Search (82 results, page 1 of 5)

  • × year_i:[2000 TO 2010}
  • × theme_ss:"Klassifikationstheorie: Elemente / Struktur"
  1. Maltby, A.; Marcella, R.: Organizing knowledge : the need for system and unity (2000) 0.03
    0.031986274 = product of:
      0.117283 = sum of:
        0.0094693005 = weight(_text_:a in 181) [ClassicSimilarity], result of:
          0.0094693005 = score(doc=181,freq=6.0), product of:
            0.030653298 = queryWeight, product of:
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.026584605 = queryNorm
            0.3089162 = fieldWeight in 181, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.109375 = fieldNorm(doc=181)
        0.06372386 = weight(_text_:r in 181) [ClassicSimilarity], result of:
          0.06372386 = score(doc=181,freq=4.0), product of:
            0.088001914 = queryWeight, product of:
              3.3102584 = idf(docFreq=4387, maxDocs=44218)
              0.026584605 = queryNorm
            0.724119 = fieldWeight in 181, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              3.3102584 = idf(docFreq=4387, maxDocs=44218)
              0.109375 = fieldNorm(doc=181)
        0.04408984 = weight(_text_:u in 181) [ClassicSimilarity], result of:
          0.04408984 = score(doc=181,freq=2.0), product of:
            0.08704981 = queryWeight, product of:
              3.2744443 = idf(docFreq=4547, maxDocs=44218)
              0.026584605 = queryNorm
            0.50648975 = fieldWeight in 181, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.2744443 = idf(docFreq=4547, maxDocs=44218)
              0.109375 = fieldNorm(doc=181)
      0.27272728 = coord(3/11)
    
    Source
    The future of classification. Ed. R. Marcella u. A. Maltby
    Type
    a
  2. Foskett, A.C.: ¬The future of facetted classification (2000) 0.03
    0.02642211 = product of:
      0.09688106 = sum of:
        0.007731652 = weight(_text_:a in 3162) [ClassicSimilarity], result of:
          0.007731652 = score(doc=3162,freq=4.0), product of:
            0.030653298 = queryWeight, product of:
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.026584605 = queryNorm
            0.25222903 = fieldWeight in 3162, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.109375 = fieldNorm(doc=3162)
        0.045059573 = weight(_text_:r in 3162) [ClassicSimilarity], result of:
          0.045059573 = score(doc=3162,freq=2.0), product of:
            0.088001914 = queryWeight, product of:
              3.3102584 = idf(docFreq=4387, maxDocs=44218)
              0.026584605 = queryNorm
            0.51202947 = fieldWeight in 3162, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.3102584 = idf(docFreq=4387, maxDocs=44218)
              0.109375 = fieldNorm(doc=3162)
        0.04408984 = weight(_text_:u in 3162) [ClassicSimilarity], result of:
          0.04408984 = score(doc=3162,freq=2.0), product of:
            0.08704981 = queryWeight, product of:
              3.2744443 = idf(docFreq=4547, maxDocs=44218)
              0.026584605 = queryNorm
            0.50648975 = fieldWeight in 3162, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.2744443 = idf(docFreq=4547, maxDocs=44218)
              0.109375 = fieldNorm(doc=3162)
      0.27272728 = coord(3/11)
    
    Source
    The future of classification. Ed. R. Marcella u. A. Maltby
    Type
    a
  3. Triska, R.: Artificial intelligence, classification theory and the uncertainty reduction process (2007) 0.03
    0.025838278 = product of:
      0.07105526 = sum of:
        0.0039050733 = weight(_text_:a in 1139) [ClassicSimilarity], result of:
          0.0039050733 = score(doc=1139,freq=2.0), product of:
            0.030653298 = queryWeight, product of:
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.026584605 = queryNorm
            0.12739488 = fieldWeight in 1139, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.078125 = fieldNorm(doc=1139)
        0.03218541 = weight(_text_:r in 1139) [ClassicSimilarity], result of:
          0.03218541 = score(doc=1139,freq=2.0), product of:
            0.088001914 = queryWeight, product of:
              3.3102584 = idf(docFreq=4387, maxDocs=44218)
              0.026584605 = queryNorm
            0.36573532 = fieldWeight in 1139, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.3102584 = idf(docFreq=4387, maxDocs=44218)
              0.078125 = fieldNorm(doc=1139)
        0.0034720355 = weight(_text_:s in 1139) [ClassicSimilarity], result of:
          0.0034720355 = score(doc=1139,freq=2.0), product of:
            0.028903782 = queryWeight, product of:
              1.0872376 = idf(docFreq=40523, maxDocs=44218)
              0.026584605 = queryNorm
            0.120123915 = fieldWeight in 1139, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.0872376 = idf(docFreq=40523, maxDocs=44218)
              0.078125 = fieldNorm(doc=1139)
        0.031492744 = weight(_text_:u in 1139) [ClassicSimilarity], result of:
          0.031492744 = score(doc=1139,freq=2.0), product of:
            0.08704981 = queryWeight, product of:
              3.2744443 = idf(docFreq=4547, maxDocs=44218)
              0.026584605 = queryNorm
            0.3617784 = fieldWeight in 1139, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.2744443 = idf(docFreq=4547, maxDocs=44218)
              0.078125 = fieldNorm(doc=1139)
      0.36363637 = coord(4/11)
    
    Pages
    S.479-483
    Source
    ¬La interdisciplinariedad y la transdisciplinariedad en la organización del conocimiento científico : actas del VIII Congreso ISKO-España, León, 18, 19 y 20 de Abril de 2007 : Interdisciplinarity and transdisciplinarity in the organization of scientific knowledge. Ed.: B. Rodriguez Bravo u. M.L Alvite Diez
    Type
    a
  4. Szostak, R.: Interdisciplinarity and the classification of scholarly documents by phenomena, theories and methods (2007) 0.02
    0.020670623 = product of:
      0.05684421 = sum of:
        0.0031240587 = weight(_text_:a in 1135) [ClassicSimilarity], result of:
          0.0031240587 = score(doc=1135,freq=2.0), product of:
            0.030653298 = queryWeight, product of:
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.026584605 = queryNorm
            0.10191591 = fieldWeight in 1135, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.0625 = fieldNorm(doc=1135)
        0.025748327 = weight(_text_:r in 1135) [ClassicSimilarity], result of:
          0.025748327 = score(doc=1135,freq=2.0), product of:
            0.088001914 = queryWeight, product of:
              3.3102584 = idf(docFreq=4387, maxDocs=44218)
              0.026584605 = queryNorm
            0.29258826 = fieldWeight in 1135, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.3102584 = idf(docFreq=4387, maxDocs=44218)
              0.0625 = fieldNorm(doc=1135)
        0.0027776284 = weight(_text_:s in 1135) [ClassicSimilarity], result of:
          0.0027776284 = score(doc=1135,freq=2.0), product of:
            0.028903782 = queryWeight, product of:
              1.0872376 = idf(docFreq=40523, maxDocs=44218)
              0.026584605 = queryNorm
            0.09609913 = fieldWeight in 1135, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.0872376 = idf(docFreq=40523, maxDocs=44218)
              0.0625 = fieldNorm(doc=1135)
        0.025194194 = weight(_text_:u in 1135) [ClassicSimilarity], result of:
          0.025194194 = score(doc=1135,freq=2.0), product of:
            0.08704981 = queryWeight, product of:
              3.2744443 = idf(docFreq=4547, maxDocs=44218)
              0.026584605 = queryNorm
            0.28942272 = fieldWeight in 1135, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.2744443 = idf(docFreq=4547, maxDocs=44218)
              0.0625 = fieldNorm(doc=1135)
      0.36363637 = coord(4/11)
    
