Search (22 results, page 1 of 2)

  • × author_ss:"Ding, Y."
  • × theme_ss:"Informetrie"
  1. Ding, Y.; Chowdhury, G.C.; Foo, S.: Bibliometric cartography of information retrieval research by using co-word analysis (2001) 0.01
    0.0050479556 = product of:
      0.020191822 = sum of:
        0.020191822 = weight(_text_:information in 6487) [ClassicSimilarity], result of:
          0.020191822 = score(doc=6487,freq=4.0), product of:
            0.06134496 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.034944877 = queryNorm
            0.3291521 = fieldWeight in 6487, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.09375 = fieldNorm(doc=6487)
      0.25 = coord(1/4)
    
    Source
    Information processing and management. 37(2001) no.6, S.817-842
  2. Ding, Y.: Visualization of intellectual structure in information retrieval : author cocitation analysis (1998) 0.00
    0.004164351 = product of:
      0.016657405 = sum of:
        0.016657405 = weight(_text_:information in 2792) [ClassicSimilarity], result of:
          0.016657405 = score(doc=2792,freq=8.0), product of:
            0.06134496 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.034944877 = queryNorm
            0.27153665 = fieldWeight in 2792, product of:
              2.828427 = tf(freq=8.0), with freq of:
                8.0 = termFreq=8.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.0546875 = fieldNorm(doc=2792)
      0.25 = coord(1/4)
    
    Abstract
    Reports results of a cocitation analysis study from the international retrieval research field from 1987 to 1997. Data was taken from Social SciSearch, via Dialog, and the top 40 authors were submitted to author cocitation analysis to yield the intellectual structure of information retrieval. The resulting multidimensional scaling map revealed: identifiable author groups for information retrieval; location of these groups with respect to each other; extend of centrality and peripherality of authors within groups, proximities of authors within groups and across group boundaries; and the meaning of the axes of the map. Factor analysis was used to reveal the extent of the authors' research areas and statistical routines included: ALSCAL; clustering analysis and factor analysis
    Source
    International forum on information and documentation. 23(1998) no.1, S.25-36
  3. Sugimoto, C.R.; Li, D.; Russell, T.G.; Finlay, S.C.; Ding, Y.: ¬The shifting sands of disciplinary development : analyzing North American Library and Information Science dissertations using latent Dirichlet allocation (2011) 0.00
    0.0039349417 = product of:
      0.015739767 = sum of:
        0.015739767 = weight(_text_:information in 4143) [ClassicSimilarity], result of:
          0.015739767 = score(doc=4143,freq=14.0), product of:
            0.06134496 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.034944877 = queryNorm
            0.256578 = fieldWeight in 4143, product of:
              3.7416575 = tf(freq=14.0), with freq of:
                14.0 = termFreq=14.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.0390625 = fieldNorm(doc=4143)
      0.25 = coord(1/4)
    
    Abstract
    This work identifies changes in dominant topics in library and information science (LIS) over time, by analyzing the 3,121 doctoral dissertations completed between 1930 and 2009 at North American Library and Information Science programs. The authors utilize latent Dirichlet allocation (LDA) to identify latent topics diachronically and to identify representative dissertations of those topics. The findings indicate that the main topics in LIS have changed substantially from those in the initial period (1930-1969) to the present (2000-2009). However, some themes occurred in multiple periods, representing core areas of the field: library history occurred in the first two periods; citation analysis in the second and third periods; and information-seeking behavior in the fourth and last period. Two topics occurred in three of the five periods: information retrieval and information use. One of the notable changes in the topics was the diminishing use of the word library (and related terms). This has implications for the provision of doctoral education in LIS. This work is compared to other earlier analyses and provides validation for the use of LDA in topic analysis of a discipline.
    Source
    Journal of the American Society for Information Science and Technology. 62(2011) no.1, S.185-204
  4. Milojevic, S.; Sugimoto, C.R.; Yan, E.; Ding, Y.: ¬The cognitive structure of Library and Information Science : analysis of article title words (2011) 0.00
    0.0039349417 = product of:
      0.015739767 = sum of:
        0.015739767 = weight(_text_:information in 4608) [ClassicSimilarity], result of:
          0.015739767 = score(doc=4608,freq=14.0), product of:
            0.06134496 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.034944877 = queryNorm
            0.256578 = fieldWeight in 4608, product of:
              3.7416575 = tf(freq=14.0), with freq of:
                14.0 = termFreq=14.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.0390625 = fieldNorm(doc=4608)
      0.25 = coord(1/4)
    
