Search (57 results, page 3 of 3)

  • × author_ss:"Rousseau, R."
  1. Liu, Y.; Rafols, I.; Rousseau, R.: ¬A framework for knowledge integration and diffusion (2012) 0.01
    0.007855589 = product of:
      0.028803824 = sum of:
        0.0074093565 = weight(_text_:a in 297) [ClassicSimilarity], result of:
          0.0074093565 = score(doc=297,freq=20.0), product of:
            0.030653298 = queryWeight, product of:
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.026584605 = queryNorm
            0.24171482 = fieldWeight in 297, product of:
              4.472136 = tf(freq=20.0), with freq of:
                20.0 = termFreq=20.0
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.046875 = fieldNorm(doc=297)
        0.019311246 = weight(_text_:r in 297) [ClassicSimilarity], result of:
          0.019311246 = score(doc=297,freq=2.0), product of:
            0.088001914 = queryWeight, product of:
              3.3102584 = idf(docFreq=4387, maxDocs=44218)
              0.026584605 = queryNorm
            0.2194412 = fieldWeight in 297, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.3102584 = idf(docFreq=4387, maxDocs=44218)
              0.046875 = fieldNorm(doc=297)
        0.0020832212 = weight(_text_:s in 297) [ClassicSimilarity], result of:
          0.0020832212 = score(doc=297,freq=2.0), product of:
            0.028903782 = queryWeight, product of:
              1.0872376 = idf(docFreq=40523, maxDocs=44218)
              0.026584605 = queryNorm
            0.072074346 = fieldWeight in 297, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.0872376 = idf(docFreq=40523, maxDocs=44218)
              0.046875 = fieldNorm(doc=297)
      0.27272728 = coord(3/11)
    
    Abstract
    Purpose - This paper aims to introduce a general framework for the analysis of knowledge integration and diffusion using bibliometric data. Design/methodology/approach - The authors propose that in order to characterise knowledge integration and diffusion of a given issue (the source, for example articles on a topic or by an organisation, etc.), one has to choose a set of elements from the source (the intermediary set, for example references, keywords, etc.). This set can then be classified into categories (cats), thus making it possible to investigate its diversity. The set can also be characterised according to the coherence of a network associated to it. Findings - This framework allows a methodology to be developed to assess knowledge integration and diffusion. Such methodologies can be useful for a number of science policy issues, including the assessment of interdisciplinarity in research and dynamics of research networks. Originality/value - The main contribution of this article is to provide a simple and easy to use generalisation of an existing approach to study interdisciplinarity, bringing knowledge integration and knowledge diffusion together in one framework.
    Source
    Journal of documentation. 68(2012) no.1, S.31-44
    Type
    a
  2. Rousseau, R.; Egghe, L.; Guns, R.: Becoming metric-wise : a bibliometric guide for researchers (2018) 0.01
    0.0077987774 = product of:
      0.028595516 = sum of:
        0.0033818933 = weight(_text_:a in 5226) [ClassicSimilarity], result of:
          0.0033818933 = score(doc=5226,freq=6.0), product of:
            0.030653298 = queryWeight, product of:
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.026584605 = queryNorm
            0.11032722 = fieldWeight in 5226, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.0390625 = fieldNorm(doc=5226)
        0.022758523 = weight(_text_:r in 5226) [ClassicSimilarity], result of:
          0.022758523 = score(doc=5226,freq=4.0), product of:
            0.088001914 = queryWeight, product of:
              3.3102584 = idf(docFreq=4387, maxDocs=44218)
              0.026584605 = queryNorm
            0.25861394 = fieldWeight in 5226, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              3.3102584 = idf(docFreq=4387, maxDocs=44218)
              0.0390625 = fieldNorm(doc=5226)
        0.0024550997 = weight(_text_:s in 5226) [ClassicSimilarity], result of:
          0.0024550997 = score(doc=5226,freq=4.0), product of:
            0.028903782 = queryWeight, product of:
              1.0872376 = idf(docFreq=40523, maxDocs=44218)
              0.026584605 = queryNorm
            0.08494043 = fieldWeight in 5226, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              1.0872376 = idf(docFreq=40523, maxDocs=44218)
              0.0390625 = fieldNorm(doc=5226)
      0.27272728 = coord(3/11)
    
