0.25 = coord(1/4)
    
    Abstract
    This study considers the expressiveness (that is the expressive power or expressivity) of different types of Knowledge Organization Systems (KOS) and discusses its potential to be machine-processable in the context of the Semantic Web. For this purpose, the theoretical foundations of KOS are reviewed based on conceptualizations introduced by the Functional Requirements for Subject Authority Data (FRSAD) and the Simple Knowledge Organization System (SKOS); natural language processing techniques are also implemented. Applying a comparative analysis, the dataset comprises a thesaurus (Eurovoc), a subject headings system (LCSH) and a classification scheme (DDC). These are compared with an ontology (CIDOC-CRM) by focusing on how they define and handle concepts and relations. It was observed that LCSH and DDC focus on the formalism of character strings (nomens) rather than on the modelling of semantics; their definition of what constitutes a concept is quite fuzzy, and they comprise a large number of complex concepts. By contrast, thesauri have a coherent definition of what constitutes a concept, and apply a systematic approach to the modelling of relations. Ontologies explicitly define diverse types of relations, and are by their nature machine-processable. The paper concludes that the potential of both the expressiveness and machine processability of each KOS is extensively regulated by its structural rules. It is harder to represent subject headings and classification schemes as semantic networks with nodes and arcs, while thesauri are more suitable for such a representation. In addition, a paradigm shift is revealed which focuses on the modelling of relations between concepts, rather than the concepts themselves.
  10. Frühwald, W.: ¬Das Forscherwissen und die Öffentlichkeit : Überlegungen zur Laisierung wissenschaftlicher Erkenntnis (1992) 0.01
    0.006866273 = product of:
      0.027465092 = sum of:
        0.027465092 = weight(_text_:information in 3045) [ClassicSimilarity], result of:
          0.027465092 = score(doc=3045,freq=2.0), product of:
            0.08850355 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.050415643 = queryNorm
            0.3103276 = fieldWeight in 3045, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.125 = fieldNorm(doc=3045)
      0.25 = coord(1/4)
    
    Theme
    Information
  11. Jouguelet, S.: Subject access and the marketplace for bibliographic information in France (1989) 0.01
    0.006007989 = product of:
      0.024031956 = sum of:
        0.024031956 = weight(_text_:information in 998) [ClassicSimilarity], result of:
          0.024031956 = score(doc=998,freq=2.0), product of:
            0.08850355 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.050415643 = queryNorm
            0.27153665 = fieldWeight in 998, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.109375 = fieldNorm(doc=998)
      0.25 = coord(1/4)
    
  12. Wormell, I.: Multifunctional information work : new demands for training? (1995) 0.01
    0.005946367 = product of:
      0.023785468 = sum of:
        0.023785468 = weight(_text_:information in 3371) [ClassicSimilarity], result of:
          0.023785468 = score(doc=3371,freq=6.0), product of:
            0.08850355 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.050415643 = queryNorm
            0.2687516 = fieldWeight in 3371, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.0625 = fieldNorm(doc=3371)
      0.25 = coord(1/4)
    
    Abstract
    The paper calls for an integrated approach to information science education where disciplinary interaction is predicated on the forgoing of formal, informal and sustainable links with researchers and pracitioners in other fields. The modern information profession, in order to promote its creativity and to strengthen its development, has to go beyond the traditional roles and functions and should extend the professions' horizons. Thus the LIS education and training programmes must aim to foster professionals who, one day, will create new jobs and not just fill the old ones
  13. Tramullas, J.; Garrido-Picazo, P.; Sánchez-Casabón, A.I.: Use of Wikipedia categories on information retrieval research : a brief review (2020) 0.01
    0.005149705 = product of:
      0.02059882 = sum of:
        0.02059882 = weight(_text_:information in 5365) [ClassicSimilarity], result of:
          0.02059882 = score(doc=5365,freq=8.0), product of:
            0.08850355 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.050415643 = queryNorm
            0.23274569 = fieldWeight in 5365, product of:
              2.828427 = tf(freq=8.0), with freq of:
                8.0 = termFreq=8.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.046875 = fieldNorm(doc=5365)
      0.25 = coord(1/4)
    
    Abstract
    Wikipedia categories, a classification scheme built for organizing and describing Wikpedia articles, are being applied in computer science research. This paper adopts a systematic literature review approach, in order to identify different approaches and uses of Wikipedia categories in information retrieval research. Several types of work are identified, depending on the intrinsic study of the categories structure, or its use as a tool for the processing and analysis of other documentary corpus different to Wikipedia. Information retrieval is identified as one of the major areas of use, in particular its application in the refinement and improvement of search expressions, and the construction of textual corpus. However, the set of available works shows that in many cases research approaches applied and results obtained can be integrated into a comprehensive and inclusive concept of information retrieval.
  14. Breuer, T.; Tavakolpoursaleh, N.; Schaer, P.; Hienert, D.; Schaible, J.; Castro, L.J.: Online Information Retrieval Evaluation using the STELLA Framework (2022) 0.01
    0.005149705 = product of:
      0.02059882 = sum of:
        0.02059882 = weight(_text_:information in 640) [ClassicSimilarity], result of:
          0.02059882 = score(doc=640,freq=8.0), product of:
            0.08850355 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.050415643 = queryNorm
            0.23274569 = fieldWeight in 640, product of:
              2.828427 = tf(freq=8.0), with freq of:
                8.0 = termFreq=8.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.046875 = fieldNorm(doc=640)
      0.25 = coord(1/4)
    