    Abstract
    This study comprises a suite of analyses of words in article titles in order to reveal the cognitive structure of Library and Information Science (LIS). The use of title words to elucidate the cognitive structure of LIS has been relatively neglected. The present study addresses this gap by performing (a) co-word analysis and hierarchical clustering, (b) multidimensional scaling, and (c) determination of trends in usage of terms. The study is based on 10,344 articles published between 1988 and 2007 in 16 LIS journals. Methodologically, novel aspects of this study are: (a) its large scale, (b) removal of non-specific title words based on the "word concentration" measure (c) identification of the most frequent terms that include both single words and phrases, and (d) presentation of the relative frequencies of terms using "heatmaps". Conceptually, our analysis reveals that LIS consists of three main branches: the traditionally recognized library-related and information-related branches, plus an equally distinct bibliometrics/scientometrics branch. The three branches focus on: libraries, information, and science, respectively. In addition, our study identifies substructures within each branch. We also tentatively identify "information seeking behavior" as a branch that is establishing itself separate from the three main branches. Furthermore, we find that cognitive concepts in LIS evolve continuously, with no stasis since 1992. The most rapid development occurred between 1998 and 2001, influenced by the increased focus on the Internet. The change in the cognitive landscape is found to be driven by the emergence of new information technologies, and the retirement of old ones.
    Source
    Journal of the American Society for Information Science and Technology. 62(2011) no.10, S.1933-1953
  5. He, B.; Ding, Y.; Ni, C.: Mining enriched contextual information of scientific collaboration : a meso perspective (2011) 0.00
    0.0036430482 = product of:
      0.014572193 = sum of:
        0.014572193 = weight(_text_:information in 4444) [ClassicSimilarity], result of:
          0.014572193 = score(doc=4444,freq=12.0), product of:
            0.06134496 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.034944877 = queryNorm
            0.23754507 = fieldWeight in 4444, product of:
              3.4641016 = tf(freq=12.0), with freq of:
                12.0 = termFreq=12.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.0390625 = fieldNorm(doc=4444)
      0.25 = coord(1/4)
    
    Abstract
    Studying scientific collaboration using coauthorship networks has attracted much attention in recent years. How and in what context two authors collaborate remain among the major questions. Previous studies, however, have focused on either exploring the global topology of coauthorship networks (macro perspective) or ranking the impact of individual authors (micro perspective). Neither of them has provided information on the context of the collaboration between two specific authors, which may potentially imply rich socioeconomic, disciplinary, and institutional information on collaboration. Different from the macro perspective and micro perspective, this article proposes a novel method (meso perspective) to analyze scientific collaboration, in which a contextual subgraph is extracted as the unit of analysis. A contextual subgraph is defined as a small subgraph of a large-scale coauthorship network that captures relationship and context between two coauthors. This method is applied to the field of library and information science. Topological properties of all the subgraphs in four time spans are investigated, including size, average degree, clustering coefficient, and network centralization. Results show that contextual subgprahs capture useful contextual information on two authors' collaboration.
    Source
    Journal of the American Society for Information Science and Technology. 62(2011) no.5, S.831-845
  6. Yan, E.; Ding, Y.: Weighted citation : an indicator of an article's prestige (2010) 0.00
    0.0033653039 = product of:
      0.013461215 = sum of:
        0.013461215 = weight(_text_:information in 3705) [ClassicSimilarity], result of:
          0.013461215 = score(doc=3705,freq=4.0), product of:
            0.06134496 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.034944877 = queryNorm
            0.21943474 = fieldWeight in 3705, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.0625 = fieldNorm(doc=3705)
      0.25 = coord(1/4)
    