    Abstract
    Aims to inform researchers about metrics so that they become aware of the evaluative techniques being applied to their scientific output. Understanding these concepts will help them during their funding initiatives, and in hiring and tenure. The book not only describes what indicators do (or are designed to do, which is not always the same thing), but also gives precise mathematical formulae so that indicators can be properly understood and evaluated. Metrics have become a critical issue in science, with widespread international discussion taking place on the subject across scientific journals and organizations. As researchers should know the publication-citation context, the mathematical formulae of indicators being used by evaluating committees and their consequences, and how such indicators might be misused, this book provides an ideal tome on the topic. Provides researchers with a detailed understanding of bibliometric indicators and their applications. Empowers researchers looking to understand the indicators relevant to their work and careers. Presents an informed and rounded picture of bibliometrics, including the strengths and shortcomings of particular indicators. Supplies the mathematics behind bibliometric indicators so they can be properly understood. Written by authors with longstanding expertise who are considered global leaders in the field of bibliometrics
    Footnote
    Rez. in: JASIST 70(2019) no.5, S.530-532 (I. Dorsch)
    Pages
    xv, 385 S
  3. Jin, B.; Li, L.; Rousseau, R.: Long-term influences of interventions in the normal development of science : China and the cultural revolution (2004) 0.01
    0.007635444 = product of:
      0.027996628 = sum of:
        0.0057392623 = weight(_text_:a in 2232) [ClassicSimilarity], result of:
          0.0057392623 = score(doc=2232,freq=12.0), product of:
            0.030653298 = queryWeight, product of:
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.026584605 = queryNorm
            0.18723148 = fieldWeight in 2232, product of:
              3.4641016 = tf(freq=12.0), with freq of:
                12.0 = termFreq=12.0
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.046875 = fieldNorm(doc=2232)
        0.019311246 = weight(_text_:r in 2232) [ClassicSimilarity], result of:
          0.019311246 = score(doc=2232,freq=2.0), product of:
            0.088001914 = queryWeight, product of:
              3.3102584 = idf(docFreq=4387, maxDocs=44218)
              0.026584605 = queryNorm
            0.2194412 = fieldWeight in 2232, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.3102584 = idf(docFreq=4387, maxDocs=44218)
              0.046875 = fieldNorm(doc=2232)
        0.00294612 = weight(_text_:s in 2232) [ClassicSimilarity], result of:
          0.00294612 = score(doc=2232,freq=4.0), product of:
            0.028903782 = queryWeight, product of:
              1.0872376 = idf(docFreq=40523, maxDocs=44218)
              0.026584605 = queryNorm
            0.101928525 = fieldWeight in 2232, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              1.0872376 = idf(docFreq=40523, maxDocs=44218)
              0.046875 = fieldNorm(doc=2232)
      0.27272728 = coord(3/11)
    
    Abstract
    Intellectual and technological talents and skills are the driving force for scientific and industrial development, especially in our times characterized by a knowledgebased economy. Major events in society and related political decisions, however, can have a long-term effect an a country's scientific weIl-being. Although the Cultural Revolution took place from 1966 to 1976, its aftermath can still be felt. This is shown by this study of the production and productivity of Chinese scientists as a function of their age. Based an the 1995-2000 data from the Chinese Science Citation database (CSCD), this article investigates the year-by-year age distribution of scientific and technological personnel publishing in China. It is shown that the "Talent Fault" originating during the Cultural Revolution still exists, and that a new gap resulting from recent brain drain might be developing. The purpose of this work is to provide necessary information about the current situation and especially the existing problems of the S&T workforce in China.
    Source
    Journal of the American Society for Information Science and Technology. 55(2004) no.6, S.544-550
    Type
    a
  4. Frandsen, T.F.; Rousseau, R.: Article impact calculated over arbitrary periods (2005) 0.01
    0.007525522 = product of:
      0.02759358 = sum of:
        0.0061991126 = weight(_text_:a in 3264) [ClassicSimilarity], result of:
          0.0061991126 = score(doc=3264,freq=14.0), product of:
            0.030653298 = queryWeight, product of:
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.026584605 = queryNorm
            0.20223314 = fieldWeight in 3264, product of:
              3.7416575 = tf(freq=14.0), with freq of:
                14.0 = termFreq=14.0
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.046875 = fieldNorm(doc=3264)
        0.019311246 = weight(_text_:r in 3264) [ClassicSimilarity], result of:
          0.019311246 = score(doc=3264,freq=2.0), product of:
            0.088001914 = queryWeight, product of:
              3.3102584 = idf(docFreq=4387, maxDocs=44218)
              0.026584605 = queryNorm
            0.2194412 = fieldWeight in 3264, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.3102584 = idf(docFreq=4387, maxDocs=44218)
              0.046875 = fieldNorm(doc=3264)
        0.0020832212 = weight(_text_:s in 3264) [ClassicSimilarity], result of:
          0.0020832212 = score(doc=3264,freq=2.0), product of:
            0.028903782 = queryWeight, product of:
              1.0872376 = idf(docFreq=40523, maxDocs=44218)
              0.026584605 = queryNorm
            0.072074346 = fieldWeight in 3264, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.0872376 = idf(docFreq=40523, maxDocs=44218)
              0.046875 = fieldNorm(doc=3264)
      0.27272728 = coord(3/11)
    