    Pages
    S.470-477
    Source
    ¬La interdisciplinariedad y la transdisciplinariedad en la organización del conocimiento científico : actas del VIII Congreso ISKO-España, León, 18, 19 y 20 de Abril de 2007 : Interdisciplinarity and transdisciplinarity in the organization of scientific knowledge. Ed.: B. Rodriguez Bravo u. M.L Alvite Diez
    Type
    a
  5. Satija, M.P.: Relationships in Ranganathan's Colon Classification (2001) 0.02
    0.019315468 = product of:
      0.053117536 = sum of:
        0.006112407 = weight(_text_:a in 1155) [ClassicSimilarity], result of:
          0.006112407 = score(doc=1155,freq=10.0), product of:
            0.030653298 = queryWeight, product of:
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.026584605 = queryNorm
            0.19940455 = fieldWeight in 1155, product of:
              3.1622777 = tf(freq=10.0), with freq of:
                10.0 = termFreq=10.0
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.0546875 = fieldNorm(doc=1155)
        0.022529786 = weight(_text_:r in 1155) [ClassicSimilarity], result of:
          0.022529786 = score(doc=1155,freq=2.0), product of:
            0.088001914 = queryWeight, product of:
              3.3102584 = idf(docFreq=4387, maxDocs=44218)
              0.026584605 = queryNorm
            0.25601473 = fieldWeight in 1155, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.3102584 = idf(docFreq=4387, maxDocs=44218)
              0.0546875 = fieldNorm(doc=1155)
        0.0024304248 = weight(_text_:s in 1155) [ClassicSimilarity], result of:
          0.0024304248 = score(doc=1155,freq=2.0), product of:
            0.028903782 = queryWeight, product of:
              1.0872376 = idf(docFreq=40523, maxDocs=44218)
              0.026584605 = queryNorm
            0.08408674 = fieldWeight in 1155, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.0872376 = idf(docFreq=40523, maxDocs=44218)
              0.0546875 = fieldNorm(doc=1155)
        0.02204492 = weight(_text_:u in 1155) [ClassicSimilarity], result of:
          0.02204492 = score(doc=1155,freq=2.0), product of:
            0.08704981 = queryWeight, product of:
              3.2744443 = idf(docFreq=4547, maxDocs=44218)
              0.026584605 = queryNorm
            0.25324488 = fieldWeight in 1155, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.2744443 = idf(docFreq=4547, maxDocs=44218)
              0.0546875 = fieldNorm(doc=1155)
      0.36363637 = coord(4/11)
    
    Abstract
    Ranganathan's Colon Classification (CC) treats knowledge as a multidimensional structure, enshrining a multiplicity of complex relations. This complexity is manipulated within the CC an the basis of numerous of Ranganathan's contributions to subject analysis, including the modes of formation of subjects; an objective rationale for the arrangement of main classes; the PMEST facet formula, extended by the postulate of rounds and levels; a general dependency principle for collocation of related components in a facet formula, phase relationships between the components of complex interdiscipfnary subjects; the recurrence of an APUPA arrangement throughout the linear ordering of materials; and an absolute syntax of ideas.
    Pages
    S.199-210
    Source
    Relationships in the organization of knowledge. Eds.: Bean, C.A. u. R. Green
    Type
    a
  6. Advances in classification research. Vol.10 : Proceedings of the 10th ASIS SIG/CR Classification Research Workshop, held at the 62nd ASIS Annual Meeting Nov 1-5, 1999, Washington (2001) 0.02
    0.019265486 = product of:
      0.052980084 = sum of:
        0.0054389704 = product of:
          0.010877941 = sum of:
            0.010877941 = weight(_text_:h in 1586) [ClassicSimilarity], result of:
              0.010877941 = score(doc=1586,freq=2.0), product of:
                0.0660481 = queryWeight, product of:
                  2.4844491 = idf(docFreq=10020, maxDocs=44218)
                  0.026584605 = queryNorm
                0.16469726 = fieldWeight in 1586, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  2.4844491 = idf(docFreq=10020, maxDocs=44218)
                  0.046875 = fieldNorm(doc=1586)
          0.5 = coord(1/2)
        0.0023430442 = weight(_text_:a in 1586) [ClassicSimilarity], result of:
          0.0023430442 = score(doc=1586,freq=2.0), product of:
            0.030653298 = queryWeight, product of:
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.026584605 = queryNorm
            0.07643694 = fieldWeight in 1586, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.046875 = fieldNorm(doc=1586)
        0.00294612 = weight(_text_:s in 1586) [ClassicSimilarity], result of:
          0.00294612 = score(doc=1586,freq=4.0), product of:
            0.028903782 = queryWeight, product of:
              1.0872376 = idf(docFreq=40523, maxDocs=44218)
              0.026584605 = queryNorm
            0.101928525 = fieldWeight in 1586, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              1.0872376 = idf(docFreq=40523, maxDocs=44218)
              0.046875 = fieldNorm(doc=1586)
        0.04225195 = weight(_text_:u in 1586) [ClassicSimilarity], result of:
          0.04225195 = score(doc=1586,freq=10.0), product of:
            0.08704981 = queryWeight, product of:
              3.2744443 = idf(docFreq=4547, maxDocs=44218)
              0.026584605 = queryNorm
            0.48537666 = fieldWeight in 1586, product of:
              3.1622777 = tf(freq=10.0), with freq of:
                10.0 = termFreq=10.0
              3.2744443 = idf(docFreq=4547, maxDocs=44218)
              0.046875 = fieldNorm(doc=1586)
      0.36363637 = coord(4/11)
    
    Content
    Enthält die Beiträge: DAVENPORT, E.: Implicit orders: documentary genres and organizational practice; ANDERSEN, J. u. F.S. CHRISTENSEN: Wittgenstein and indexing theory; OLSON, H.A.: Cultural discourses of classification: indigeous alternatives to the tradition of Aristotle, Dürkheim, and Foucault; FRÂNCU, V.: A universal classification system going through changes; JACOB, E.K. u. U. PRISS: Nontraditional indexing structures for the management of electronic resources; BROOKS, T.A.: Relevance auras: macro patterns and micro scatter; RUIZ, M.E. u. SRINIVASAN, P.: Combining machine learning and hierarchical indexing structures for text categorization; WEEDMAN, J.: Local practice and the growth of knowledge: decisions in subject access to digitized images
    Editor
    Albrechtsen, H. u. J.E. Mai
    Pages
    X,149 S
    Type
    s
  7. Gnoli, C.; Poli, R.: Levels of reality and levels of representation (2004) 0.02
    0.017851477 = product of:
      0.049091563 = sum of:
        0.0052392064 = weight(_text_:a in 3533) [ClassicSimilarity], result of:
          0.0052392064 = score(doc=3533,freq=10.0), product of:
            0.030653298 = queryWeight, product of:
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.026584605 = queryNorm
            0.1709182 = fieldWeight in 3533, product of:
              3.1622777 = tf(freq=10.0), with freq of:
                10.0 = termFreq=10.0
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.046875 = fieldNorm(doc=3533)
        0.019311246 = weight(_text_:r in 3533) [ClassicSimilarity], result of:
          0.019311246 = score(doc=3533,freq=2.0), product of:
            0.088001914 = queryWeight, product of:
              3.3102584 = idf(docFreq=4387, maxDocs=44218)
              0.026584605 = queryNorm
            0.2194412 = fieldWeight in 3533, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.3102584 = idf(docFreq=4387, maxDocs=44218)
              0.046875 = fieldNorm(doc=3533)
        0.0020832212 = weight(_text_:s in 3533) [ClassicSimilarity], result of:
          0.0020832212 = score(doc=3533,freq=2.0), product of:
            0.028903782 = queryWeight, product of:
              1.0872376 = idf(docFreq=40523, maxDocs=44218)
              0.026584605 = queryNorm
            0.072074346 = fieldWeight in 3533, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.0872376 = idf(docFreq=40523, maxDocs=44218)
              0.046875 = fieldNorm(doc=3533)
        0.022457888 = weight(_text_:k in 3533) [ClassicSimilarity], result of:
          0.022457888 = score(doc=3533,freq=2.0), product of:
            0.09490114 = queryWeight, product of:
              3.569778 = idf(docFreq=3384, maxDocs=44218)
              0.026584605 = queryNorm
            0.23664509 = fieldWeight in 3533, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.569778 = idf(docFreq=3384, maxDocs=44218)
              0.046875 = fieldNorm(doc=3533)
      0.36363637 = coord(4/11)
    
