Search (44 results, page 1 of 3)

  • × author_ss:"Zhang, Y."
  1. Zhang, Y.; Xu, W.: Fast exact maximum likelihood estimation for mixture of language model (2008) 0.02
    0.018426755 = product of:
      0.050673574 = sum of:
        0.0057392623 = weight(_text_:a in 2082) [ClassicSimilarity], result of:
          0.0057392623 = score(doc=2082,freq=12.0), product of:
            0.030653298 = queryWeight, product of:
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.026584605 = queryNorm
            0.18723148 = fieldWeight in 2082, product of:
              3.4641016 = tf(freq=12.0), with freq of:
                12.0 = termFreq=12.0
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.046875 = fieldNorm(doc=2082)
        0.011090843 = product of:
          0.044363372 = sum of:
            0.044363372 = weight(_text_:o in 2082) [ClassicSimilarity], result of:
              0.044363372 = score(doc=2082,freq=2.0), product of:
                0.13338262 = queryWeight, product of:
                  5.017288 = idf(docFreq=795, maxDocs=44218)
                  0.026584605 = queryNorm
                0.33260235 = fieldWeight in 2082, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  5.017288 = idf(docFreq=795, maxDocs=44218)
                  0.046875 = fieldNorm(doc=2082)
          0.25 = coord(1/4)
        0.0020832212 = weight(_text_:s in 2082) [ClassicSimilarity], result of:
          0.0020832212 = score(doc=2082,freq=2.0), product of:
            0.028903782 = queryWeight, product of:
              1.0872376 = idf(docFreq=40523, maxDocs=44218)
              0.026584605 = queryNorm
            0.072074346 = fieldWeight in 2082, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.0872376 = idf(docFreq=40523, maxDocs=44218)
              0.046875 = fieldNorm(doc=2082)
        0.03176025 = weight(_text_:k in 2082) [ClassicSimilarity], result of:
          0.03176025 = score(doc=2082,freq=4.0), product of:
            0.09490114 = queryWeight, product of:
              3.569778 = idf(docFreq=3384, maxDocs=44218)
              0.026584605 = queryNorm
            0.33466667 = fieldWeight in 2082, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              3.569778 = idf(docFreq=3384, maxDocs=44218)
              0.046875 = fieldNorm(doc=2082)
      0.36363637 = coord(4/11)
    
    Abstract
    Language modeling is an effective and theoretically attractive probabilistic framework for text information retrieval. The basic idea of this approach is to estimate a language model of a given document (or document set), and then do retrieval or classification based on this model. A common language modeling approach assumes the data D is generated from a mixture of several language models. The core problem is to find the maximum likelihood estimation of one language model mixture, given the fixed mixture weights and the other language model mixture. The EM algorithm is usually used to find the solution. In this paper, we proof that an exact maximum likelihood estimation of the unknown mixture component exists and can be calculated using the new algorithm we proposed. We further improve the algorithm and provide an efficient algorithm of O(k) complexity to find the exact solution, where k is the number of words occurring at least once in data D. Furthermore, we proof the probabilities of many words are exactly zeros, and the MLE estimation is implemented as a feature selection technique explicitly.
    Source
    Information processing and management. 44(2008) no.3, S.1076-1085
    Type
    a
  2. Chen, H.; Zhang, Y.; Houston, A.L.: Semantic indexing and searching using a Hopfield net (1998) 0.01
    0.011511653 = product of:
      0.031657044 = sum of:
        0.0054389704 = product of:
          0.010877941 = sum of:
            0.010877941 = weight(_text_:h in 5704) [ClassicSimilarity], result of:
              0.010877941 = score(doc=5704,freq=2.0), product of:
                0.0660481 = queryWeight, product of:
                  2.4844491 = idf(docFreq=10020, maxDocs=44218)
                  0.026584605 = queryNorm
                0.16469726 = fieldWeight in 5704, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  2.4844491 = idf(docFreq=10020, maxDocs=44218)
                  0.046875 = fieldNorm(doc=5704)
          0.5 = coord(1/2)
        0.0052392064 = weight(_text_:a in 5704) [ClassicSimilarity], result of:
          0.0052392064 = score(doc=5704,freq=10.0), product of:
            0.030653298 = queryWeight, product of:
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.026584605 = queryNorm
            0.1709182 = fieldWeight in 5704, product of:
              3.1622777 = tf(freq=10.0), with freq of:
                10.0 = termFreq=10.0
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.046875 = fieldNorm(doc=5704)
        0.0020832212 = weight(_text_:s in 5704) [ClassicSimilarity], result of:
          0.0020832212 = score(doc=5704,freq=2.0), product of:
            0.028903782 = queryWeight, product of:
              1.0872376 = idf(docFreq=40523, maxDocs=44218)
              0.026584605 = queryNorm
            0.072074346 = fieldWeight in 5704, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.0872376 = idf(docFreq=40523, maxDocs=44218)
              0.046875 = fieldNorm(doc=5704)
        0.018895645 = weight(_text_:u in 5704) [ClassicSimilarity], result of:
          0.018895645 = score(doc=5704,freq=2.0), product of:
            0.08704981 = queryWeight, product of:
              3.2744443 = idf(docFreq=4547, maxDocs=44218)
              0.026584605 = queryNorm
            0.21706703 = fieldWeight in 5704, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.2744443 = idf(docFreq=4547, maxDocs=44218)
              0.046875 = fieldNorm(doc=5704)
      0.36363637 = coord(4/11)
    