    Abstract
    In this paper we address the various formulations of impact of articles, usually groups of articles as gauged by citations that these articles receive over a certain period of time. The journal impact factor, as published by ISI (Philadelphia, PA), is the best-known example of a formulation of impact of journals (considered as a set of articles) but many others have been defined in the literature. Impact factors have varying publication and citation periods and the chosen length of these periods enables, e.g., a distinction between synchronous and diachronous impact factors. It is shown how an impact factor for the general case can be defined. Two alternatives for a general impact factor are proposed, depending an whether different publication years are seen as a whole, and hence treating each one of them differently, or by operating with citation periods of identical length but allowing each publication period different starting points.
    Source
    Journal of the American Society for Information Science and Technology. 56(2005) no.1, S.58-62
    Type
    a
  5. Liang, L.; Rousseau, R.: Yield sequences as journal attractivity indicators : "payback times" for Science and Nature (2008) 0.01
    0.007400108 = product of:
      0.02713373 = sum of:
        0.0057392623 = weight(_text_:a in 1737) [ClassicSimilarity], result of:
          0.0057392623 = score(doc=1737,freq=12.0), product of:
            0.030653298 = queryWeight, product of:
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.026584605 = queryNorm
            0.18723148 = fieldWeight in 1737, product of:
              3.4641016 = tf(freq=12.0), with freq of:
                12.0 = termFreq=12.0
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.046875 = fieldNorm(doc=1737)
        0.019311246 = weight(_text_:r in 1737) [ClassicSimilarity], result of:
          0.019311246 = score(doc=1737,freq=2.0), product of:
            0.088001914 = queryWeight, product of:
              3.3102584 = idf(docFreq=4387, maxDocs=44218)
              0.026584605 = queryNorm
            0.2194412 = fieldWeight in 1737, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.3102584 = idf(docFreq=4387, maxDocs=44218)
              0.046875 = fieldNorm(doc=1737)
        0.0020832212 = weight(_text_:s in 1737) [ClassicSimilarity], result of:
          0.0020832212 = score(doc=1737,freq=2.0), product of:
            0.028903782 = queryWeight, product of:
              1.0872376 = idf(docFreq=40523, maxDocs=44218)
              0.026584605 = queryNorm
            0.072074346 = fieldWeight in 1737, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.0872376 = idf(docFreq=40523, maxDocs=44218)
              0.046875 = fieldNorm(doc=1737)
      0.27272728 = coord(3/11)
    
    Abstract
    Purpose - The yield period of a journal is defined as the time needed to accumulate the same number of citations as the number of references included during the period of study. Yield sequences are proposed as journal attractivity indicators describing dynamic characteristics of a journal. This paper aims to investigate their use. Design/methodology/approach - As a case study the yield sequences of the journals Nature and Science from 1955 onward are determined. Similarities and dissimilarities between these sequences are discussed and factors affecting yield periods are determined. Findings - The study finds that yield sequences make dynamic aspects of a journal visible, as reflected through citations. Exceptional circumstances (here the publication of Laemmli's paper in 1970 in the journal Nature) become clearly visible. The average number of references per article, the citation distribution and the size of the database used to collect citations are factors influencing yield sequences. Originality/value - A new dynamic indicator for the study of journals is introduced.
    Source
    Journal of documentation. 64(2008) no.2, S.229-245
    Type
    a
  6. Egghe, L.; Rousseau, R.: Aging, obsolescence, impact, growth, and utilization : definitions and relations (2000) 0.01
    0.007112879 = product of:
      0.026080554 = sum of:
        0.0046860883 = weight(_text_:a in 5154) [ClassicSimilarity], result of:
          0.0046860883 = score(doc=5154,freq=8.0), product of:
            0.030653298 = queryWeight, product of:
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.026584605 = queryNorm
            0.15287387 = fieldWeight in 5154, product of:
              2.828427 = tf(freq=8.0), with freq of:
                8.0 = termFreq=8.0
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.046875 = fieldNorm(doc=5154)
        0.019311246 = weight(_text_:r in 5154) [ClassicSimilarity], result of:
          0.019311246 = score(doc=5154,freq=2.0), product of:
            0.088001914 = queryWeight, product of:
              3.3102584 = idf(docFreq=4387, maxDocs=44218)
              0.026584605 = queryNorm
            0.2194412 = fieldWeight in 5154, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.3102584 = idf(docFreq=4387, maxDocs=44218)
              0.046875 = fieldNorm(doc=5154)
        0.0020832212 = weight(_text_:s in 5154) [ClassicSimilarity], result of:
          0.0020832212 = score(doc=5154,freq=2.0), product of:
            0.028903782 = queryWeight, product of:
              1.0872376 = idf(docFreq=40523, maxDocs=44218)
              0.026584605 = queryNorm
            0.072074346 = fieldWeight in 5154, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.0872376 = idf(docFreq=40523, maxDocs=44218)
              0.046875 = fieldNorm(doc=5154)
      0.27272728 = coord(3/11)
    
    Abstract
    The notions aging, obsolescence, impact, growth, utilization, and their relations are studied. It is shown how to correct an observed citation distribution for growth, once the growth distribution is known. The relation of this correction procedure with the calculation of impact measures is explained. More interestingly, we have shown how the influence of growth on aging can be studied over a complete period as a whole. Here, the difference between the so-called average and global aging distributions is the main factor. Our main result is that growth can influence aging but that it does not cause aging. A short overview of some classical articles on this topic is given. Results of these earlier works are placed in the framework set up in this article
    Source
    Journal of the American Society for Information Science. 51(2000) no.11, S.1004-1017
    Type
    a
  7. Liu, Y.; Rousseau, R.: Interestingness and the essence of citation : Thomas Reid and bibliographic description (2013) 0.01
    0.006941656 = product of:
      0.025452739 = sum of:
        0.0040582716 = weight(_text_:a in 1764) [ClassicSimilarity], result of:
          0.0040582716 = score(doc=1764,freq=6.0), product of:
            0.030653298 = queryWeight, product of:
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.026584605 = queryNorm
            0.13239266 = fieldWeight in 1764, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.046875 = fieldNorm(doc=1764)
        0.019311246 = weight(_text_:r in 1764) [ClassicSimilarity], result of:
          0.019311246 = score(doc=1764,freq=2.0), product of:
            0.088001914 = queryWeight, product of:
              3.3102584 = idf(docFreq=4387, maxDocs=44218)
              0.026584605 = queryNorm
            0.2194412 = fieldWeight in 1764, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.3102584 = idf(docFreq=4387, maxDocs=44218)
              0.046875 = fieldNorm(doc=1764)
        0.0020832212 = weight(_text_:s in 1764) [ClassicSimilarity], result of:
          0.0020832212 = score(doc=1764,freq=2.0), product of:
            0.028903782 = queryWeight, product of:
              1.0872376 = idf(docFreq=40523, maxDocs=44218)
              0.026584605 = queryNorm
            0.072074346 = fieldWeight in 1764, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.0872376 = idf(docFreq=40523, maxDocs=44218)
              0.046875 = fieldNorm(doc=1764)
      0.27272728 = coord(3/11)
    
