Search (2 results, page 1 of 1)

  • × author_ss:"Ng, T.D."
  • × author_ss:"Chen, H."
  1. Chen, H.; Ng, T.D.; Martinez, J.; Schatz, B.R.: ¬A concept space approach to addressing the vocabulary problem in scientific information retrieval : an experiment on the Worm Community System (1997) 0.00
    0.0033256328 = product of:
      0.013302531 = sum of:
        0.013302531 = weight(_text_:information in 6492) [ClassicSimilarity], result of:
          0.013302531 = score(doc=6492,freq=10.0), product of:
            0.06134496 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.034944877 = queryNorm
            0.21684799 = fieldWeight in 6492, product of:
              3.1622777 = tf(freq=10.0), with freq of:
                10.0 = termFreq=10.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.0390625 = fieldNorm(doc=6492)
      0.25 = coord(1/4)
    
    Abstract
    This research presents an algorithmic approach to addressing the vocabulary problem in scientific information retrieval and information sharing, using the molecular biology domain as an example. We first present a literature review of cognitive studies related to the vocabulary problem and vocabulary-based search aids (thesauri) and then discuss techniques for building robust and domain-specific thesauri to assist in cross-domain scientific information retrieval. Using a variation of the automatic thesaurus generation techniques, which we refer to as the concept space approach, we recently conducted an experiment in the molecular biology domain in which we created a C. elegans worm thesaurus of 7.657 worm-specific terms and a Drosophila fly thesaurus of 15.626 terms. About 30% of these terms overlapped, which created vocabulary paths from one subject domain to the other. Based on a cognitve study of term association involving 4 biologists, we found that a large percentage (59,6-85,6%) of the terms suggested by the subjects were identified in the cojoined fly-worm thesaurus. However, we found only a small percentage (8,4-18,1%) of the associations suggested by the subjects in the thesaurus
    Source
    Journal of the American Society for Information Science. 48(1997) no.1, S.17-31
  2. Chen, H.; Martinez, J.; Kirchhoff, A.; Ng, T.D.; Schatz, B.R.: Alleviating search uncertainty through concept associations : automatic indexing, co-occurence analysis, and parallel computing (1998) 0.00
    0.0025239778 = product of:
      0.010095911 = sum of:
        0.010095911 = weight(_text_:information in 5202) [ClassicSimilarity], result of:
          0.010095911 = score(doc=5202,freq=4.0), product of:
            0.06134496 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.034944877 = queryNorm
            0.16457605 = fieldWeight in 5202, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.046875 = fieldNorm(doc=5202)
      0.25 = coord(1/4)
    
    Abstract
    In this article, we report research on an algorithmic approach to alleviating search uncertainty in a large information space. Grounded on object filtering, automatic indexing, and co-occurence analysis, we performed a large-scale experiment using a parallel supercomputer (SGI Power Challenge) to analyze 400.000+ abstracts in an INSPEC computer engineering collection. Two system-generated thesauri, one based on a combined object filtering and automatic indexing method, and the other based on automatic indexing only, were compaed with the human-generated INSPEC subject thesaurus. Our user evaluation revealed that the system-generated thesauri were better than the INSPEC thesaurus in 'concept recall', but in 'concept precision' the 3 thesauri were comparable. Our analysis also revealed that the terms suggested by the 3 thesauri were complementary and could be used to significantly increase 'variety' in search terms the thereby reduce search uncertainty
    Source
    Journal of the American Society for Information Science. 49(1998) no.3, S.206-216