    Abstract
    Involving users in early phases of software development has become a common strategy as it enables developers to consider user needs from the beginning. Once a system is in production, new opportunities to observe, evaluate and learn from users emerge as more information becomes available. Gathering information from users to continuously evaluate their behavior is a common practice for commercial software, while the Cranfield paradigm remains the preferred option for Information Retrieval (IR) and recommendation systems in the academic world. Here we introduce the Infrastructures for Living Labs STELLA project which aims to create an evaluation infrastructure allowing experimental systems to run along production web-based academic search systems with real users. STELLA combines user interactions and log files analyses to enable large-scale A/B experiments for academic search.
  15. Kemp, A. de: Information provision : a publisher's point of view in changing times and with new technologies (1993) 0.00
    0.004855188 = product of:
      0.019420752 = sum of:
        0.019420752 = weight(_text_:information in 6235) [ClassicSimilarity], result of:
          0.019420752 = score(doc=6235,freq=4.0), product of:
            0.08850355 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.050415643 = queryNorm
            0.21943474 = fieldWeight in 6235, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.0625 = fieldNorm(doc=6235)
      0.25 = coord(1/4)
    
    Abstract
    Almost everybody seems to be talking about document delivery and digital libraries. Library networks are starting joint ventures with journal subscription agencies and offering electronic tables of contents. Integrated systems for image management and document management are being implemented. Academic networks and Internet are being used at an exponential rate. At the same time budgets for the acquisition of books and journals are shrinking and alternatives for the delivery of information are being discussed. Are there alternatives and what will be their impact?
  16. Robertson, S.E.: OKAPI at TREC (1994) 0.00
    0.0042914203 = product of:
      0.017165681 = sum of:
        0.017165681 = weight(_text_:information in 7952) [ClassicSimilarity], result of:
          0.017165681 = score(doc=7952,freq=2.0), product of:
            0.08850355 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.050415643 = queryNorm
            0.19395474 = fieldWeight in 7952, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.078125 = fieldNorm(doc=7952)
      0.25 = coord(1/4)
    
    Abstract
    Paper presented at the Text Retrieval Conference (TREC), Washington, DC, Nov 1992. Describes the OKAPI experimental text information retrieval system in terms of its design principles: the use of simple, robust and easy to use techniques which use best match searching and avoid Boolean logic
  17. Robertson, S.E.: OKAPI at TREC-1 (1994) 0.00
    0.0042914203 = product of:
      0.017165681 = sum of:
        0.017165681 = weight(_text_:information in 7953) [ClassicSimilarity], result of:
          0.017165681 = score(doc=7953,freq=2.0), product of:
            0.08850355 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.050415643 = queryNorm
            0.19395474 = fieldWeight in 7953, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.078125 = fieldNorm(doc=7953)
      0.25 = coord(1/4)
    
    Abstract
    Describes the work carried out on the TREC-2 project following the results of the TREC-1 project. Experiments were conducted on the OKAPI experimental text information retrieval system which investigated a number of alternative probabilistic term weighting functions in place of the 'standard' Robertson Sparck Jones weighting functions used in TREC-1
  18. Wille, R.: Denken in Begriffen : von der griechischen Philosophie bis zur Künstlichen Intelligenz heute (1993) 0.00
    0.00424829 = product of:
      0.01699316 = sum of:
        0.01699316 = weight(_text_:information in 3145) [ClassicSimilarity], result of:
          0.01699316 = score(doc=3145,freq=4.0), product of:
            0.08850355 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.050415643 = queryNorm
            0.1920054 = fieldWeight in 3145, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.0546875 = fieldNorm(doc=3145)
      0.25 = coord(1/4)
    
    Theme
    Information
    Information
  19. Pejtersen, A.M.; Jensen, H.; Speck, P.; Villumsen, S.; Weber, S.: Catalogs for children : the Book House project on visualization of database retrieval and classification (1993) 0.00
    0.0037164795 = product of:
      0.014865918 = sum of:
        0.014865918 = weight(_text_:information in 6232) [ClassicSimilarity], result of:
          0.014865918 = score(doc=6232,freq=6.0), product of:
            0.08850355 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.050415643 = queryNorm
            0.16796975 = fieldWeight in 6232, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.0390625 = fieldNorm(doc=6232)
      0.25 = coord(1/4)
    
    Abstract
    This paper describes the Book House system which is designed to support children's information retrieval in libraries as part of their education. It is a shareware program available on CD-ROM and discs, and comprises functionality for database searching as well as for the classification and storage of book information in the database. The system concept is based on an understanding of children's domain structures and their capabilities for categorization of information needs in connection with their activities in public libraries, in school libraries or in schools. These structures are visualized in the interface by using metaphors and multimedia technology. Through the use of text, images and animation, the Book House supports children - even at a very early age - to learn by doing in an enjoyable way which plays on their previous experiences with computer games. Both words and pictures can be used for searching; this makes the system suitable for all age groups. Even children who have not yet learned to read properly can by selecting pictures search for and find books they would like to have read aloud. Thus at the very beginning of their school period, they can learn to search for books on their own. For the library community itself, such a system will provide an extended service which will increase the number of children's own searches and also improve the relevance, quality and utilization of the collections in the libraries. A market research on the need for an annual indexing service for books in the Book House format is in preparation by the Danish Library Center
  20. Jansen, B.; Browne, G.M.: Navigating information spaces : index / mind map / topic map? (2021) 0.00
    0.0034331365 = product of:
      0.013732546 = sum of:
        0.013732546 = weight(_text_:information in 436) [ClassicSimilarity], result of:
          0.013732546 = score(doc=436,freq=2.0), product of:
            0.08850355 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.050415643 = queryNorm
            0.1551638 = fieldWeight in 436, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.0625 = fieldNorm(doc=436)
      0.25 = coord(1/4)