    Abstract
    Purpose - This paper aims to provide a new insight into the reasons why authors cite. Design/methodology/approach The authors argue that, based on philosophical ideas about the essence of things, pure rational thinking about the role of citations leads to the answer. Findings - Citations originate from the interestingness of the investigated phenomenon. The essence of citation lies in the interaction between different ideas or perspectives on a phenomenon addressed in the citing as well as in the cited articles. Research limitations/implications - The findings only apply to ethical (not whimsical or self-serving) citations. As such citations reflect interactions of scientific ideas, they can reveal the evolution of science, revive the cognitive process of an investigated scientific phenomenon and reveal political and economic factors influencing the development of science. Originality/value - This article is the first to propose interestingness and the interaction of ideas as the basic reason for citing. This view on citations allows reverse engineering from citations to ideas and hence becomes useful for science policy.
    Source
    Journal of documentation. 69(2013) no.4, S.580-589
    Type
    a
  8. Hu, X.; Rousseau, R.: Do citation chimeras exist? : The case of under-cited influential articles suffering delayed recognition (2019) 0.01
    0.006941656 = product of:
      0.025452739 = sum of:
        0.0040582716 = weight(_text_:a in 5217) [ClassicSimilarity], result of:
          0.0040582716 = score(doc=5217,freq=6.0), product of:
            0.030653298 = queryWeight, product of:
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.026584605 = queryNorm
            0.13239266 = fieldWeight in 5217, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.046875 = fieldNorm(doc=5217)
        0.019311246 = weight(_text_:r in 5217) [ClassicSimilarity], result of:
          0.019311246 = score(doc=5217,freq=2.0), product of:
            0.088001914 = queryWeight, product of:
              3.3102584 = idf(docFreq=4387, maxDocs=44218)
              0.026584605 = queryNorm
            0.2194412 = fieldWeight in 5217, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.3102584 = idf(docFreq=4387, maxDocs=44218)
              0.046875 = fieldNorm(doc=5217)
        0.0020832212 = weight(_text_:s in 5217) [ClassicSimilarity], result of:
          0.0020832212 = score(doc=5217,freq=2.0), product of:
            0.028903782 = queryWeight, product of:
              1.0872376 = idf(docFreq=40523, maxDocs=44218)
              0.026584605 = queryNorm
            0.072074346 = fieldWeight in 5217, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.0872376 = idf(docFreq=40523, maxDocs=44218)
              0.046875 = fieldNorm(doc=5217)
      0.27272728 = coord(3/11)
    
    Abstract
    In this study we investigate if articles suffering delayed recognition can at the same time be under-cited influential articles. Theoretically these two types of articles are independent, in the sense that suffering delayed recognition depends on the number and time distribution of received citations, while being an under-cited influential article depends only partially on the number of received (first generation) citations, and much more on second and third citation generations. Among 49 articles suffering delayed recognition we found 13 that are also under-cited influential. Based on a thorough investigation of these special cases we found that so-called authoritative citers play an important role in uniting the two different document types into a special citation chimera. Our investigation contributes to the classification of publications.
    Source
    Journal of the Association for Information Science and Technology. 70(2019) no.5, S.499-508
    Type
    a
  9. Egghe, L.; Rousseau, R.; Hooydonk, G. van: Methods for accrediting publications to authors or countries : consequences for evaluation studies (2000) 0.01
    0.006738554 = product of:
      0.02470803 = sum of:
        0.0033135647 = weight(_text_:a in 4384) [ClassicSimilarity], result of:
          0.0033135647 = score(doc=4384,freq=4.0), product of:
            0.030653298 = queryWeight, product of:
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.026584605 = queryNorm
            0.10809815 = fieldWeight in 4384, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.046875 = fieldNorm(doc=4384)
        0.019311246 = weight(_text_:r in 4384) [ClassicSimilarity], result of:
          0.019311246 = score(doc=4384,freq=2.0), product of:
            0.088001914 = queryWeight, product of:
              3.3102584 = idf(docFreq=4387, maxDocs=44218)
              0.026584605 = queryNorm
            0.2194412 = fieldWeight in 4384, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.3102584 = idf(docFreq=4387, maxDocs=44218)
              0.046875 = fieldNorm(doc=4384)
        0.0020832212 = weight(_text_:s in 4384) [ClassicSimilarity], result of:
          0.0020832212 = score(doc=4384,freq=2.0), product of:
            0.028903782 = queryWeight, product of:
              1.0872376 = idf(docFreq=40523, maxDocs=44218)
              0.026584605 = queryNorm
            0.072074346 = fieldWeight in 4384, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.0872376 = idf(docFreq=40523, maxDocs=44218)
              0.046875 = fieldNorm(doc=4384)
      0.27272728 = coord(3/11)
    