    Abstract
    Presents a neural network approach to document semantic indexing. Reports results of a study to apply a Hopfield net algorithm to simulate human associative memory for concept exploration in the domain of computer science and engineering. The INSPEC database, consisting of 320.000 abstracts from leading periodical articles was used as the document test bed. Benchmark tests conformed that 3 parameters: maximum number of activated nodes; maximum allowable error; and maximum number of iterations; were useful in positively influencing network convergence behaviour without negatively impacting central processing unit performance. Another series of benchmark tests was performed to determine the effectiveness of various filtering techniques in reducing the negative impact of noisy input terms. Preliminary user tests conformed expectations that the Hopfield net is potentially useful as an associative memory technique to improve document recall and precision by solving discrepancies between indexer vocabularies and end user vocabularies
    Source
    Journal of information science. 24(1998) no.1, S.3-18
    Theme
    Semantisches Umfeld in Indexierung u. Retrieval
    Type
    a
  3. Zhang, Y.; Wu, D.; Hagen, L.; Song, I.-Y.; Mostafa, J.; Oh, S.; Anderson, T.; Shah, C.; Bishop, B.W.; Hopfgartner, F.; Eckert, K.; Federer, L.; Saltz, J.S.: Data science curriculum in the iField (2023) 0.01
    0.0066959728 = product of:
      0.0245519 = sum of:
        0.0033818933 = weight(_text_:a in 964) [ClassicSimilarity], result of:
          0.0033818933 = score(doc=964,freq=6.0), product of:
            0.030653298 = queryWeight, product of:
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.026584605 = queryNorm
            0.11032722 = fieldWeight in 964, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.0390625 = fieldNorm(doc=964)
        0.0024550997 = weight(_text_:s in 964) [ClassicSimilarity], result of:
          0.0024550997 = score(doc=964,freq=4.0), product of:
            0.028903782 = queryWeight, product of:
              1.0872376 = idf(docFreq=40523, maxDocs=44218)
              0.026584605 = queryNorm
            0.08494043 = fieldWeight in 964, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              1.0872376 = idf(docFreq=40523, maxDocs=44218)
              0.0390625 = fieldNorm(doc=964)
        0.018714907 = weight(_text_:k in 964) [ClassicSimilarity], result of:
          0.018714907 = score(doc=964,freq=2.0), product of:
            0.09490114 = queryWeight, product of:
              3.569778 = idf(docFreq=3384, maxDocs=44218)
              0.026584605 = queryNorm
            0.19720423 = fieldWeight in 964, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.569778 = idf(docFreq=3384, maxDocs=44218)
              0.0390625 = fieldNorm(doc=964)
      0.27272728 = coord(3/11)
    
    Abstract
    Many disciplines, including the broad Field of Information (iField), offer Data Science (DS) programs. There have been significant efforts exploring an individual discipline's identity and unique contributions to the broader DS education landscape. To advance DS education in the iField, the iSchool Data Science Curriculum Committee (iDSCC) was formed and charged with building and recommending a DS education framework for iSchools. This paper reports on the research process and findings of a series of studies to address important questions: What is the iField identity in the multidisciplinary DS education landscape? What is the status of DS education in iField schools? What knowledge and skills should be included in the core curriculum for iField DS education? What are the jobs available for DS graduates from the iField? What are the differences between graduate-level and undergraduate-level DS education? Answers to these questions will not only distinguish an iField approach to DS education but also define critical components of DS curriculum. The results will inform individual DS programs in the iField to develop curriculum to support undergraduate and graduate DS education in their local context.
    Source
    Journal of the Association for Information Science and Technology. 74(2023) no.6, S.641-662
    Type
    a
  4. Zhang, Y.; Broussard, R.; Ke, W.; Gong, X.: Evaluation of a scatter/gather interface for supporting distinct health information search tasks (2014) 0.01
    0.0065463237 = product of:
      0.024003185 = sum of:
        0.0061744633 = weight(_text_:a in 1261) [ClassicSimilarity], result of:
          0.0061744633 = score(doc=1261,freq=20.0), product of:
            0.030653298 = queryWeight, product of:
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.026584605 = queryNorm
            0.20142901 = fieldWeight in 1261, product of:
              4.472136 = tf(freq=20.0), with freq of:
                20.0 = termFreq=20.0
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.0390625 = fieldNorm(doc=1261)
        0.016092705 = weight(_text_:r in 1261) [ClassicSimilarity], result of:
          0.016092705 = score(doc=1261,freq=2.0), product of:
            0.088001914 = queryWeight, product of:
              3.3102584 = idf(docFreq=4387, maxDocs=44218)
              0.026584605 = queryNorm
            0.18286766 = fieldWeight in 1261, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.3102584 = idf(docFreq=4387, maxDocs=44218)
              0.0390625 = fieldNorm(doc=1261)
        0.0017360178 = weight(_text_:s in 1261) [ClassicSimilarity], result of:
          0.0017360178 = score(doc=1261,freq=2.0), product of:
            0.028903782 = queryWeight, product of:
              1.0872376 = idf(docFreq=40523, maxDocs=44218)
              0.026584605 = queryNorm
            0.060061958 = fieldWeight in 1261, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.0872376 = idf(docFreq=40523, maxDocs=44218)
              0.0390625 = fieldNorm(doc=1261)
      0.27272728 = coord(3/11)
    
    Abstract
    Web search engines are important gateways for users to access health information. This study explored whether a search interface based on the Bing API and enabled by Scatter/Gather, a well-known document-clustering technique, can improve health information searches. Forty participants without medical backgrounds were randomly assigned to two interfaces: a baseline interface that resembles typical web search engines and a Scatter/Gather interface. Both groups performed two lookup and two exploratory health-related tasks. It was found that the baseline group was more likely to rephrase queries and less likely to access general-purpose sites than the Scatter/Gather group when completing exploratory tasks. Otherwise, the two groups did not differ in behavior and task performance, with participants in the Scatter/Gather group largely overlooking the features (key words, clusters, and the recluster function) designed to facilitate the exploration of semantic relationships between information objects, a potentially useful means for users in the rather unfamiliar domain of health. The results suggest a strong effect of users' mental models of search on their use of search interfaces and a high cognitive cost associated with using the Scatter/Gather features. It follows that novel features of a search interface should not only be compatible with users' mental models but also provide sufficient affordance to inform users of how they can be used. Compared with the interface, tasks showed more significant impacts on search behavior. In future studies, more effort should be devoted to identify salient features of health-related information needs.
    Source
    Journal of the Association for Information Science and Technology. 65(2014) no.5, S.1028-1041
    Type
    a
  5. Tenopir, C.; Wang, P.; Zhang, Y.; Simmons, B.; Pollard, R.: Academic users' interactions with ScienceDirect in search tasks : affective and cognitive behaviors (2008) 0.01
    0.005927399 = product of:
      0.021733794 = sum of:
        0.0039050733 = weight(_text_:a in 2027) [ClassicSimilarity], result of:
          0.0039050733 = score(doc=2027,freq=8.0), product of:
            0.030653298 = queryWeight, product of:
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.026584605 = queryNorm
            0.12739488 = fieldWeight in 2027, product of:
              2.828427 = tf(freq=8.0), with freq of:
                8.0 = termFreq=8.0
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.0390625 = fieldNorm(doc=2027)
        0.016092705 = weight(_text_:r in 2027) [ClassicSimilarity], result of:
          0.016092705 = score(doc=2027,freq=2.0), product of:
            0.088001914 = queryWeight, product of:
              3.3102584 = idf(docFreq=4387, maxDocs=44218)
              0.026584605 = queryNorm
            0.18286766 = fieldWeight in 2027, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.3102584 = idf(docFreq=4387, maxDocs=44218)
              0.0390625 = fieldNorm(doc=2027)
        0.0017360178 = weight(_text_:s in 2027) [ClassicSimilarity], result of:
          0.0017360178 = score(doc=2027,freq=2.0), product of:
            0.028903782 = queryWeight, product of:
              1.0872376 = idf(docFreq=40523, maxDocs=44218)
              0.026584605 = queryNorm
            0.060061958 = fieldWeight in 2027, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.0872376 = idf(docFreq=40523, maxDocs=44218)
              0.0390625 = fieldNorm(doc=2027)
      0.27272728 = coord(3/11)
    