    Abstract
    Ontology, in its philosophical meaning, is the discipline investigating the structure of reality. Its findings can be relevant to knowledge organization, and models of knowledge can, in turn, offer relevant ontological suggestions. Several philosophers in time have pointed out that reality is structured into a series of integrative levels, like the physical, the biological, the mental, and the cultural, and that each level plays as a base for the emergence of more complex levels. More detailed theories of levels have been developed by Nicolai Hartmann and James K. Feibleman, and these have been considered as a source for structuring principles in bibliographic classification by both the Classification Research Group (CRG) and Ingetraut Dahlberg. CRG's analysis of levels and of their possible application to a new general classification scheme based an phenomena instead of disciplines, as it was formulated by Derek Austin in 1969, is examined in detail. Both benefits and open problems in applying integrative levels to bibliographic classification are pointed out.
    Source
    Knowledge organization. 31(2004) no.3, S.151-160
    Type
    a
  8. Beghtol, C.: Relationships in classificatory structure and meaning (2001) 0.02
    0.016905174 = product of:
      0.046489224 = sum of:
        0.0061991126 = weight(_text_:a in 1138) [ClassicSimilarity], result of:
          0.0061991126 = score(doc=1138,freq=14.0), product of:
            0.030653298 = queryWeight, product of:
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.026584605 = queryNorm
            0.20223314 = fieldWeight in 1138, product of:
              3.7416575 = tf(freq=14.0), with freq of:
                14.0 = termFreq=14.0
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.046875 = fieldNorm(doc=1138)
        0.019311246 = weight(_text_:r in 1138) [ClassicSimilarity], result of:
          0.019311246 = score(doc=1138,freq=2.0), product of:
            0.088001914 = queryWeight, product of:
              3.3102584 = idf(docFreq=4387, maxDocs=44218)
              0.026584605 = queryNorm
            0.2194412 = fieldWeight in 1138, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.3102584 = idf(docFreq=4387, maxDocs=44218)
              0.046875 = fieldNorm(doc=1138)
        0.0020832212 = weight(_text_:s in 1138) [ClassicSimilarity], result of:
          0.0020832212 = score(doc=1138,freq=2.0), product of:
            0.028903782 = queryWeight, product of:
              1.0872376 = idf(docFreq=40523, maxDocs=44218)
              0.026584605 = queryNorm
            0.072074346 = fieldWeight in 1138, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.0872376 = idf(docFreq=40523, maxDocs=44218)
              0.046875 = fieldNorm(doc=1138)
        0.018895645 = weight(_text_:u in 1138) [ClassicSimilarity], result of:
          0.018895645 = score(doc=1138,freq=2.0), product of:
            0.08704981 = queryWeight, product of:
              3.2744443 = idf(docFreq=4547, maxDocs=44218)
              0.026584605 = queryNorm
            0.21706703 = fieldWeight in 1138, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.2744443 = idf(docFreq=4547, maxDocs=44218)
              0.046875 = fieldNorm(doc=1138)
      0.36363637 = coord(4/11)
    
    Abstract
    In a changing information environment, we need to reassess each element of bibliographic control, including classification theories and systems. Every classification system is a theoretical construct imposed an "reality." The classificatory relationships that are assumed to be valuable have generally received less attention than the topics included in the systems. Relationships are functions of both the syntactic and semantic axes of classification systems, and both explicit and implicit relationships are discussed. Examples are drawn from a number of different systems, both bibliographic and non-bibliographic, and the cultural warrant (i. e., the sociocultural context) of classification systems is examined. The part-whole relationship is discussed as an example of a universally valid concept that is treated as a component of the cultural warrant of a classification system.
    Pages
    S.99-113
    Source
    Relationships in the organization of knowledge. Eds.: Bean, C.A. u. R. Green
    Type
    a
  9. Gnoli, C.: ¬The meaning of facets in non-disciplinary classifications (2006) 0.02
    0.015292694 = product of:
      0.042054906 = sum of:
        0.0058576106 = weight(_text_:a in 2291) [ClassicSimilarity], result of:
          0.0058576106 = score(doc=2291,freq=18.0), product of:
            0.030653298 = queryWeight, product of:
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.026584605 = queryNorm
            0.19109234 = fieldWeight in 2291, product of:
              4.2426405 = tf(freq=18.0), with freq of:
                18.0 = termFreq=18.0
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.0390625 = fieldNorm(doc=2291)
        0.0017360178 = weight(_text_:s in 2291) [ClassicSimilarity], result of:
          0.0017360178 = score(doc=2291,freq=2.0), product of:
            0.028903782 = queryWeight, product of:
              1.0872376 = idf(docFreq=40523, maxDocs=44218)
              0.026584605 = queryNorm
            0.060061958 = fieldWeight in 2291, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.0872376 = idf(docFreq=40523, maxDocs=44218)
              0.0390625 = fieldNorm(doc=2291)
        0.015746372 = weight(_text_:u in 2291) [ClassicSimilarity], result of:
          0.015746372 = score(doc=2291,freq=2.0), product of:
            0.08704981 = queryWeight, product of:
              3.2744443 = idf(docFreq=4547, maxDocs=44218)
              0.026584605 = queryNorm
            0.1808892 = fieldWeight in 2291, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.2744443 = idf(docFreq=4547, maxDocs=44218)
              0.0390625 = fieldNorm(doc=2291)
        0.018714907 = weight(_text_:k in 2291) [ClassicSimilarity], result of:
          0.018714907 = score(doc=2291,freq=2.0), product of:
            0.09490114 = queryWeight, product of:
              3.569778 = idf(docFreq=3384, maxDocs=44218)
              0.026584605 = queryNorm
            0.19720423 = fieldWeight in 2291, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.569778 = idf(docFreq=3384, maxDocs=44218)
              0.0390625 = fieldNorm(doc=2291)
      0.36363637 = coord(4/11)
    