    Abstract
    One aim of science evaluation studies is to determine quantitatively the contribution of different players (authors, departments, countries) to the whole system. This information is then used to study the evolution of the system, for instance to gauge the results of special national or international programs. Taking articles as our basic data, we want to determine the exact relative contribution of each coauthor or each country. These numbers are brought together to obtain country scores, or department scores, etc. It turns out, as we will show in this article, that different scoring methods can yield totally different rankings. Conseqeuntly, a ranking between countries, universities, research groups or authors, based on one particular accrediting methods does not contain an absolute truth about their relative importance
    Source
    Journal of the American Society for Information Science. 51(2000) no.2, S.145-157
    Type
    a
  10. Rousseau, R.: Journal evaluation : technical and practical issues (2002) 0.01
    0.0065646586 = product of:
      0.024070414 = sum of:
        0.0055226083 = weight(_text_:a in 816) [ClassicSimilarity], result of:
          0.0055226083 = score(doc=816,freq=16.0), product of:
            0.030653298 = queryWeight, product of:
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.026584605 = queryNorm
            0.18016359 = fieldWeight in 816, product of:
              4.0 = tf(freq=16.0), with freq of:
                16.0 = termFreq=16.0
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.0390625 = fieldNorm(doc=816)
        0.016092705 = weight(_text_:r in 816) [ClassicSimilarity], result of:
          0.016092705 = score(doc=816,freq=2.0), product of:
            0.088001914 = queryWeight, product of:
              3.3102584 = idf(docFreq=4387, maxDocs=44218)
              0.026584605 = queryNorm
            0.18286766 = fieldWeight in 816, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.3102584 = idf(docFreq=4387, maxDocs=44218)
              0.0390625 = fieldNorm(doc=816)
        0.0024550997 = weight(_text_:s in 816) [ClassicSimilarity], result of:
          0.0024550997 = score(doc=816,freq=4.0), product of:
            0.028903782 = queryWeight, product of:
              1.0872376 = idf(docFreq=40523, maxDocs=44218)
              0.026584605 = queryNorm
            0.08494043 = fieldWeight in 816, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              1.0872376 = idf(docFreq=40523, maxDocs=44218)
              0.0390625 = fieldNorm(doc=816)
      0.27272728 = coord(3/11)
    
    Abstract
    This essay provides an overview of journal evaluation indicators. It highlights the strengths and weaknesses of different indicators, together with their range of applicability. The definition of a "quality journal," different notions of impact factors, the meaning of ranking journals, and possible biases in citation databases are also discussed. Attention is given to using the journal impact in evaluation studies. The quality of a journal is a multifaceted notion. Journals can be evaluated for different purposes, and hence the results of such evaluation exercises can be quite different depending on the indicator(s) used. The impact factor, in one of its versions, is probably the most used indicator when it comes to gauging the visibility of a journal on the research front. Generalized impact factors, over periods longer than the traditional two years, are better indicators for the long-term value of a journal. As with all evaluation studies, care must be exercised when considering journal impact factors as a quality indicator. It seems best to use a whole battery of indicators (including several impact factors) and to change this group of indicators depending on the purpose of the evaluation study. Nowadays it goes without saying that special attention is paid to e-journals and specific indicators for this type of journal.
    Source
    Library trends. 50(2002) no.3, S.418-439
    Type
    a
  11. Rousseau, R.; Zuccala, A.: ¬A classification of author co-citations : definitions and search strategies (2004) 0.01
    0.006368545 = product of:
      0.02335133 = sum of:
        0.0055226083 = weight(_text_:a in 2266) [ClassicSimilarity], result of:
          0.0055226083 = score(doc=2266,freq=16.0), product of:
            0.030653298 = queryWeight, product of:
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.026584605 = queryNorm
            0.18016359 = fieldWeight in 2266, product of:
              4.0 = tf(freq=16.0), with freq of:
                16.0 = termFreq=16.0
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.0390625 = fieldNorm(doc=2266)
        0.016092705 = weight(_text_:r in 2266) [ClassicSimilarity], result of:
          0.016092705 = score(doc=2266,freq=2.0), product of:
            0.088001914 = queryWeight, product of:
              3.3102584 = idf(docFreq=4387, maxDocs=44218)
              0.026584605 = queryNorm
            0.18286766 = fieldWeight in 2266, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.3102584 = idf(docFreq=4387, maxDocs=44218)
              0.0390625 = fieldNorm(doc=2266)
        0.0017360178 = weight(_text_:s in 2266) [ClassicSimilarity], result of:
          0.0017360178 = score(doc=2266,freq=2.0), product of:
            0.028903782 = queryWeight, product of:
              1.0872376 = idf(docFreq=40523, maxDocs=44218)
              0.026584605 = queryNorm
            0.060061958 = fieldWeight in 2266, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.0872376 = idf(docFreq=40523, maxDocs=44218)
              0.0390625 = fieldNorm(doc=2266)
      0.27272728 = coord(3/11)
    