    Abstract
    This article presents part of phase 2 of a research project funded by the NSF-National Science Digital Library Project, which observed how academic users interact with the ScienceDirect information retrieval system for simulated class-related assignments. The ultimate goal of the project is twofold: (1) to find ways to improve science and engineering students' use of science e-journal systems; (2) to develop methods to measure user interaction behaviors. Process-tracing technique recorded participants' processes and interaction behaviors that are measurable; think-aloud protocol captured participants' affective and cognitive verbalizations; pre- and post-search questionnaires solicited demographic information, prior experience with the system, and comments. We explored possible relationships between affective feelings and cognitive behaviors. During search interactions both feelings and thoughts occurred frequently. Positive feelings were more common and were associated more often with thoughts about results. Negative feelings were associated more often with thoughts related to the system, search strategy, and task. Learning styles are also examined as a factor influencing behavior. Engineering graduate students with an assimilating learning style searched longer and paused less than those with a converging learning style. Further exploration of learning styles is suggested.
    Source
    Information processing and management. 44(2008) no.1, S.105-121
    Type
    a
  6. Zhang, Y.: Developing a holistic model for digital library evaluation (2010) 0.01
    0.0055358508 = product of:
      0.02029812 = sum of:
        0.0074093565 = weight(_text_:a in 2360) [ClassicSimilarity], result of:
          0.0074093565 = score(doc=2360,freq=20.0), product of:
            0.030653298 = queryWeight, product of:
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.026584605 = queryNorm
            0.24171482 = fieldWeight in 2360, product of:
              4.472136 = tf(freq=20.0), with freq of:
                20.0 = termFreq=20.0
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.046875 = fieldNorm(doc=2360)
        0.0020832212 = weight(_text_:s in 2360) [ClassicSimilarity], result of:
          0.0020832212 = score(doc=2360,freq=2.0), product of:
            0.028903782 = queryWeight, product of:
              1.0872376 = idf(docFreq=40523, maxDocs=44218)
              0.026584605 = queryNorm
            0.072074346 = fieldWeight in 2360, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.0872376 = idf(docFreq=40523, maxDocs=44218)
              0.046875 = fieldNorm(doc=2360)
        0.010805541 = product of:
          0.021611081 = sum of:
            0.021611081 = weight(_text_:22 in 2360) [ClassicSimilarity], result of:
              0.021611081 = score(doc=2360,freq=2.0), product of:
                0.09309476 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.026584605 = queryNorm
                0.23214069 = fieldWeight in 2360, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046875 = fieldNorm(doc=2360)
          0.5 = coord(1/2)
      0.27272728 = coord(3/11)
    
    Abstract
    This article reports the author's recent research in developing a holistic model for various levels of digital library (DL) evaluation in which perceived important criteria from heterogeneous stakeholder groups are organized and presented. To develop such a model, the author applied a three-stage research approach: exploration, confirmation, and verification. During the exploration stage, a literature review was conducted followed by an interview, along with a card sorting technique, to collect important criteria perceived by DL experts. Then the criteria identified were used for developing an online survey during the confirmation stage. Survey respondents (431 in total) from 22 countries rated the importance of the criteria. A holistic DL evaluation model was constructed using statistical techniques. Eventually, the verification stage was devised to test the reliability of the model in the context of searching and evaluating an operational DL. The proposed model fills two lacunae in the DL domain: (a) the lack of a comprehensive and flexible framework to guide and benchmark evaluations, and (b) the uncertainty about what divergence exists among heterogeneous DL stakeholders, including general users.
    Source
    Journal of the American Society for Information Science and Technology. 61(2010) no.1, S.88-110
    Type
    a
  7. Zhang, Y.: ¬The impact of Internet-based electronic resources on formal scholarly communication in the area of library and information science : a citation analysis (1998) 0.01
    0.005011512 = product of:
      0.018375544 = sum of:
        0.0039050733 = weight(_text_:a in 2808) [ClassicSimilarity], result of:
          0.0039050733 = score(doc=2808,freq=8.0), product of:
            0.030653298 = queryWeight, product of:
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.026584605 = queryNorm
            0.12739488 = fieldWeight in 2808, product of:
              2.828427 = tf(freq=8.0), with freq of:
                8.0 = termFreq=8.0
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.0390625 = fieldNorm(doc=2808)
        0.0017360178 = weight(_text_:s in 2808) [ClassicSimilarity], result of:
          0.0017360178 = score(doc=2808,freq=2.0), product of:
            0.028903782 = queryWeight, product of:
              1.0872376 = idf(docFreq=40523, maxDocs=44218)
              0.026584605 = queryNorm
            0.060061958 = fieldWeight in 2808, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.0872376 = idf(docFreq=40523, maxDocs=44218)
              0.0390625 = fieldNorm(doc=2808)
        0.012734452 = product of:
          0.025468905 = sum of:
            0.025468905 = weight(_text_:22 in 2808) [ClassicSimilarity], result of:
              0.025468905 = score(doc=2808,freq=4.0), product of:
                0.09309476 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.026584605 = queryNorm
                0.27358043 = fieldWeight in 2808, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=2808)
          0.5 = coord(1/2)
      0.27272728 = coord(3/11)
    