    Abstract
    Disciplines are felt by many to be a constraint in classification, though they are a structuring principle of most bibliographic classification schemes. A non-disciplinary approach has been explored by the Classification Research Group, and research in this direction has been resumed recently by the Integrative Level Classification project. This paper focuses on the role and the definition of facets in non-disciplinary schemes. A generalized definition of facets is suggested with reference to predicate logic, allowing for having facets of phenomena as well as facets of disciplines. The general categories under which facets are often subsumed can be related ontologically to the evolutionary sequence of integrative levels. As a facet can be semantically connected with phenomena from any other part of a general scheme, its values can belong to three types, here called extra-defined foci (either special or general), and context-defined foci. Non-disciplinary freely faceted classification is being tested by applying it to little bibliographic samples stored in a MySQL database, and developing Web search interfaces to demonstrate possible uses of the described techniques.
    Pages
    S.11-18
    Source
    Knowledge organization for a global learning society: Proceedings of the 9th International ISKO Conference, 4-7 July 2006, Vienna, Austria. Hrsg.: G. Budin, C. Swertz u. K. Mitgutsch
    Type
    a
  10. Olson, H.A.: Cultural discourse of classification : indigeous alternatives to the tradition of Aristotle, Durkheim, and Foucault (2001) 0.01
    0.012201586 = product of:
      0.03355436 = sum of:
        0.006345466 = product of:
          0.012690932 = sum of:
            0.012690932 = weight(_text_:h in 1594) [ClassicSimilarity], result of:
              0.012690932 = score(doc=1594,freq=2.0), product of:
                0.0660481 = queryWeight, product of:
                  2.4844491 = idf(docFreq=10020, maxDocs=44218)
                  0.026584605 = queryNorm
                0.19214681 = fieldWeight in 1594, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  2.4844491 = idf(docFreq=10020, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=1594)
          0.5 = coord(1/2)
        0.0027335514 = weight(_text_:a in 1594) [ClassicSimilarity], result of:
          0.0027335514 = score(doc=1594,freq=2.0), product of:
            0.030653298 = queryWeight, product of:
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.026584605 = queryNorm
            0.089176424 = fieldWeight in 1594, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.0546875 = fieldNorm(doc=1594)
        0.0024304248 = weight(_text_:s in 1594) [ClassicSimilarity], result of:
          0.0024304248 = score(doc=1594,freq=2.0), product of:
            0.028903782 = queryWeight, product of:
              1.0872376 = idf(docFreq=40523, maxDocs=44218)
              0.026584605 = queryNorm
            0.08408674 = fieldWeight in 1594, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.0872376 = idf(docFreq=40523, maxDocs=44218)
              0.0546875 = fieldNorm(doc=1594)
        0.02204492 = weight(_text_:u in 1594) [ClassicSimilarity], result of:
          0.02204492 = score(doc=1594,freq=2.0), product of:
            0.08704981 = queryWeight, product of:
              3.2744443 = idf(docFreq=4547, maxDocs=44218)
              0.026584605 = queryNorm
            0.25324488 = fieldWeight in 1594, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.2744443 = idf(docFreq=4547, maxDocs=44218)
              0.0546875 = fieldNorm(doc=1594)
      0.36363637 = coord(4/11)
    
    Pages
    S.91-106
    Source
    Advances in classification research, vol.10: proceedings of the 10th ASIS SIG/CR Classification Research Workshop. Ed.: Albrechtsen, H. u. J.E. Mai
    Type
    a
  11. Szostak, R.: ¬A schema for unifying human science : interdisciplinary perspectives on culture (2003) 0.01
    0.009539111 = product of:
      0.03497674 = sum of:
        0.0040582716 = weight(_text_:a in 803) [ClassicSimilarity], result of:
          0.0040582716 = score(doc=803,freq=6.0), product of:
            0.030653298 = queryWeight, product of:
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.026584605 = queryNorm
            0.13239266 = fieldWeight in 803, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.046875 = fieldNorm(doc=803)
        0.027310224 = weight(_text_:r in 803) [ClassicSimilarity], result of:
          0.027310224 = score(doc=803,freq=4.0), product of:
            0.088001914 = queryWeight, product of:
              3.3102584 = idf(docFreq=4387, maxDocs=44218)
              0.026584605 = queryNorm
            0.3103367 = fieldWeight in 803, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              3.3102584 = idf(docFreq=4387, maxDocs=44218)
              0.046875 = fieldNorm(doc=803)
        0.0036082454 = weight(_text_:s in 803) [ClassicSimilarity], result of:
          0.0036082454 = score(doc=803,freq=6.0), product of:
            0.028903782 = queryWeight, product of:
              1.0872376 = idf(docFreq=40523, maxDocs=44218)
              0.026584605 = queryNorm
            0.124836445 = fieldWeight in 803, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              1.0872376 = idf(docFreq=40523, maxDocs=44218)
              0.046875 = fieldNorm(doc=803)
      0.27272728 = coord(3/11)
    
    Abstract
    This book develops a schema, consisting of a hierarchically organized list of the phenomena of interest to human scientists, and the causal links (influences) which exist among these. This organizing device, and particularly the "unpacking" of "culture" into its constituent phenomena, allows the true complexity of culture to be captured. Unpacking also allows us to sail between the twin dangers of culture bigotry and cultural relativism.
    Footnote
    Rez. in: KO 39(2012) no.4, S.300-303 (M.J. Fox) Vgl. auch: Szostak, R.: Speaking truth to power in classification: response to Fox's review of my work; KO 39:4, 300. In: Knowledge organization. 40(2013) no.1, S.76-77.
    Pages
    389 S
  12. Poli, R.: Framing information (2003) 0.01
    0.008984739 = product of:
      0.032944042 = sum of:
        0.0044180867 = weight(_text_:a in 2711) [ClassicSimilarity], result of:
          0.0044180867 = score(doc=2711,freq=4.0), product of:
            0.030653298 = queryWeight, product of:
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.026584605 = queryNorm
            0.14413087 = fieldWeight in 2711, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.0625 = fieldNorm(doc=2711)
        0.025748327 = weight(_text_:r in 2711) [ClassicSimilarity], result of:
          0.025748327 = score(doc=2711,freq=2.0), product of:
            0.088001914 = queryWeight, product of:
              3.3102584 = idf(docFreq=4387, maxDocs=44218)
              0.026584605 = queryNorm
            0.29258826 = fieldWeight in 2711, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.3102584 = idf(docFreq=4387, maxDocs=44218)
              0.0625 = fieldNorm(doc=2711)
        0.0027776284 = weight(_text_:s in 2711) [ClassicSimilarity], result of:
          0.0027776284 = score(doc=2711,freq=2.0), product of:
            0.028903782 = queryWeight, product of:
              1.0872376 = idf(docFreq=40523, maxDocs=44218)
              0.026584605 = queryNorm
            0.09609913 = fieldWeight in 2711, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.0872376 = idf(docFreq=40523, maxDocs=44218)
              0.0625 = fieldNorm(doc=2711)
      0.27272728 = coord(3/11)
    