    Abstract
    The term author co-citation is defined and classified according to four distinct forms: the pure first-author co-citation, the pure author co-citation, the general author co-citation, and the special co-authorlco-citation. Each form can be used to obtain one count in an author co-citation study, based an a binary counting rule, which either recognizes the co-citedness of two authors in a given reference list (1) or does not (0). Most studies using author co-citations have relied solely an first-author cocitation counts as evidence of an author's oeuvre or body of work contributed to a research field. In this article, we argue that an author's contribution to a selected field of study should not be limited, but should be based an his/her complete list of publications, regardless of author ranking. We discuss the implications associated with using each co-citation form and show where simple first-author co-citations fit within our classification scheme. Examples are given to substantiate each author co-citation form defined in our classification, including a set of sample Dialog(TM) searches using references extracted from the SciSearch database.
    Source
    Journal of the American Society for Information Science and Technology. 55(2004) no.6, S.513-529
    Type
    a
  12. Yang, B.; Rousseau, R.; Wang, X.; Huang, S.: How important is scientific software in bioinformatics research? : a comparative study between international and Chinese research communities (2018) 0.01
    0.0063628703 = product of:
      0.023330525 = sum of:
        0.004782719 = weight(_text_:a in 4461) [ClassicSimilarity], result of:
          0.004782719 = score(doc=4461,freq=12.0), product of:
            0.030653298 = queryWeight, product of:
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.026584605 = queryNorm
            0.15602624 = fieldWeight in 4461, product of:
              3.4641016 = tf(freq=12.0), with freq of:
                12.0 = termFreq=12.0
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.0390625 = fieldNorm(doc=4461)
        0.016092705 = weight(_text_:r in 4461) [ClassicSimilarity], result of:
          0.016092705 = score(doc=4461,freq=2.0), product of:
            0.088001914 = queryWeight, product of:
              3.3102584 = idf(docFreq=4387, maxDocs=44218)
              0.026584605 = queryNorm
            0.18286766 = fieldWeight in 4461, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.3102584 = idf(docFreq=4387, maxDocs=44218)
              0.0390625 = fieldNorm(doc=4461)
        0.0024550997 = weight(_text_:s in 4461) [ClassicSimilarity], result of:
          0.0024550997 = score(doc=4461,freq=4.0), product of:
            0.028903782 = queryWeight, product of:
              1.0872376 = idf(docFreq=40523, maxDocs=44218)
              0.026584605 = queryNorm
            0.08494043 = fieldWeight in 4461, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              1.0872376 = idf(docFreq=40523, maxDocs=44218)
              0.0390625 = fieldNorm(doc=4461)
      0.27272728 = coord(3/11)
    
    Abstract
    Software programs are among the most important tools in data-driven research. The popularity of well-known packages and corresponding large numbers of citations received bear testimony of the contribution of scientific software to academic research. Yet software is not generally recognized as an academic outcome. In this study, a usage-based model is proposed with varied indicators including citations, mentions, and downloads to measure the importance of scientific software. We performed an investigation on a sample of international bioinformatics research articles, and on a sample from the Chinese community. Our analysis shows that scientists in the field of bioinformatics rely heavily on scientific software: the major differences between the international community and the Chinese example being how scientific packages are mentioned in publications and the time gap between the introduction of a package and its use. Biologists publishing in international journals tend to apply the latest tools earlier; Chinese scientists publishing in Chinese tend to follow later. Further, journals with higher impact factors tend to publish articles applying the latest tools earlier.
    Source
    Journal of the Association for Information Science and Technology. 69(2018) no.9, S.1122-1133
    Type
    a
  13. Frandsen, T.F.; Rousseau, R.; Rowlands, I.: Diffusion factors (2006) 0.01
    0.006271268 = product of:
      0.022994649 = sum of:
        0.0051659266 = weight(_text_:a in 5587) [ClassicSimilarity], result of:
          0.0051659266 = score(doc=5587,freq=14.0), product of:
            0.030653298 = queryWeight, product of:
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.026584605 = queryNorm
            0.1685276 = fieldWeight in 5587, product of:
              3.7416575 = tf(freq=14.0), with freq of:
                14.0 = termFreq=14.0
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.0390625 = fieldNorm(doc=5587)
        0.016092705 = weight(_text_:r in 5587) [ClassicSimilarity], result of:
          0.016092705 = score(doc=5587,freq=2.0), product of:
            0.088001914 = queryWeight, product of:
              3.3102584 = idf(docFreq=4387, maxDocs=44218)
              0.026584605 = queryNorm
            0.18286766 = fieldWeight in 5587, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.3102584 = idf(docFreq=4387, maxDocs=44218)
              0.0390625 = fieldNorm(doc=5587)
        0.0017360178 = weight(_text_:s in 5587) [ClassicSimilarity], result of:
          0.0017360178 = score(doc=5587,freq=2.0), product of:
            0.028903782 = queryWeight, product of:
              1.0872376 = idf(docFreq=40523, maxDocs=44218)
              0.026584605 = queryNorm
            0.060061958 = fieldWeight in 5587, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.0872376 = idf(docFreq=40523, maxDocs=44218)
              0.0390625 = fieldNorm(doc=5587)
      0.27272728 = coord(3/11)
    