    Abstract
    The authors propose using the technique of weighted citation to measure an article's prestige. The technique allocates a different weight to each reference by taking into account the impact of citing journals and citation time intervals. Weightedcitation captures prestige, whereas citation counts capture popularity. They compare the value variances for popularity and prestige for articles published in the Journal of the American Society for Information Science and Technology from 1998 to 2007, and find that the majority have comparable status.
    Source
    Journal of the American Society for Information Science and Technology. 61(2010) no.8, S.1635-1643
  7. Ding, Y.: Scholarly communication and bibliometrics : Part 1: The scholarly communication model: literature review (1998) 0.00
    0.0029745363 = product of:
      0.011898145 = sum of:
        0.011898145 = weight(_text_:information in 3995) [ClassicSimilarity], result of:
          0.011898145 = score(doc=3995,freq=2.0), product of:
            0.06134496 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.034944877 = queryNorm
            0.19395474 = fieldWeight in 3995, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.078125 = fieldNorm(doc=3995)
      0.25 = coord(1/4)
    
    Source
    International forum on information and documentation. 23(1998) no.2, S.20-29
  8. Yan, E.; Ding, Y.: Applying centrality measures to impact analysis : a coauthorship network analysis (2009) 0.00
    0.0029446408 = product of:
      0.011778563 = sum of:
        0.011778563 = weight(_text_:information in 3083) [ClassicSimilarity], result of:
          0.011778563 = score(doc=3083,freq=4.0), product of:
            0.06134496 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.034944877 = queryNorm
            0.1920054 = fieldWeight in 3083, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.0546875 = fieldNorm(doc=3083)
      0.25 = coord(1/4)
    
    Abstract
    Many studies on coauthorship networks focus on network topology and network statistical mechanics. This article takes a different approach by studying micro-level network properties with the aim of applying centrality measures to impact analysis. Using coauthorship data from 16 journals in the field of library and information science (LIS) with a time span of 20 years (1988-2007), we construct an evolving coauthorship network and calculate four centrality measures (closeness centrality, betweenness centrality, degree centrality, and PageRank) for authors in this network. We find that the four centrality measures are significantly correlated with citation counts. We also discuss the usability of centrality measures in author ranking and suggest that centrality measures can be useful indicators for impact analysis.
    Source
    Journal of the American Society for Information Science and Technology. 60(2009) no.10, S.2107-2118
  9. Ding, Y.: Applying weighted PageRank to author citation networks (2011) 0.00
    0.0029446408 = product of:
      0.011778563 = sum of:
        0.011778563 = weight(_text_:information in 4188) [ClassicSimilarity], result of:
          0.011778563 = score(doc=4188,freq=4.0), product of:
            0.06134496 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.034944877 = queryNorm
            0.1920054 = fieldWeight in 4188, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.0546875 = fieldNorm(doc=4188)
      0.25 = coord(1/4)
    
    Abstract
    This article aims to identify whether different weighted PageRank algorithms can be applied to author citation networks to measure the popularity and prestige of a scholar from a citation perspective. Information retrieval (IR) was selected as a test field and data from 1956-2008 were collected from Web of Science. Weighted PageRank with citation and publication as weighted vectors were calculated on author citation networks. The results indicate that both popularity rank and prestige rank were highly correlated with the weighted PageRank. Principal component analysis was conducted to detect relationships among these different measures. For capturing prize winners within the IR field, prestige rank outperformed all the other measures
    Source
    Journal of the American Society for Information Science and Technology. 62(2011) no.2, S.236-245
  10. Ding, Y.; Yan, E.; Frazho, A.; Caverlee, J.: PageRank for ranking authors in co-citation networks (2009) 0.00
    0.0025239778 = product of:
      0.010095911 = sum of:
        0.010095911 = weight(_text_:information in 3161) [ClassicSimilarity], result of:
          0.010095911 = score(doc=3161,freq=4.0), product of:
            0.06134496 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.034944877 = queryNorm
            0.16457605 = fieldWeight in 3161, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.046875 = fieldNorm(doc=3161)
      0.25 = coord(1/4)
    