    Abstract
    The distinction between semiotic, semantic and ontological classifications is introduced. A few examples of semantic and ontological categories are then provided and discussed. The thesis is defended that semantic categories depend an ontological categories.
    Pages
    S.225-231
    Type
    a
  13. McCool, M.; St. Amant, K.: Field dependence and classification : implications for global information systems (2009) 0.01
    0.008862852 = product of:
      0.032497123 = sum of:
        0.003865826 = weight(_text_:a in 2854) [ClassicSimilarity], result of:
          0.003865826 = score(doc=2854,freq=4.0), product of:
            0.030653298 = queryWeight, product of:
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.026584605 = queryNorm
            0.12611452 = fieldWeight in 2854, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.0546875 = fieldNorm(doc=2854)
        0.0024304248 = weight(_text_:s in 2854) [ClassicSimilarity], result of:
          0.0024304248 = score(doc=2854,freq=2.0), product of:
            0.028903782 = queryWeight, product of:
              1.0872376 = idf(docFreq=40523, maxDocs=44218)
              0.026584605 = queryNorm
            0.08408674 = fieldWeight in 2854, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.0872376 = idf(docFreq=40523, maxDocs=44218)
              0.0546875 = fieldNorm(doc=2854)
        0.02620087 = weight(_text_:k in 2854) [ClassicSimilarity], result of:
          0.02620087 = score(doc=2854,freq=2.0), product of:
            0.09490114 = queryWeight, product of:
              3.569778 = idf(docFreq=3384, maxDocs=44218)
              0.026584605 = queryNorm
            0.27608594 = fieldWeight in 2854, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.569778 = idf(docFreq=3384, maxDocs=44218)
              0.0546875 = fieldNorm(doc=2854)
      0.27272728 = coord(3/11)
    
    Abstract
    This article describes research designed to assess the interaction between culture and classification. Mounting evidence in cross-cultural psychology has indicated that culture may affect classification, which is an important dimension to global information systems. Data were obtained through three classification tasks, two of which were adapted from recent studies in cross-cultural psychology. Data were collected from 36 participants, 19 from China and 17 from the United States. The results of this research indicate that Chinese participants appear to be more field dependent, which may be related to a cultural preference for relationships instead of categories.
    Source
    Journal of the American Society for Information Science and Technology. 60(2009) no.6, S.1258-1266
    Type
    a
  14. Szostak, R.: Classification, interdisciplinarity, and the study of science (2008) 0.01
    0.008533091 = product of:
      0.031288 = sum of:
        0.0055226083 = weight(_text_:a in 1893) [ClassicSimilarity], result of:
          0.0055226083 = score(doc=1893,freq=16.0), product of:
            0.030653298 = queryWeight, product of:
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.026584605 = queryNorm
            0.18016359 = fieldWeight in 1893, product of:
              4.0 = tf(freq=16.0), with freq of:
                16.0 = termFreq=16.0
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.0390625 = fieldNorm(doc=1893)
        0.022758523 = weight(_text_:r in 1893) [ClassicSimilarity], result of:
          0.022758523 = score(doc=1893,freq=4.0), product of:
            0.088001914 = queryWeight, product of:
              3.3102584 = idf(docFreq=4387, maxDocs=44218)
              0.026584605 = queryNorm
            0.25861394 = fieldWeight in 1893, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              3.3102584 = idf(docFreq=4387, maxDocs=44218)
              0.0390625 = fieldNorm(doc=1893)
        0.003006871 = weight(_text_:s in 1893) [ClassicSimilarity], result of:
          0.003006871 = score(doc=1893,freq=6.0), product of:
            0.028903782 = queryWeight, product of:
              1.0872376 = idf(docFreq=40523, maxDocs=44218)
              0.026584605 = queryNorm
            0.10403037 = fieldWeight in 1893, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              1.0872376 = idf(docFreq=40523, maxDocs=44218)
              0.0390625 = fieldNorm(doc=1893)
      0.27272728 = coord(3/11)
    
    Abstract
    Purpose - This paper aims to respond to the 2005 paper by Hjørland and Nissen Pedersen by suggesting that an exhaustive and universal classification of the phenomena that scholars study, and the methods and theories they apply, is feasible. It seeks to argue that such a classification is critical for interdisciplinary scholarship. Design/methodology/approach - The paper presents a literature-based conceptual analysis, taking Hjørland and Nissen Pedersen as its starting point. Hjørland and Nissen Pedersen had identified several difficulties that would be encountered in developing such a classification; the paper suggests how each of these can be overcome. It also urges a deductive approach as complementary to the inductive approach recommended by Hjørland and Nissen Pedersen. Findings - The paper finds that an exhaustive and universal classification of scholarly documents in terms of (at least) the phenomena that scholars study, and the theories and methods they apply, appears to be both possible and desirable. Practical implications - The paper suggests how such a project can be begun. In particular it stresses the importance of classifying documents in terms of causal links between phenomena. Originality/value - The paper links the information science, interdisciplinary, and study of science literatures, and suggests that the types of classification outlined above would be of great value to scientists/scholars, and that they are possible.
    Content
    Bezugnahme auf: Hjoerland, B., K.N. Pedersen: A substantive theory of classification for information retrieval. In: Journal of documentation. 61(2005) no.5, S.582-597. - Vgl. auch: Hjoerland, R.: Core classification theory: : a reply to Szostak. In: Journal of documentation. 64(2008) no.3, S.333 - 342.
    Source
    Journal of documentation. 64(2008) no.3, S.319-332
    Type
    a
  15. Kashyap, M.M.: Likeness between Ranganathan's postulations based approach to knowledge classification and entity relationship data modelling approach (2003) 0.01
    0.007176992 = product of:
      0.026315637 = sum of:
        0.0040582716 = weight(_text_:a in 2045) [ClassicSimilarity], result of:
          0.0040582716 = score(doc=2045,freq=6.0), product of:
            0.030653298 = queryWeight, product of:
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.026584605 = queryNorm
            0.13239266 = fieldWeight in 2045, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.046875 = fieldNorm(doc=2045)
        0.019311246 = weight(_text_:r in 2045) [ClassicSimilarity], result of:
          0.019311246 = score(doc=2045,freq=2.0), product of:
            0.088001914 = queryWeight, product of:
              3.3102584 = idf(docFreq=4387, maxDocs=44218)
              0.026584605 = queryNorm
            0.2194412 = fieldWeight in 2045, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.3102584 = idf(docFreq=4387, maxDocs=44218)
              0.046875 = fieldNorm(doc=2045)
        0.00294612 = weight(_text_:s in 2045) [ClassicSimilarity], result of:
          0.00294612 = score(doc=2045,freq=4.0), product of:
            0.028903782 = queryWeight, product of:
              1.0872376 = idf(docFreq=40523, maxDocs=44218)
              0.026584605 = queryNorm
            0.101928525 = fieldWeight in 2045, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              1.0872376 = idf(docFreq=40523, maxDocs=44218)
              0.046875 = fieldNorm(doc=2045)
      0.27272728 = coord(3/11)
    