    Abstract
    Purpose - The purpose of this paper is to clarify earlier work on journal diffusion metrics. Classical journal indicators such as the Garfield impact factor do not measure the breadth of influence across the literature of a particular journal title. As a new approach to measuring research influence, the study complements these existing metrics with a series of formally described diffusion factors. Design/methodology/approach - Using a publication-citation matrix as an organising construct, the paper develops formal descriptions of two forms of diffusion metric: "relative diffusion factors" and "journal diffusion factors" in both their synchronous and diachronous forms. It also provides worked examples for selected library and information science and economics journals, plus a sample of health information papers to illustrate their construction and use. Findings - Diffusion factors capture different aspects of the citation reception process than existing bibliometric measures. The paper shows that diffusion factors can be applied at the whole journal level or for sets of articles and that they provide a richer evidence base for citation analyses than traditional measures alone. Research limitations/implications - The focus of this paper is on clarifying the concepts underlying diffusion factors and there is unlimited scope for further work to apply these metrics to much larger and more comprehensive data sets than has been attempted here. Practical implications - These new tools extend the range of tools available for bibliometric, and possibly webometric, analysis. Diffusion factors might find particular application in studies where the research questions focus on the dynamic aspects of innovation and knowledge transfer. Originality/value - This paper will be of interest to those with theoretical interests in informetric distributions as well as those interested in science policy and innovation studies.
    Source
    Journal of documentation. 62(2006) no.1, S.58-72
    Type
    a
  14. Egghe, L.; Rousseau, R.: ¬A measure for the cohesion of weighted networks (2003) 0.01
    0.0060531073 = product of:
      0.022194726 = sum of:
        0.0043660053 = weight(_text_:a in 5157) [ClassicSimilarity], result of:
          0.0043660053 = score(doc=5157,freq=10.0), product of:
            0.030653298 = queryWeight, product of:
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.026584605 = queryNorm
            0.14243183 = fieldWeight in 5157, product of:
              3.1622777 = tf(freq=10.0), with freq of:
                10.0 = termFreq=10.0
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.0390625 = fieldNorm(doc=5157)
        0.016092705 = weight(_text_:r in 5157) [ClassicSimilarity], result of:
          0.016092705 = score(doc=5157,freq=2.0), product of:
            0.088001914 = queryWeight, product of:
              3.3102584 = idf(docFreq=4387, maxDocs=44218)
              0.026584605 = queryNorm
            0.18286766 = fieldWeight in 5157, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.3102584 = idf(docFreq=4387, maxDocs=44218)
              0.0390625 = fieldNorm(doc=5157)
        0.0017360178 = weight(_text_:s in 5157) [ClassicSimilarity], result of:
          0.0017360178 = score(doc=5157,freq=2.0), product of:
            0.028903782 = queryWeight, product of:
              1.0872376 = idf(docFreq=40523, maxDocs=44218)
              0.026584605 = queryNorm
            0.060061958 = fieldWeight in 5157, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.0872376 = idf(docFreq=40523, maxDocs=44218)
              0.0390625 = fieldNorm(doc=5157)
      0.27272728 = coord(3/11)
    
    Abstract
    Measurement of the degree of interconnectedness in graph like networks of hyperlinks or citations can indicate the existence of research fields and assist in comparative evaluation of research efforts. In this issue we begin with Egghe and Rousseau who review compactness measures and investigate the compactness of a network as a weighted graph with dissimilarity values characterizing the arcs between nodes. They make use of a generalization of the Botofogo, Rivlin, Shneiderman, (BRS) compaction measure which treats the distance between unreachable nodes not as infinity but rather as the number of nodes in the network. The dissimilarity values are determined by summing the reciprocals of the weights of the arcs in the shortest chain between two nodes where no weight is smaller than one. The BRS measure is then the maximum value for the sum of the dissimilarity measures less the actual sum divided by the difference between the maximum and minimum. The Wiener index, the sum of all elements in the dissimilarity matrix divided by two, is then computed for Small's particle physics co-citation data as well as the BRS measure, the dissimilarity values and shortest paths. The compactness measure for the weighted network is smaller than for the un-weighted. When the bibliographic coupling network is utilized it is shown to be less compact than the co-citation network which indicates that the new measure produces results that confirm to an obvious case.
    Source
    Journal of the American Society for Information Science and technology. 54(2003) no.3, S.193-202
    Type
    a
  15. Liu, Y.; Rousseau, R.: Knowledge diffusion through publications and citations : a case study using ESI-fields as unit of diffusion (2010) 0.01
    0.0060531073 = product of:
      0.022194726 = sum of:
        0.0043660053 = weight(_text_:a in 3334) [ClassicSimilarity], result of:
          0.0043660053 = score(doc=3334,freq=10.0), product of:
            0.030653298 = queryWeight, product of:
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.026584605 = queryNorm
            0.14243183 = fieldWeight in 3334, product of:
              3.1622777 = tf(freq=10.0), with freq of:
                10.0 = termFreq=10.0
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.0390625 = fieldNorm(doc=3334)
        0.016092705 = weight(_text_:r in 3334) [ClassicSimilarity], result of:
          0.016092705 = score(doc=3334,freq=2.0), product of:
            0.088001914 = queryWeight, product of:
              3.3102584 = idf(docFreq=4387, maxDocs=44218)
              0.026584605 = queryNorm
            0.18286766 = fieldWeight in 3334, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.3102584 = idf(docFreq=4387, maxDocs=44218)
              0.0390625 = fieldNorm(doc=3334)
        0.0017360178 = weight(_text_:s in 3334) [ClassicSimilarity], result of:
          0.0017360178 = score(doc=3334,freq=2.0), product of:
            0.028903782 = queryWeight, product of:
              1.0872376 = idf(docFreq=40523, maxDocs=44218)
              0.026584605 = queryNorm
            0.060061958 = fieldWeight in 3334, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.0872376 = idf(docFreq=40523, maxDocs=44218)
              0.0390625 = fieldNorm(doc=3334)
      0.27272728 = coord(3/11)
    