    Abstract
    This paper studies how varied damping factors in the PageRank algorithm influence the ranking of authors and proposes weighted PageRank algorithms. We selected the 108 most highly cited authors in the information retrieval (IR) area from the 1970s to 2008 to form the author co-citation network. We calculated the ranks of these 108 authors based on PageRank with the damping factor ranging from 0.05 to 0.95. In order to test the relationship between different measures, we compared PageRank and weighted PageRank results with the citation ranking, h-index, and centrality measures. We found that in our author co-citation network, citation rank is highly correlated with PageRank with different damping factors and also with different weighted PageRank algorithms; citation rank and PageRank are not significantly correlated with centrality measures; and h-index rank does not significantly correlate with centrality measures but does significantly correlate with other measures. The key factors that have impact on the PageRank of authors in the author co-citation network are being co-cited with important authors.
    Source
    Journal of the American Society for Information Science and Technology. 60(2009) no.11, S.2229-2243
  11. Ni, C.; Shaw, D.; Lind, S.M.; Ding, Y.: Journal impact and proximity : an assessment using bibliographic features (2013) 0.00
    0.0025239778 = product of:
      0.010095911 = sum of:
        0.010095911 = weight(_text_:information in 686) [ClassicSimilarity], result of:
          0.010095911 = score(doc=686,freq=4.0), product of:
            0.06134496 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.034944877 = queryNorm
            0.16457605 = fieldWeight in 686, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.046875 = fieldNorm(doc=686)
      0.25 = coord(1/4)
    
    Abstract
    Journals in the Information Science & Library Science category of Journal Citation Reports (JCR) were compared using both bibliometric and bibliographic features. Data collected covered journal impact factor (JIF), number of issues per year, number of authors per article, longevity, editorial board membership, frequency of publication, number of databases indexing the journal, number of aggregators providing full-text access, country of publication, JCR categories, Dewey decimal classification, and journal statement of scope. Three features significantly correlated with JIF: number of editorial board members and number of JCR categories in which a journal is listed correlated positively; journal longevity correlated negatively with JIF. Coword analysis of journal descriptions provided a proximity clustering of journals, which differed considerably from the clusters based on editorial board membership. Finally, a multiple linear regression model was built to predict the JIF based on all the collected bibliographic features.
    Source
    Journal of the American Society for Information Science and Technology. 64(2013) no.4, S.802-817
  12. Yan, E.; Ding, Y.: Discovering author impact : a PageRank perspective (2011) 0.00
    0.002379629 = product of:
      0.009518516 = sum of:
        0.009518516 = weight(_text_:information in 2704) [ClassicSimilarity], result of:
          0.009518516 = score(doc=2704,freq=2.0), product of:
            0.06134496 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.034944877 = queryNorm
            0.1551638 = fieldWeight in 2704, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.0625 = fieldNorm(doc=2704)
      0.25 = coord(1/4)
    
    Source
    Information processing and management. 47(2011) no.1, S.125-134
  13. Ding, Y.; Yan, E.: Scholarly network similarities : how bibliographic coupling networks, citation networks, cocitation networks, topical networks, coauthorship networks, and coword networks relate to each other (2012) 0.00
    0.0017847219 = product of:
      0.0071388874 = sum of:
        0.0071388874 = weight(_text_:information in 274) [ClassicSimilarity], result of:
          0.0071388874 = score(doc=274,freq=2.0), product of:
            0.06134496 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.034944877 = queryNorm
            0.116372846 = fieldWeight in 274, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.046875 = fieldNorm(doc=274)
      0.25 = coord(1/4)
    
    Source
    Journal of the American Society for Information Science and Technology. 63(2012) no.7, S.1313-1326
  14. Song, M.; Kim, S.Y.; Zhang, G.; Ding, Y.; Chambers, T.: Productivity and influence in bioinformatics : a bibliometric analysis using PubMed central (2014) 0.00
    0.0017847219 = product of:
      0.0071388874 = sum of:
        0.0071388874 = weight(_text_:information in 1202) [ClassicSimilarity], result of:
          0.0071388874 = score(doc=1202,freq=2.0), product of:
            0.06134496 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.034944877 = queryNorm
            0.116372846 = fieldWeight in 1202, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.046875 = fieldNorm(doc=1202)
      0.25 = coord(1/4)
    