    Abstract
    Internet based electronic resources are growing dramatically but there have been no empirical studies evaluating the impact of e-sources, as a whole, on formal scholarly communication. reports results of an investigation into how much e-sources have been used in formal scholarly communication, using a case study in the area of Library and Information Science (LIS) during the period 1994 to 1996. 4 citation based indicators were used in the study of the impact measurement. Concludes that, compared with the impact of print sources, the impact of e-sources on formal scholarly communication in LIS is small, as measured by e-sources cited, and does not increase significantly by year even though there is observable growth of these impact across the years. It is found that periodical format is related to the rate of citing e-sources, articles are more likely to cite e-sources than are print priodical articles. However, once authors cite electronic resource, there is no significant difference in the number of references per article by periodical format or by year. Suggests that, at this stage, citing e-sources may depend on authors rather than the periodical format in which authors choose to publish
    Date
    30. 1.1999 17:22:22
    Source
    Journal of information science. 24(1998) no.4, S.241-254
    Type
    a
  8. Zhang, Y.; Jansen, B.J.; Spink, A.: Identification of factors predicting clickthrough in Web searching using neural network analysis (2009) 0.00
    0.0049439915 = product of:
      0.018127969 = sum of:
        0.0052392064 = weight(_text_:a in 2742) [ClassicSimilarity], result of:
          0.0052392064 = score(doc=2742,freq=10.0), product of:
            0.030653298 = queryWeight, product of:
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.026584605 = queryNorm
            0.1709182 = fieldWeight in 2742, product of:
              3.1622777 = tf(freq=10.0), with freq of:
                10.0 = termFreq=10.0
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.046875 = fieldNorm(doc=2742)
        0.0020832212 = weight(_text_:s in 2742) [ClassicSimilarity], result of:
          0.0020832212 = score(doc=2742,freq=2.0), product of:
            0.028903782 = queryWeight, product of:
              1.0872376 = idf(docFreq=40523, maxDocs=44218)
              0.026584605 = queryNorm
            0.072074346 = fieldWeight in 2742, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.0872376 = idf(docFreq=40523, maxDocs=44218)
              0.046875 = fieldNorm(doc=2742)
        0.010805541 = product of:
          0.021611081 = sum of:
            0.021611081 = weight(_text_:22 in 2742) [ClassicSimilarity], result of:
              0.021611081 = score(doc=2742,freq=2.0), product of:
                0.09309476 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.026584605 = queryNorm
                0.23214069 = fieldWeight in 2742, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046875 = fieldNorm(doc=2742)
          0.5 = coord(1/2)
      0.27272728 = coord(3/11)
    
    Abstract
    In this research, we aim to identify factors that significantly affect the clickthrough of Web searchers. Our underlying goal is determine more efficient methods to optimize the clickthrough rate. We devise a clickthrough metric for measuring customer satisfaction of search engine results using the number of links visited, number of queries a user submits, and rank of clicked links. We use a neural network to detect the significant influence of searching characteristics on future user clickthrough. Our results show that high occurrences of query reformulation, lengthy searching duration, longer query length, and the higher ranking of prior clicked links correlate positively with future clickthrough. We provide recommendations for leveraging these findings for improving the performance of search engine retrieval and result ranking, along with implications for search engine marketing.
    Date
    22. 3.2009 17:49:11
    Source
    Journal of the American Society for Information Science and Technology. 60(2009) no.3, S.557-570
    Type
    a
  9. Zhang, Y.; Wu, M.; Zhang, G.; Lu, J.: Stepping beyond your comfort zone : diffusion-based network analytics for knowledge trajectory recommendation (2023) 0.00
    0.0046954006 = product of:
      0.017216468 = sum of:
        0.0064758323 = weight(_text_:a in 994) [ClassicSimilarity], result of:
          0.0064758323 = score(doc=994,freq=22.0), product of:
            0.030653298 = queryWeight, product of:
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.026584605 = queryNorm
            0.21126054 = fieldWeight in 994, product of:
              4.690416 = tf(freq=22.0), with freq of:
                22.0 = termFreq=22.0
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.0390625 = fieldNorm(doc=994)
        0.0017360178 = weight(_text_:s in 994) [ClassicSimilarity], result of:
          0.0017360178 = score(doc=994,freq=2.0), product of:
            0.028903782 = queryWeight, product of:
              1.0872376 = idf(docFreq=40523, maxDocs=44218)
              0.026584605 = queryNorm
            0.060061958 = fieldWeight in 994, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.0872376 = idf(docFreq=40523, maxDocs=44218)
              0.0390625 = fieldNorm(doc=994)
        0.009004618 = product of:
          0.018009236 = sum of:
            0.018009236 = weight(_text_:22 in 994) [ClassicSimilarity], result of:
              0.018009236 = score(doc=994,freq=2.0), product of:
                0.09309476 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.026584605 = queryNorm
                0.19345059 = fieldWeight in 994, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=994)
          0.5 = coord(1/2)
      0.27272728 = coord(3/11)
    
    Abstract
    Predicting a researcher's knowledge trajectories beyond their current foci can leverage potential inter-/cross-/multi-disciplinary interactions to achieve exploratory innovation. In this study, we present a method of diffusion-based network analytics for knowledge trajectory recommendation. The method begins by constructing a heterogeneous bibliometric network consisting of a co-topic layer and a co-authorship layer. A novel link prediction approach with a diffusion strategy is then used to capture the interactions between social elements (e.g., collaboration) and knowledge elements (e.g., technological similarity) in the process of exploratory innovation. This diffusion strategy differentiates the interactions occurring among homogeneous and heterogeneous nodes in the heterogeneous bibliometric network and weights the strengths of these interactions. Two sets of experiments-one with a local dataset and the other with a global dataset-demonstrate that the proposed method is prior to 10 selected baselines in link prediction, recommender systems, and upstream graph representation learning. A case study recommending knowledge trajectories of information scientists with topical hierarchy and explainable mediators reveals the proposed method's reliability and potential practical uses in broad scenarios.
    Date
    22. 6.2023 18:07:12
    Source
    Journal of the Association for Information Science and Technology. 74(2023) no.7, S.775-790
    Type
    a
  10. Zhang, Y.; Liu, J.; Song, S.: ¬The design and evaluation of a nudge-based interface to facilitate consumers' evaluation of online health information credibility (2023) 0.00
    0.0046315435 = product of:
      0.016982326 = sum of:
        0.0055226083 = weight(_text_:a in 993) [ClassicSimilarity], result of:
          0.0055226083 = score(doc=993,freq=16.0), product of:
            0.030653298 = queryWeight, product of:
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.026584605 = queryNorm
            0.18016359 = fieldWeight in 993, product of:
              4.0 = tf(freq=16.0), with freq of:
                16.0 = termFreq=16.0
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.0390625 = fieldNorm(doc=993)
        0.0024550997 = weight(_text_:s in 993) [ClassicSimilarity], result of:
          0.0024550997 = score(doc=993,freq=4.0), product of:
            0.028903782 = queryWeight, product of:
              1.0872376 = idf(docFreq=40523, maxDocs=44218)
              0.026584605 = queryNorm
            0.08494043 = fieldWeight in 993, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              1.0872376 = idf(docFreq=40523, maxDocs=44218)
              0.0390625 = fieldNorm(doc=993)
        0.009004618 = product of:
          0.018009236 = sum of:
            0.018009236 = weight(_text_:22 in 993) [ClassicSimilarity], result of:
              0.018009236 = score(doc=993,freq=2.0), product of:
                0.09309476 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.026584605 = queryNorm
                0.19345059 = fieldWeight in 993, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=993)
          0.5 = coord(1/2)
      0.27272728 = coord(3/11)
    