    Abstract
    Two forms of diffusion are studied: diffusion by publications, originating from the fact that a group publishes in different fields; and diffusion by citations, originating from the fact that the group's publications are cited in different fields. The first form of diffusion originates from an internal mechanism by which the group itself expands its own borders. The second form is partly driven by an external mechanism, in the sense that other fields use or become interested in the original group's expertise, and partly by the group's internal dynamism, in the sense that their articles, being published in more and more fields, have the potential to be applied in these other fields. In this contribution, we focus on basic counting measures as measures of diffusion. We introduce the notions of field diffusion breadth, defined as the number of for Essential Science Indicators (ESI) fields in which a set of articles is cited, and field diffusion intensity, defined as the number of citing articles in one particular ESI field. Combined effects of publications and citations can be measured by the Gini evenness measure. Our approach is illustrated by a study of mathematics at Tongji University (Shanghai, China).
    Source
    Journal of the American Society for Information Science and Technology. 61(2010) no.2, S.340-351
    Type
    a
  16. Zhang, L.; Rousseau, R.; Glänzel, W.: Diversity of references as an indicator of the interdisciplinarity of journals : taking similarity between subject fields into account (2016) 0.01
    0.005927399 = product of:
      0.021733794 = sum of:
        0.0039050733 = weight(_text_:a in 2902) [ClassicSimilarity], result of:
          0.0039050733 = score(doc=2902,freq=8.0), product of:
            0.030653298 = queryWeight, product of:
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.026584605 = queryNorm
            0.12739488 = fieldWeight in 2902, product of:
              2.828427 = tf(freq=8.0), with freq of:
                8.0 = termFreq=8.0
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.0390625 = fieldNorm(doc=2902)
        0.016092705 = weight(_text_:r in 2902) [ClassicSimilarity], result of:
          0.016092705 = score(doc=2902,freq=2.0), product of:
            0.088001914 = queryWeight, product of:
              3.3102584 = idf(docFreq=4387, maxDocs=44218)
              0.026584605 = queryNorm
            0.18286766 = fieldWeight in 2902, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.3102584 = idf(docFreq=4387, maxDocs=44218)
              0.0390625 = fieldNorm(doc=2902)
        0.0017360178 = weight(_text_:s in 2902) [ClassicSimilarity], result of:
          0.0017360178 = score(doc=2902,freq=2.0), product of:
            0.028903782 = queryWeight, product of:
              1.0872376 = idf(docFreq=40523, maxDocs=44218)
              0.026584605 = queryNorm
            0.060061958 = fieldWeight in 2902, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.0872376 = idf(docFreq=40523, maxDocs=44218)
              0.0390625 = fieldNorm(doc=2902)
      0.27272728 = coord(3/11)
    
    Abstract
    The objective of this article is to further the study of journal interdisciplinarity, or, more generally, knowledge integration at the level of individual articles. Interdisciplinarity is operationalized by the diversity of subject fields assigned to cited items in the article's reference list. Subject fields and subfields were obtained from the Leuven-Budapest (ECOOM) subject-classification scheme, while disciplinary diversity was measured taking variety, balance, and disparity into account. As diversity measure we use a Hill-type true diversity in the sense of Jost and Leinster-Cobbold. The analysis is conducted in 3 steps. In the first part, the properties of this measure are discussed, and, on the basis of these properties it is shown that the measure has the potential to serve as an indicator of interdisciplinarity. In the second part the applicability of this indicator is shown using selected journals from several research fields ranging from mathematics to social sciences. Finally, the often-heard argument, namely, that interdisciplinary research exhibits larger visibility and impact, is studied on the basis of these selected journals. Yet, as only 7 journals, representing a total of 15,757 articles, are studied, albeit chosen to cover a large range of interdisciplinarity, further research is still needed.
    Source
    Journal of the Association for Information Science and Technology. 67(2016) no.5, S.1257-1265
    Type
    a
  17. Rousseau, R.: Informetric laws (2009) 0.01
    0.005249525 = product of:
      0.028872386 = sum of:
        0.0031240587 = weight(_text_:a in 3795) [ClassicSimilarity], result of:
          0.0031240587 = score(doc=3795,freq=2.0), product of:
            0.030653298 = queryWeight, product of:
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.026584605 = queryNorm
            0.10191591 = fieldWeight in 3795, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.0625 = fieldNorm(doc=3795)
        0.025748327 = weight(_text_:r in 3795) [ClassicSimilarity], result of:
          0.025748327 = score(doc=3795,freq=2.0), product of:
            0.088001914 = queryWeight, product of:
              3.3102584 = idf(docFreq=4387, maxDocs=44218)
              0.026584605 = queryNorm
            0.29258826 = fieldWeight in 3795, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.3102584 = idf(docFreq=4387, maxDocs=44218)
              0.0625 = fieldNorm(doc=3795)
      0.18181819 = coord(2/11)
    
    Type
    a