    Abstract
    This paper describes the Postulations Based Approach to Facet Classification as articulated by S. R. Ranganathan for knowledge classification and for the design of a facet scheme of library classification, and the Entity-Relationship Data Modelling and Analysis Approach set by Peter Pin-Sen Chen; both further modified by other experts. Efforts have been made to show the parallelism between the two approaches. It points out that, both the theoretical approaches are concerned with the organisation of knowledge or information, and apply almost similar theoretical principles, concepts, and techniques for the design and development of a framework for the organisation of knowledge, information, or data, in their respective domains. It states that both the approaches are complementary and supplementary to each other. The paper also argues that Ranganathan's postulations based approach or analytico-synthetic approach to knowledge classification can be applied for developing efficient data retrieval systems in addition to the data analysis and modelling domain.
    Source
    Knowledge organization. 30(2003) no.1, S.1-19
    Type
    a
  16. Szostak, R.: Classifying science : phenomena, data, theory, method, practice (2004) 0.01
    0.0063846856 = product of:
      0.017557885 = sum of:
        0.0027194852 = product of:
          0.0054389704 = sum of:
            0.0054389704 = weight(_text_:h in 325) [ClassicSimilarity], result of:
              0.0054389704 = score(doc=325,freq=2.0), product of:
                0.0660481 = queryWeight, product of:
                  2.4844491 = idf(docFreq=10020, maxDocs=44218)
                  0.026584605 = queryNorm
                0.08234863 = fieldWeight in 325, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  2.4844491 = idf(docFreq=10020, maxDocs=44218)
                  0.0234375 = fieldNorm(doc=325)
          0.5 = coord(1/2)
        0.0030995563 = weight(_text_:a in 325) [ClassicSimilarity], result of:
          0.0030995563 = score(doc=325,freq=14.0), product of:
            0.030653298 = queryWeight, product of:
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.026584605 = queryNorm
            0.10111657 = fieldWeight in 325, product of:
              3.7416575 = tf(freq=14.0), with freq of:
                14.0 = termFreq=14.0
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.0234375 = fieldNorm(doc=325)
        0.009655623 = weight(_text_:r in 325) [ClassicSimilarity], result of:
          0.009655623 = score(doc=325,freq=2.0), product of:
            0.088001914 = queryWeight, product of:
              3.3102584 = idf(docFreq=4387, maxDocs=44218)
              0.026584605 = queryNorm
            0.1097206 = fieldWeight in 325, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.3102584 = idf(docFreq=4387, maxDocs=44218)
              0.0234375 = fieldNorm(doc=325)
        0.0020832212 = weight(_text_:s in 325) [ClassicSimilarity], result of:
          0.0020832212 = score(doc=325,freq=8.0), product of:
            0.028903782 = queryWeight, product of:
              1.0872376 = idf(docFreq=40523, maxDocs=44218)
              0.026584605 = queryNorm
            0.072074346 = fieldWeight in 325, product of:
              2.828427 = tf(freq=8.0), with freq of:
                8.0 = termFreq=8.0
              1.0872376 = idf(docFreq=40523, maxDocs=44218)
              0.0234375 = fieldNorm(doc=325)
      0.36363637 = coord(4/11)
    
    Abstract
    Classification is the essential first step in science. The study of science, as well as the practice of science, will thus benefit from a detailed classification of different types of science. In this book, science - defined broadly to include the social sciences and humanities - is first unpacked into its constituent elements: the phenomena studied, the data used, the theories employed, the methods applied, and the practices of scientists. These five elements are then classified in turn. Notably, the classifications of both theory types and methods allow the key strengths and weaknesses of different theories and methods to be readily discerned and compared. Connections across classifications are explored: should certain theories or phenomena be investigated only with certain methods? What is the proper function and form of scientific paradigms? Are certain common errors and biases in scientific practice associated with particular phenomena, data, theories, or methods? The classifications point to several ways of improving both specialized and interdisciplinary research and teaching, and especially of enhancing communication across communities of scholars. The classifications also support a superior system of document classification that would allow searches by theory and method used as well as causal links investigated.
    Content
    Inhalt: - Chapter 1: Classifying Science: 1.1. A Simple Classificatory Guideline - 1.2. The First "Cut" (and Plan of Work) - 1.3. Some Preliminaries - Chapter 2: Classifying Phenomena and Data: 2.1. Classifying Phenomena - 2.2. Classifying Data - Chapter 3: Classifying Theory: 3.1. Typology of Theory - 3.2. What Is a Theory? - 3.3. Evaluating Theories - 3.4. Types of Theory and the Five Types of Causation - 3.5. Classifying Individual Theories - 3.6. Advantages of a Typology of Theory - Chapter 4: Classifying Method: 4.1. Classifying Methods - 4.2. Typology of Strengths and Weaknesses of Methods - 4.3. Qualitative Versus Quantitative Analysis Revisited - 4.4. Evaluating Methods - 4.5. Classifying Particular Methods Within The Typology - 4.6. Advantages of a Typology of Methods - Chapter 5: Classifying Practice: 5.1. Errors and Biases in ScienceChapter - 5.2. Typology of (Critiques of) Scientific Practice - 5.3. Utilizing This Classification - 5.4. The Five Types of Ethical Analysis - Chapter 6: Drawing Connections Across These Classifications: 6.1. Theory and Method - 6.2. Theory (Method) and Phenomena (Data) - 6.3. Better Paradigms - 6.4. Critiques of Scientific Practice: Are They Correlated with Other Classifications? - Chapter 7: Classifying Scientific Documents: 7.1. Faceted or Enumerative? - 7.2. Classifying By Phenomena Studied - 7.3. Classifying By Theory Used - 7.4. Classifying By Method Used - 7.5 Links Among Subjects - 7.6. Type of Work, Language, and More - 7.7. Critiques of Scientific Practice - 7.8. Classifying Philosophy - 7.9. Evaluating the System - Chapter 8: Concluding Remarks: 8.1. The Classifications - 8.2. Advantages of These Various Classifications - 8.3. Drawing Connections Across Classifications - 8.4. Golden Mean Arguments - 8.5. Why Should Science Be Believed? - 8.6. How Can Science Be Improved? - 8.7. How Should Science Be Taught?
    Footnote
    Rez. in: KO 32(2005) no.2, S.93-95 (H. Albrechtsen): "The book deals with mapping of the structures and contents of sciences, defined broadly to include the social sciences and the humanities. According to the author, the study of science, as well as the practice of science, could benefit from a detailed classification of different types of science. The book defines five universal constituents of the sciences: phenomena, data, theories, methods and practice. For each of these constituents, the author poses five questions, in the well-known 5W format: Who, What, Where, When, Why? - with the addition of the question How? (Szostak 2003). Two objectives of the author's endeavor stand out: 1) decision support for university curriculum development across disciplines and decision support for university students at advanced levels of education in selection of appropriate courses for their projects and to support cross-disciplinary inquiry for researchers and students; 2) decision support for researchers and students in scientific inquiry across disciplines, methods and theories. The main prospective audience of this book is university curriculum developers, university students and researchers, in that order of priority. The heart of the book is the chapters unfolding the author's ideas about how to classify phenomena and data, theory, method and practice, by use of the 5W inquiry model. . . .
    Weitere Rez. in: JASIST 57(2006) no.14, S.1977-1978 (Y. Su); KO 39(2012) no.4, S.300-303 (M.J. Fox)
    Pages
    286 S
  17. Lin, W.-Y.C.: ¬The concept and applications of faceted classifications (2006) 0.01
    0.005538839 = product of:
      0.020309076 = sum of:
        0.0031240587 = weight(_text_:a in 5083) [ClassicSimilarity], result of:
          0.0031240587 = score(doc=5083,freq=2.0), product of:
            0.030653298 = queryWeight, product of:
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.026584605 = queryNorm
            0.10191591 = fieldWeight in 5083, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.0625 = fieldNorm(doc=5083)
        0.0027776284 = weight(_text_:s in 5083) [ClassicSimilarity], result of:
          0.0027776284 = score(doc=5083,freq=2.0), product of:
            0.028903782 = queryWeight, product of:
              1.0872376 = idf(docFreq=40523, maxDocs=44218)
              0.026584605 = queryNorm
            0.09609913 = fieldWeight in 5083, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.0872376 = idf(docFreq=40523, maxDocs=44218)
              0.0625 = fieldNorm(doc=5083)
        0.014407388 = product of:
          0.028814776 = sum of:
            0.028814776 = weight(_text_:22 in 5083) [ClassicSimilarity], result of:
              0.028814776 = score(doc=5083,freq=2.0), product of:
                0.09309476 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.026584605 = queryNorm
                0.30952093 = fieldWeight in 5083, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0625 = fieldNorm(doc=5083)
          0.5 = coord(1/2)
      0.27272728 = coord(3/11)
    