    Abstract
    Evaluating the quality of online health information (OHI) is a major challenge facing consumers. We designed PageGraph, an interface that displays quality indicators and associated values for a webpage, based on credibility evaluation models, the nudge theory, and existing empirical research concerning professionals' and consumers' evaluation of OHI quality. A qualitative evaluation of the interface with 16 participants revealed that PageGraph rendered the information and presentation nudges as intended. It provided the participants with easier access to quality indicators, encouraged fresh angles to assess information credibility, provided an evaluation framework, and encouraged validation of initial judgments. We then conducted a quantitative evaluation of the interface involving 60 participants using a between-subject experimental design. The control group used a regular web browser and evaluated the credibility of 12 preselected webpages, whereas the experimental group evaluated the same webpages with the assistance of PageGraph. PageGraph did not significantly influence participants' evaluation results. The results may be attributed to the insufficiency of the saliency and structure of the nudges implemented and the webpage stimuli's lack of sensitivity to the intervention. Future directions for applying nudges to support OHI evaluation were discussed.
    Date
    22. 6.2023 18:18:34
    Source
    Journal of the Association for Information Science and Technology. 74(2023) no.7, S.828-845
    Type
    a
  11. Chung, W.; Zhang, Y.; Huang, Z.; Wang, G.; Ong, T.-H.; Chen, H.: Internet searching and browsing in a multilingual world : an experiment an the Chinese Business Intelligence Portal (CBizPort) (2004) 0.00
    0.003727777 = product of:
      0.013668515 = sum of:
        0.0064098886 = product of:
          0.012819777 = sum of:
            0.012819777 = weight(_text_:h in 2393) [ClassicSimilarity], result of:
              0.012819777 = score(doc=2393,freq=4.0), product of:
                0.0660481 = queryWeight, product of:
                  2.4844491 = idf(docFreq=10020, maxDocs=44218)
                  0.026584605 = queryNorm
                0.1940976 = fieldWeight in 2393, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  2.4844491 = idf(docFreq=10020, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=2393)
          0.5 = coord(1/2)
        0.0055226083 = weight(_text_:a in 2393) [ClassicSimilarity], result of:
          0.0055226083 = score(doc=2393,freq=16.0), product of:
            0.030653298 = queryWeight, product of:
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.026584605 = queryNorm
            0.18016359 = fieldWeight in 2393, product of:
              4.0 = tf(freq=16.0), with freq of:
                16.0 = termFreq=16.0
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.0390625 = fieldNorm(doc=2393)
        0.0017360178 = weight(_text_:s in 2393) [ClassicSimilarity], result of:
          0.0017360178 = score(doc=2393,freq=2.0), product of:
            0.028903782 = queryWeight, product of:
              1.0872376 = idf(docFreq=40523, maxDocs=44218)
              0.026584605 = queryNorm
            0.060061958 = fieldWeight in 2393, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.0872376 = idf(docFreq=40523, maxDocs=44218)
              0.0390625 = fieldNorm(doc=2393)
      0.27272728 = coord(3/11)
    
    Abstract
    The rapid growth of the non-English-speaking Internet population has created a need for better searching and browsing capabilities in languages other than English. However, existing search engines may not serve the needs of many non-English-speaking Internet users. In this paper, we propose a generic and integrated approach to searching and browsing the Internet in a multilingual world. Based an this approach, we have developed the Chinese Business Intelligence Portal (CBizPort), a meta-search engine that searches for business information of mainland China, Taiwan, and Hong Kong. Additional functions provided by CBizPort include encoding conversion (between Simplified Chinese and Traditional Chinese), summarization, and categorization. Experimental results of our user evaluation study show that the searching and browsing performance of CBizPort was comparable to that of regional Chinese search engines, and CBizPort could significantly augment these search engines. Subjects' verbal comments indicate that CBizPort performed best in terms of analysis functions, cross-regional searching, and user-friendliness, whereas regional search engines were more efficient and more popular. Subjects especially liked CBizPort's summarizer and categorizer, which helped in understanding search results. These encouraging results suggest a promising future of our approach to Internet searching and browsing in a multilingual world.
    Source
    Journal of the American Society for Information Science and Technology. 55(2004) no.9, S.818-831
    Type
    a
  12. Ku, Y.; Chiu, C.; Zhang, Y.; Chen, H.; Su, H.: Text mining self-disclosing health information for public health service (2014) 0.00
    0.0035696328 = product of:
      0.013088653 = sum of:
        0.0076918663 = product of:
          0.0153837325 = sum of:
            0.0153837325 = weight(_text_:h in 1262) [ClassicSimilarity], result of:
              0.0153837325 = score(doc=1262,freq=4.0), product of:
                0.0660481 = queryWeight, product of:
                  2.4844491 = idf(docFreq=10020, maxDocs=44218)
                  0.026584605 = queryNorm
                0.2329171 = fieldWeight in 1262, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  2.4844491 = idf(docFreq=10020, maxDocs=44218)
                  0.046875 = fieldNorm(doc=1262)
          0.5 = coord(1/2)
        0.0033135647 = weight(_text_:a in 1262) [ClassicSimilarity], result of:
          0.0033135647 = score(doc=1262,freq=4.0), product of:
            0.030653298 = queryWeight, product of:
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.026584605 = queryNorm
            0.10809815 = fieldWeight in 1262, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.046875 = fieldNorm(doc=1262)
        0.0020832212 = weight(_text_:s in 1262) [ClassicSimilarity], result of:
          0.0020832212 = score(doc=1262,freq=2.0), product of:
            0.028903782 = queryWeight, product of:
              1.0872376 = idf(docFreq=40523, maxDocs=44218)
              0.026584605 = queryNorm
            0.072074346 = fieldWeight in 1262, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.0872376 = idf(docFreq=40523, maxDocs=44218)
              0.046875 = fieldNorm(doc=1262)
      0.27272728 = coord(3/11)
    