    Source
    Journal of the Association for Information Science and Technology. 65(2014) no.2, S.352-371
  15. Zhang, C.; Bu, Y.; Ding, Y.; Xu, J.: Understanding scientific collaboration : homophily, transitivity, and preferential attachment (2018) 0.00
    0.0017847219 = product of:
      0.0071388874 = sum of:
        0.0071388874 = weight(_text_:information in 4011) [ClassicSimilarity], result of:
          0.0071388874 = score(doc=4011,freq=2.0), product of:
            0.06134496 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.034944877 = queryNorm
            0.116372846 = fieldWeight in 4011, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.046875 = fieldNorm(doc=4011)
      0.25 = coord(1/4)
    
    Source
    Journal of the Association for Information Science and Technology. 69(2018) no.1, S.72-86
  16. Zhai, Y; Ding, Y.; Wang, F.: Measuring the diffusion of an innovation : a citation analysis (2018) 0.00
    0.0017847219 = product of:
      0.0071388874 = sum of:
        0.0071388874 = weight(_text_:information in 4116) [ClassicSimilarity], result of:
          0.0071388874 = score(doc=4116,freq=2.0), product of:
            0.06134496 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.034944877 = queryNorm
            0.116372846 = fieldWeight in 4116, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.046875 = fieldNorm(doc=4116)
      0.25 = coord(1/4)
    
    Source
    Journal of the Association for Information Science and Technology. 69(2018) no.3, S.368-379
  17. Li, R.; Chambers, T.; Ding, Y.; Zhang, G.; Meng, L.: Patent citation analysis : calculating science linkage based on citing motivation (2014) 0.00
    0.0014872681 = product of:
      0.0059490725 = sum of:
        0.0059490725 = weight(_text_:information in 1257) [ClassicSimilarity], result of:
          0.0059490725 = score(doc=1257,freq=2.0), product of:
            0.06134496 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.034944877 = queryNorm
            0.09697737 = fieldWeight in 1257, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.0390625 = fieldNorm(doc=1257)
      0.25 = coord(1/4)
    
    Source
    Journal of the Association for Information Science and Technology. 65(2014) no.5, S.1007-1017
  18. Bu, Y.; Ding, Y.; Xu, J.; Liang, X.; Gao, G.; Zhao, Y.: Understanding success through the diversity of collaborators and the milestone of career (2018) 0.00
    0.0014872681 = product of:
      0.0059490725 = sum of:
        0.0059490725 = weight(_text_:information in 4012) [ClassicSimilarity], result of:
          0.0059490725 = score(doc=4012,freq=2.0), product of:
            0.06134496 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.034944877 = queryNorm
            0.09697737 = fieldWeight in 4012, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.0390625 = fieldNorm(doc=4012)
      0.25 = coord(1/4)
    
    Source
    Journal of the Association for Information Science and Technology. 69(2018) no.1, S.87-97
  19. Bu, Y.; Ding, Y.; Liang, X.; Murray, D.S.: Understanding persistent scientific collaboration (2018) 0.00
    0.0014872681 = product of:
      0.0059490725 = sum of:
        0.0059490725 = weight(_text_:information in 4176) [ClassicSimilarity], result of:
          0.0059490725 = score(doc=4176,freq=2.0), product of:
            0.06134496 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.034944877 = queryNorm
            0.09697737 = fieldWeight in 4176, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.0390625 = fieldNorm(doc=4176)
      0.25 = coord(1/4)
    
    Source
    Journal of the Association for Information Science and Technology. 69(2018) no.3, S.438-448
  20. Min, C.; Ding, Y.; Li, J.; Bu, Y.; Pei, L.; Sun, J.: Innovation or imitation : the diffusion of citations (2018) 0.00
    0.0014872681 = product of:
      0.0059490725 = sum of:
        0.0059490725 = weight(_text_:information in 4445) [ClassicSimilarity], result of:
          0.0059490725 = score(doc=4445,freq=2.0), product of:
            0.06134496 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.034944877 = queryNorm
            0.09697737 = fieldWeight in 4445, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.0390625 = fieldNorm(doc=4445)
      0.25 = coord(1/4)
    
    Source
    Journal of the Association for Information Science and Technology. 69(2018) no.10, S.1271-1282