    Date
    27. 5.2007 22:19:35
    Source
    Journal of educational media and library sciences. 47(2006) no.2, S.153-171
    Type
    a
  18. Olson, H.A.: Sameness and difference : a cultural foundation of classification (2001) 0.01
    0.005392238 = product of:
      0.019771539 = sum of:
        0.0047346503 = weight(_text_:a in 166) [ClassicSimilarity], result of:
          0.0047346503 = score(doc=166,freq=6.0), product of:
            0.030653298 = queryWeight, product of:
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.026584605 = queryNorm
            0.1544581 = fieldWeight in 166, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.0546875 = fieldNorm(doc=166)
        0.0024304248 = weight(_text_:s in 166) [ClassicSimilarity], result of:
          0.0024304248 = score(doc=166,freq=2.0), product of:
            0.028903782 = queryWeight, product of:
              1.0872376 = idf(docFreq=40523, maxDocs=44218)
              0.026584605 = queryNorm
            0.08408674 = fieldWeight in 166, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.0872376 = idf(docFreq=40523, maxDocs=44218)
              0.0546875 = fieldNorm(doc=166)
        0.012606464 = product of:
          0.025212929 = sum of:
            0.025212929 = weight(_text_:22 in 166) [ClassicSimilarity], result of:
              0.025212929 = score(doc=166,freq=2.0), product of:
                0.09309476 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.026584605 = queryNorm
                0.2708308 = fieldWeight in 166, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=166)
          0.5 = coord(1/2)
      0.27272728 = coord(3/11)
    
    Abstract
    The idea of sameness is used to gather material in classifications. However, it is also used to separate what is different. Sameness and difference as guiding principles of classification seem obvious but are actually fundamental characteristics specifically related to Western culture. Sameness is not a singular factor, but has the potential to represent multiple characteristics or facets. This article explores the ramifications of which characteristics are used to define classifications and in what order. It explains the primacy of division by discipline, its origins in Western philosophy, and the cultural specificity that results. The Dewey Decimal Classification is used as an example throughout.
    Date
    10. 9.2000 17:38:22
    Source
    Library resources and technical services. 45(2001) no.3, S.115-122
    Type
    a
  19. Broughton, V.: Essential classification (2004) 0.01
    0.0053132316 = product of:
      0.014611387 = sum of:
        0.0018129903 = product of:
          0.0036259806 = sum of:
            0.0036259806 = weight(_text_:h in 2824) [ClassicSimilarity], result of:
              0.0036259806 = score(doc=2824,freq=2.0), product of:
                0.0660481 = queryWeight, product of:
                  2.4844491 = idf(docFreq=10020, maxDocs=44218)
                  0.026584605 = queryNorm
                0.05489909 = fieldWeight in 2824, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  2.4844491 = idf(docFreq=10020, maxDocs=44218)
                  0.015625 = fieldNorm(doc=2824)
          0.5 = coord(1/2)
        0.0052970997 = weight(_text_:a in 2824) [ClassicSimilarity], result of:
          0.0052970997 = score(doc=2824,freq=92.0), product of:
            0.030653298 = queryWeight, product of:
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.026584605 = queryNorm
            0.17280684 = fieldWeight in 2824, product of:
              9.591663 = tf(freq=92.0), with freq of:
                92.0 = termFreq=92.0
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.015625 = fieldNorm(doc=2824)
        0.0012027485 = weight(_text_:s in 2824) [ClassicSimilarity], result of:
          0.0012027485 = score(doc=2824,freq=6.0), product of:
            0.028903782 = queryWeight, product of:
              1.0872376 = idf(docFreq=40523, maxDocs=44218)
              0.026584605 = queryNorm
            0.04161215 = fieldWeight in 2824, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              1.0872376 = idf(docFreq=40523, maxDocs=44218)
              0.015625 = fieldNorm(doc=2824)
        0.0062985485 = weight(_text_:u in 2824) [ClassicSimilarity], result of:
          0.0062985485 = score(doc=2824,freq=2.0), product of:
            0.08704981 = queryWeight, product of:
              3.2744443 = idf(docFreq=4547, maxDocs=44218)
              0.026584605 = queryNorm
            0.07235568 = fieldWeight in 2824, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.2744443 = idf(docFreq=4547, maxDocs=44218)
              0.015625 = fieldNorm(doc=2824)
      0.36363637 = coord(4/11)
    