    Abstract
    Understanding specific patterns or knowledge of self-disclosing health information could support public health surveillance and healthcare. This study aimed to develop an analytical framework to identify self-disclosing health information with unusual messages on web forums by leveraging advanced text-mining techniques. To demonstrate the performance of the proposed analytical framework, we conducted an experimental study on 2 major human immunodeficiency virus (HIV)/acquired immune deficiency syndrome (AIDS) forums in Taiwan. The experimental results show that the classification accuracy increased significantly (up to 83.83%) when using features selected by the information gain technique. The results also show the importance of adopting domain-specific features in analyzing unusual messages on web forums. This study has practical implications for the prevention and support of HIV/AIDS healthcare. For example, public health agencies can re-allocate resources and deliver services to people who need help via social media sites. In addition, individuals can also join a social media site to get better suggestions and support from each other.
    Source
    Journal of the Association for Information Science and Technology. 65(2014) no.5, S.928-947
    Type
    a
  13. Dang, Y.; Zhang, Y.; Chen, H.; Hu, P.J.-H.; Brown, S.A.; Larson, C.: Arizona Literature Mapper : an integrated approach to monitor and analyze global bioterrorism research literature (2009) 0.00
    0.0031439455 = product of:
      0.0115278 = sum of:
        0.0064098886 = product of:
          0.012819777 = sum of:
            0.012819777 = weight(_text_:h in 2943) [ClassicSimilarity], result of:
              0.012819777 = score(doc=2943,freq=4.0), product of:
                0.0660481 = queryWeight, product of:
                  2.4844491 = idf(docFreq=10020, maxDocs=44218)
                  0.026584605 = queryNorm
                0.1940976 = fieldWeight in 2943, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  2.4844491 = idf(docFreq=10020, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=2943)
          0.5 = coord(1/2)
        0.0033818933 = weight(_text_:a in 2943) [ClassicSimilarity], result of:
          0.0033818933 = score(doc=2943,freq=6.0), product of:
            0.030653298 = queryWeight, product of:
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.026584605 = queryNorm
            0.11032722 = fieldWeight in 2943, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.0390625 = fieldNorm(doc=2943)
        0.0017360178 = weight(_text_:s in 2943) [ClassicSimilarity], result of:
          0.0017360178 = score(doc=2943,freq=2.0), product of:
            0.028903782 = queryWeight, product of:
              1.0872376 = idf(docFreq=40523, maxDocs=44218)
              0.026584605 = queryNorm
            0.060061958 = fieldWeight in 2943, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.0872376 = idf(docFreq=40523, maxDocs=44218)
              0.0390625 = fieldNorm(doc=2943)
      0.27272728 = coord(3/11)
    
    Abstract
    Biomedical research is critical to biodefense, which is drawing increasing attention from governments globally as well as from various research communities. The U.S. government has been closely monitoring and regulating biomedical research activities, particularly those studying or involving bioterrorism agents or diseases. Effective surveillance requires comprehensive understanding of extant biomedical research and timely detection of new developments or emerging trends. The rapid knowledge expansion, technical breakthroughs, and spiraling collaboration networks demand greater support for literature search and sharing, which cannot be effectively supported by conventional literature search mechanisms or systems. In this study, we propose an integrated approach that integrates advanced techniques for content analysis, network analysis, and information visualization. We design and implement Arizona Literature Mapper, a Web-based portal that allows users to gain timely, comprehensive understanding of bioterrorism research, including leading scientists, research groups, institutions as well as insights about current mainstream interests or emerging trends. We conduct two user studies to evaluate Arizona Literature Mapper and include a well-known system for benchmarking purposes. According to our results, Arizona Literature Mapper is significantly more effective for supporting users' search of bioterrorism publications than PubMed. Users consider Arizona Literature Mapper more useful and easier to use than PubMed. Users are also more satisfied with Arizona Literature Mapper and show stronger intentions to use it in the future. Assessments of Arizona Literature Mapper's analysis functions are also positive, as our subjects consider them useful, easy to use, and satisfactory. Our results have important implications that are also discussed in the article.
    Source
    Journal of the American Society for Information Science and Technology. 60(2009) no.7, S.1466-1485
    Type
    a
  14. Xu, H.; Bu, Y.; Liu, M.; Zhang, C.; Sun, M.; Zhang, Y.; Meyer, E.; Salas, E.; Ding, Y.: Team power dynamics and team impact : new perspectives on scientific collaboration using career age as a proxy for team power (2022) 0.00
    0.0029003182 = product of:
      0.0106345 = sum of:
        0.004532476 = product of:
          0.009064952 = sum of:
            0.009064952 = weight(_text_:h in 663) [ClassicSimilarity], result of:
              0.009064952 = score(doc=663,freq=2.0), product of:
                0.0660481 = queryWeight, product of:
                  2.4844491 = idf(docFreq=10020, maxDocs=44218)
                  0.026584605 = queryNorm
                0.13724773 = fieldWeight in 663, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  2.4844491 = idf(docFreq=10020, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=663)
          0.5 = coord(1/2)
        0.0043660053 = weight(_text_:a in 663) [ClassicSimilarity], result of:
          0.0043660053 = score(doc=663,freq=10.0), product of:
            0.030653298 = queryWeight, product of:
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.026584605 = queryNorm
            0.14243183 = fieldWeight in 663, product of:
              3.1622777 = tf(freq=10.0), with freq of:
                10.0 = termFreq=10.0
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.0390625 = fieldNorm(doc=663)
        0.0017360178 = weight(_text_:s in 663) [ClassicSimilarity], result of:
          0.0017360178 = score(doc=663,freq=2.0), product of:
            0.028903782 = queryWeight, product of:
              1.0872376 = idf(docFreq=40523, maxDocs=44218)
              0.026584605 = queryNorm
            0.060061958 = fieldWeight in 663, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.0872376 = idf(docFreq=40523, maxDocs=44218)
              0.0390625 = fieldNorm(doc=663)
      0.27272728 = coord(3/11)
    
    Abstract
    Power dynamics influence every aspect of scientific collaboration. Team power dynamics can be measured by team power level and team power hierarchy. Team power level is conceptualized as the average level of the possession of resources, expertise, or decision-making authorities of a team. Team power hierarchy represents the vertical differences of the possessions of resources in a team. In Science of Science, few studies have looked at scientific collaboration from the perspective of team power dynamics. This research examines how team power dynamics affect team impact to fill the research gap. In this research, all coauthors of one publication are treated as one team. Team power level and team power hierarchy of one team are measured by the mean and Gini index of career age of coauthors in this team. Team impact is quantified by citations of a paper authored by this team. By analyzing over 7.7 million teams from Science (e.g., Computer Science, Physics), Social Sciences (e.g., Sociology, Library & Information Science), and Arts & Humanities (e.g., Art), we find that flat team structure is associated with higher team impact, especially when teams have high team power level. These findings have been repeated in all five disciplines except Art, and are consistent in various types of teams from Computer Science including teams from industry or academia, teams with different gender groups, teams with geographical contrast, and teams with distinct size.
    Source
    Journal of the Association for Information Science and Technology. 73(2022) no.10, S.1489-1505
    Type
    a
  15. Zhang, Y.; Zheng, G.; Yan, H.: Bridging information and communication technology and older adults by social network : an action research in Sichuan, China (2023) 0.00
    0.0026319239 = product of:
      0.009650387 = sum of:
        0.004532476 = product of:
          0.009064952 = sum of:
            0.009064952 = weight(_text_:h in 1089) [ClassicSimilarity], result of:
              0.009064952 = score(doc=1089,freq=2.0), product of:
                0.0660481 = queryWeight, product of:
                  2.4844491 = idf(docFreq=10020, maxDocs=44218)
                  0.026584605 = queryNorm
                0.13724773 = fieldWeight in 1089, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  2.4844491 = idf(docFreq=10020, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=1089)
          0.5 = coord(1/2)
        0.0033818933 = weight(_text_:a in 1089) [ClassicSimilarity], result of:
          0.0033818933 = score(doc=1089,freq=6.0), product of:
            0.030653298 = queryWeight, product of:
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.026584605 = queryNorm
            0.11032722 = fieldWeight in 1089, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.0390625 = fieldNorm(doc=1089)
        0.0017360178 = weight(_text_:s in 1089) [ClassicSimilarity], result of:
          0.0017360178 = score(doc=1089,freq=2.0), product of:
            0.028903782 = queryWeight, product of:
              1.0872376 = idf(docFreq=40523, maxDocs=44218)
              0.026584605 = queryNorm
            0.060061958 = fieldWeight in 1089, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.0872376 = idf(docFreq=40523, maxDocs=44218)
              0.0390625 = fieldNorm(doc=1089)
      0.27272728 = coord(3/11)
    
    Abstract
    The extant literature demonstrates that the age-related digital divide prevents older adults from enhancing their quality of life. To bridge this gap and promote active aging, this study explores the interplay between social networks and older adults' use of information and communication technology (ICT). Using an action-oriented field research approach, we offered technical help (29 help sessions) to older adult participants recruited from western China. Then, we conducted content analysis to examine the obtained video, audio, and text data. Our results show that, first, different types of social networks significantly influence older adults' ICT use in terms of digital skills, engagement, and attitudes; however, these effects vary from person to person. In particular, our results highlight the crucial role of a stable and long-term supportive social network in learning and mastering ICT for older residents. Second, technical help facilitates the building and reinforcing of such a social network for the participants. Our study has strong implications in that policymakers can foster the digital inclusion of older people through supportive social networks.
    Source
    Journal of the Association for Information Science and Technology. 74(2023) no.12, S.1437-1448
    Type
    a
  16. Zhang, Y.; Salaba, A.: Implementing FRBR in libraries : key issues and future directions (2009) 0.00
    0.0016027769 = product of:
      0.008815273 = sum of:
        0.0039050733 = weight(_text_:a in 345) [ClassicSimilarity], result of:
          0.0039050733 = score(doc=345,freq=2.0), product of:
            0.030653298 = queryWeight, product of:
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.026584605 = queryNorm
            0.12739488 = fieldWeight in 345, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.078125 = fieldNorm(doc=345)
        0.0049101994 = weight(_text_:s in 345) [ClassicSimilarity], result of:
          0.0049101994 = score(doc=345,freq=4.0), product of:
            0.028903782 = queryWeight, product of:
              1.0872376 = idf(docFreq=40523, maxDocs=44218)
              0.026584605 = queryNorm
            0.16988087 = fieldWeight in 345, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              1.0872376 = idf(docFreq=40523, maxDocs=44218)
              0.078125 = fieldNorm(doc=345)
      0.18181819 = coord(2/11)
    
    Footnote
    Rez. in: Cataloging & Classification Quarterly, Volume 49(2011) no.1, S.47-49 (William Denton).
    Pages
    xiv, 154 S
  17. Zhang, Y.; Salaba, A.: What do users tell us about FRBR-based catalogs? (2012) 0.00
    0.0015532422 = product of:
      0.008542832 = sum of:
        0.006112407 = weight(_text_:a in 1924) [ClassicSimilarity], result of:
          0.006112407 = score(doc=1924,freq=10.0), product of:
            0.030653298 = queryWeight, product of:
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.026584605 = queryNorm
            0.19940455 = fieldWeight in 1924, product of:
              3.1622777 = tf(freq=10.0), with freq of:
                10.0 = termFreq=10.0
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.0546875 = fieldNorm(doc=1924)
        0.0024304248 = weight(_text_:s in 1924) [ClassicSimilarity], result of:
          0.0024304248 = score(doc=1924,freq=2.0), product of:
            0.028903782 = queryWeight, product of:
              1.0872376 = idf(docFreq=40523, maxDocs=44218)
              0.026584605 = queryNorm
            0.08408674 = fieldWeight in 1924, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.0872376 = idf(docFreq=40523, maxDocs=44218)
              0.0546875 = fieldNorm(doc=1924)
      0.18181819 = coord(2/11)
    