    Abstract
    Classification is a crucial skill for all information workers involved in organizing collections, but it is a difficult concept to grasp - and is even more difficult to put into practice. Essential Classification offers full guidance an how to go about classifying a document from scratch. This much-needed text leads the novice classifier step by step through the basics of subject cataloguing, with an emphasis an practical document analysis and classification. It deals with fundamental questions of the purpose of classification in different situations, and the needs and expectations of end users. The novice is introduced to the ways in which document content can be assessed, and how this can best be expressed for translation into the language of specific indexing and classification systems. The characteristics of the major general schemes of classification are discussed, together with their suitability for different classification needs.
    Footnote
    Rez. in: KO 32(2005) no.1, S.47-49 (M. Hudon): "Vanda Broughton's Essential Classification is the most recent addition to a very small set of classification textbooks published over the past few years. The book's 21 chapters are based very closely an the cataloguing and classification module at the School of Library, Archive, and Information studies at University College, London. The author's main objective is clear: this is "first and foremost a book about how to classify. The emphasis throughout is an the activity of classification rather than the theory, the practical problems of the organization of collections, and the needs of the users" (p. 1). This is not a theoretical work, but a basic course in classification and classification scheme application. For this reviewer, who also teaches "Classification 101," this is also a fascinating peek into how a colleague organizes content and structures her course. "Classification is everywhere" (p. 1): the first sentence of this book is also one of the first statements in my own course, and Professor Broughton's metaphors - the supermarket, canned peas, flowers, etc. - are those that are used by our colleagues around the world. The combination of tone, writing style and content display are reader-friendly; they are in fact what make this book remarkable and what distinguishes it from more "formal" textbooks, such as The Organization of Information, the superb text written and recently updated (2004) by Professor Arlene Taylor (2nd ed. Westport, Conn.: Libraries Unlimited, 2004). Reading Essential Classification, at times, feels like being in a classroom, facing a teacher who assures you that "you don't need to worry about this at this stage" (p. 104), and reassures you that, although you now speed a long time looking for things, "you will soon speed up when you get to know the scheme better" (p. 137). This teacher uses redundancy in a productive fashion, and she is not afraid to express her own opinions ("I think that if these concepts are helpful they may be used" (p. 245); "It's annoying that LCC doesn't provide clearer instructions, but if you keep your head and take them one step at a time [i.e. the tables] they're fairly straightforward" (p. 174)). Chapters 1 to 7 present the essential theoretical concepts relating to knowledge organization and to bibliographic classification. The author is adept at making and explaining distinctions: known-item retrieval versus subject retrieval, personal versus public/shared/official classification systems, scientific versus folk classification systems, object versus aspect classification systems, semantic versus syntactic relationships, and so on. Chapters 8 and 9 discuss the practice of classification, through content analysis and subject description. A short discussion of difficult subjects, namely the treatment of unique concepts (persons, places, etc.) as subjects seems a little advanced for a beginners' class.
    In Chapter 10, "Controlled indexing languages," Professor Broughton states that a classification scheme is truly a language "since it permits communication and the exchange of information" (p. 89), a Statement with which this reviewer wholly agrees. Chapter 11, however, "Word-based approaches to retrieval," moves us to a different field altogether, offering only a narrow view of the whole world of controlled indexing languages such as thesauri, and presenting disconnected discussions of alphabetical filing, form and structure of subject headings, modern developments in alphabetical subject indexing, etc. Chapters 12 and 13 focus an the Library of Congress Subject Headings (LCSH), without even a passing reference to existing subject headings lists in other languages (French RAMEAU, German SWK, etc.). If it is not surprising to see a section on subject headings in a book on classification, the two subjects being taught together in most library schools, the location of this section in the middle of this particular book is more difficult to understand. Chapter 14 brings the reader back to classification, for a discussion of essentials of classification scheme application. The following five chapters present in turn each one of the three major and currently used bibliographic classification schemes, in order of increasing complexity and difficulty of application. The Library of Congress Classification (LCC), the easiest to use, is covered in chapters 15 and 16. The Dewey Decimal Classification (DDC) deserves only a one-chapter treatment (Chapter 17), while the functionalities of the Universal Decimal Classification (UDC), which Professor Broughton knows extremely well, are described in chapters 18 and 19. Chapter 20 is a general discussion of faceted classification, on par with the first seven chapters for its theoretical content. Chapter 21, an interesting last chapter on managing classification, addresses down-to-earth matters such as the cost of classification, the need for re-classification, advantages and disadvantages of using print versions or e-versions of classification schemes, choice of classification scheme, general versus special scheme. But although the questions are interesting, the chapter provides only a very general overview of what appropriate answers might be. To facilitate reading and learning, summaries are strategically located at various places in the text, and always before switching to a related subject. Professor Broughton's choice of examples is always interesting, and sometimes even entertaining (see for example "Inside out: A brief history of underwear" (p. 71)). With many examples, however, and particularly those that appear in the five chapters an classification scheme applications, the novice reader would have benefited from more detailed explanations. On page 221, for example, "The history and social influence of the potato" results in this analysis of concepts: Potato - Sociology, and in the UDC class number: 635.21:316. What happened to the "history" aspect? Some examples are not very convincing: in Animals RT Reproduction and Art RT Reproduction (p. 102), the associative relationship is not appropriate as it is used to distinguish homographs and would do nothing to help either the indexer or the user at the retrieval stage.
    Essential Classification is also an exercise book. Indeed, it contains a number of practical exercises and activities in every chapter, along with suggested answers. Unfortunately, the answers are too often provided without the justifications and explanations that students would no doubt demand. The author has taken great care to explain all technical terms in her text, but formal definitions are also gathered in an extensive 172-term Glossary; appropriately, these terms appear in bold type the first time they are used in the text. A short, very short, annotated bibliography of standard classification textbooks and of manuals for the use of major classification schemes is provided. A detailed 11-page index completes the set of learning aids which will be useful to an audience of students in their effort to grasp the basic concepts of the theory and the practice of document classification in a traditional environment. Essential Classification is a fine textbook. However, this reviewer deplores the fact that it presents only a very "traditional" view of classification, without much reference to newer environments such as the Internet where classification also manifests itself in various forms. In Essential Classification, books are always used as examples, and we have to take the author's word that traditional classification practices and tools can also be applied to other types of documents and elsewhere than in the traditional library. Vanda Broughton writes, for example, that "Subject headings can't be used for physical arrangement" (p. 101), but this is not entirely true. Subject headings can be used for physical arrangement of vertical files, for example, with each folder bearing a simple or complex heading which is then used for internal organization. And if it is true that subject headings cannot be reproduced an the spine of [physical] books (p. 93), the situation is certainly different an the World Wide Web where subject headings as metadata can be most useful in ordering a collection of hot links. The emphasis is also an the traditional paperbased, rather than an the electronic version of classification schemes, with excellent justifications of course. The reality is, however, that supporting organizations (LC, OCLC, etc.) are now providing great quality services online, and that updates are now available only in an electronic format and not anymore on paper. E-based versions of classification schemes could be safely ignored in a theoretical text, but they have to be described and explained in a textbook published in 2005. One last comment: Professor Broughton tends to use the same term, "classification" to represent the process (as in classification is grouping) and the tool (as in constructing a classification, using a classification, etc.). Even in the Glossary where classification is first well-defined as a process, and classification scheme as "a set of classes ...", the definition of classification scheme continues: "the classification consists of a vocabulary (...) and syntax..." (p. 296-297). Such an ambiguous use of the term classification seems unfortunate and unnecessarily confusing in an otherwise very good basic textbook an categorization of concepts and subjects, document organization and subject representation."
    Weitere Rez. in: ZfBB 53(2006) H.2, S.111-113 (W. Gödert)
    Pages
    324 S
    Theme
    Grundlagen u. Einführungen: Allgemeine Literatur
  20. Slavic, A.: On the nature and typology of documentary classifications and their use in a networked environment (2007) 0.00
    0.004793141 = product of:
      0.01757485 = sum of:
        0.0046860883 = weight(_text_:a in 780) [ClassicSimilarity], result of:
          0.0046860883 = score(doc=780,freq=8.0), product of:
            0.030653298 = queryWeight, product of:
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.026584605 = queryNorm
            0.15287387 = fieldWeight in 780, product of:
              2.828427 = tf(freq=8.0), with freq of:
                8.0 = termFreq=8.0
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.046875 = fieldNorm(doc=780)
        0.0020832212 = weight(_text_:s in 780) [ClassicSimilarity], result of:
          0.0020832212 = score(doc=780,freq=2.0), product of:
            0.028903782 = queryWeight, product of:
              1.0872376 = idf(docFreq=40523, maxDocs=44218)
              0.026584605 = queryNorm
            0.072074346 = fieldWeight in 780, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.0872376 = idf(docFreq=40523, maxDocs=44218)
              0.046875 = fieldNorm(doc=780)
        0.010805541 = product of:
          0.021611081 = sum of:
            0.021611081 = weight(_text_:22 in 780) [ClassicSimilarity], result of:
              0.021611081 = score(doc=780,freq=2.0), product of:
                0.09309476 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.026584605 = queryNorm
                0.23214069 = fieldWeight in 780, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046875 = fieldNorm(doc=780)
          0.5 = coord(1/2)
      0.27272728 = coord(3/11)
    
    Abstract
    Networked orientated standards for vocabulary publishing and exchange and proposals for terminological services and terminology registries will improve sharing and use of all knowledge organization systems in the networked information environment. This means that documentary classifications may also become more applicable for use outside their original domain of application. The paper summarises some characteristics common to documentary classifications and explains some terminological, functional and implementation aspects. The original purpose behind each classification scheme determines the functions that the vocabulary is designed to facilitate. These functions influence the structure, semantics and syntax, scheme coverage and format in which classification data are published and made available. The author suggests that attention should be paid to the differences between documentary classifications as these may determine their suitability for a certain purpose and may impose different requirements with respect to their use online. As we speak, many classifications are being created for knowledge organization and it may be important to promote expertise from the bibliographic domain with respect to building and using classification systems.
    Date
    22.12.2007 17:22:31
    Source
    El profesional de la información, 2007, noviembre-diciembre, v.16, no.6, S.580-589
    Type
    a

Languages

  • e 80
  • chi 1
  • i 1
  • More… Less…

Types

  • a 69
  • m 8
  • el 4
  • s 2
  • b 1
  • More… Less…