    Abstract
    FRBR user research has been the least addressed area in FRBR research and development. This article addresses the research gap in evaluating and designing catalogs based on FRBR user research. It draws from three user studies concerning FRBR-based catalogs: (1) user evaluation of three FRBR-based catalogs, (2) user participatory design of a prototype catalog based on the FRBR model, and (3) user evaluation of the resulting FRBR prototype catalog. The major findings from the user studies are highlighted and discussed for future development of FRBR-based catalogs that support various user tasks.
    Content
    Contribution to a special issue "The FRBR family of conceptual models: toward a linked future"
    Source
    Cataloging and classification quarterly. 50(2012) no.5/7, S.705-723
    Type
    a
  18. Zhang, Y.; Zhang, G.; Zhu, D.; Lu, J.: Scientific evolutionary pathways : identifying and visualizing relationships for scientific topics (2017) 0.00
    0.001545419 = product of:
      0.008499804 = sum of:
        0.0067637865 = weight(_text_:a in 3758) [ClassicSimilarity], result of:
          0.0067637865 = score(doc=3758,freq=24.0), product of:
            0.030653298 = queryWeight, product of:
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.026584605 = queryNorm
            0.22065444 = fieldWeight in 3758, product of:
              4.8989797 = tf(freq=24.0), with freq of:
                24.0 = termFreq=24.0
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.0390625 = fieldNorm(doc=3758)
        0.0017360178 = weight(_text_:s in 3758) [ClassicSimilarity], result of:
          0.0017360178 = score(doc=3758,freq=2.0), product of:
            0.028903782 = queryWeight, product of:
              1.0872376 = idf(docFreq=40523, maxDocs=44218)
              0.026584605 = queryNorm
            0.060061958 = fieldWeight in 3758, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.0872376 = idf(docFreq=40523, maxDocs=44218)
              0.0390625 = fieldNorm(doc=3758)
      0.18181819 = coord(2/11)
    
    Abstract
    Whereas traditional science maps emphasize citation statistics and static relationships, this paper presents a term-based method to identify and visualize the evolutionary pathways of scientific topics in a series of time slices. First, we create a data preprocessing model for accurate term cleaning, consolidating, and clustering. Then we construct a simulated data streaming function and introduce a learning process to train a relationship identification function to adapt to changing environments in real time, where relationships of topic evolution, fusion, death, and novelty are identified. The main result of the method is a map of scientific evolutionary pathways. The visual routines provide a way to indicate the interactions among scientific subjects and a version in a series of time slices helps further illustrate such evolutionary pathways in detail. The detailed outline offers sufficient statistical information to delve into scientific topics and routines and then helps address meaningful insights with the assistance of expert knowledge. This empirical study focuses on scientific proposals granted by the United States National Science Foundation, and demonstrates the feasibility and reliability. Our method could be widely applied to a range of science, technology, and innovation policy research, and offer insight into the evolutionary pathways of scientific activities.
    Source
    Journal of the Association for Information Science and Technology. 68(2017) no.8, S.1925-1939
    Type
    a
  19. Zhang, Y.; Ren, P.; Rijke, M. de: ¬A taxonomy, data set, and benchmark for detecting and classifying malevolent dialogue responses (2021) 0.00
    0.0015058789 = product of:
      0.008282334 = sum of:
        0.0061991126 = weight(_text_:a in 356) [ClassicSimilarity], result of:
          0.0061991126 = score(doc=356,freq=14.0), product of:
            0.030653298 = queryWeight, product of:
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.026584605 = queryNorm
            0.20223314 = fieldWeight in 356, product of:
              3.7416575 = tf(freq=14.0), with freq of:
                14.0 = termFreq=14.0
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.046875 = fieldNorm(doc=356)
        0.0020832212 = weight(_text_:s in 356) [ClassicSimilarity], result of:
          0.0020832212 = score(doc=356,freq=2.0), product of:
            0.028903782 = queryWeight, product of:
              1.0872376 = idf(docFreq=40523, maxDocs=44218)
              0.026584605 = queryNorm
            0.072074346 = fieldWeight in 356, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.0872376 = idf(docFreq=40523, maxDocs=44218)
              0.046875 = fieldNorm(doc=356)
      0.18181819 = coord(2/11)
    
    Abstract
    Conversational interfaces are increasingly popular as a way of connecting people to information. With the increased generative capacity of corpus-based conversational agents comes the need to classify and filter out malevolent responses that are inappropriate in terms of content and dialogue acts. Previous studies on the topic of detecting and classifying inappropriate content are mostly focused on a specific category of malevolence or on single sentences instead of an entire dialogue. We make three contributions to advance research on the malevolent dialogue response detection and classification (MDRDC) task. First, we define the task and present a hierarchical malevolent dialogue taxonomy. Second, we create a labeled multiturn dialogue data set and formulate the MDRDC task as a hierarchical classification task. Last, we apply state-of-the-art text classification methods to the MDRDC task, and report on experiments aimed at assessing the performance of these approaches.
    Source
    Journal of the Association for Information Science and Technology. 72(2021) no.12, S.1477-1497
    Type
    a
  20. Zhang, Y.: Using the Internet for survey research : a case study (2000) 0.00
    0.0014888468 = product of:
      0.008188657 = sum of:
        0.005411029 = weight(_text_:a in 4294) [ClassicSimilarity], result of:
          0.005411029 = score(doc=4294,freq=6.0), product of:
            0.030653298 = queryWeight, product of:
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.026584605 = queryNorm
            0.17652355 = fieldWeight in 4294, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.0625 = fieldNorm(doc=4294)
        0.0027776284 = weight(_text_:s in 4294) [ClassicSimilarity], result of:
          0.0027776284 = score(doc=4294,freq=2.0), product of:
            0.028903782 = queryWeight, product of:
              1.0872376 = idf(docFreq=40523, maxDocs=44218)
              0.026584605 = queryNorm
            0.09609913 = fieldWeight in 4294, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.0872376 = idf(docFreq=40523, maxDocs=44218)
              0.0625 = fieldNorm(doc=4294)
      0.18181819 = coord(2/11)
    
    Abstract
    The Internet provides opportunities to conduct surveys more efficiently and effectively than traditional means. This article reviews previous studies that use the Internet for survey research. It discusses the methodological issues and problems associated with this nes approach. By presenting a case study, it seeks possible solutions to some of the problems, and explores the potential the Internet can offer to survey researchers
    Source
    Journal of the American Society for Information Science. 51(2000) no.1, S.57-68
    Type
    a

Years

Types

  • a 43
  • m 1
  • More… Less…

Classifications