Search (2 results, page 1 of 1)

  • × author_ss:"Ribeiro-Neto, B."
  • × theme_ss:"Automatisches Klassifizieren"
  1. Calado, P.; Cristo, M.; Gonçalves, M.A.; Moura, E.S. de; Ribeiro-Neto, B.; Ziviani, N.: Link-based similarity measures for the classification of Web documents (2006) 0.00
    0.0029745363 = product of:
      0.011898145 = sum of:
        0.011898145 = weight(_text_:information in 4921) [ClassicSimilarity], result of:
          0.011898145 = score(doc=4921,freq=8.0), product of:
            0.06134496 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.034944877 = queryNorm
            0.19395474 = fieldWeight in 4921, product of:
              2.828427 = tf(freq=8.0), with freq of:
                8.0 = termFreq=8.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.0390625 = fieldNorm(doc=4921)
      0.25 = coord(1/4)
    
    Abstract
    Traditional text-based document classifiers tend to perform poorly an the Web. Text in Web documents is usually noisy and often does not contain enough information to determine their topic. However, the Web provides a different source that can be useful to document classification: its hyperlink structure. In this work, the authors evaluate how the link structure of the Web can be used to determine a measure of similarity appropriate for document classification. They experiment with five different similarity measures and determine their adequacy for predicting the topic of a Web page. Tests performed an a Web directory Show that link information alone allows classifying documents with an average precision of 86%. Further, when combined with a traditional textbased classifier, precision increases to values of up to 90%, representing gains that range from 63 to 132% over the use of text-based classification alone. Because the measures proposed in this article are straightforward to compute, they provide a practical and effective solution for Web classification and related information retrieval tasks. Further, the authors provide an important set of guidelines an how link structure can be used effectively to classify Web documents.
    Source
    Journal of the American Society for Information Science and Technology. 57(2006) no.2, S.208-221
  2. Ribeiro-Neto, B.; Laender, A.H.F.; Lima, L.R.S. de: ¬An experimental study in automatically categorizing medical documents (2001) 0.00
    0.0021033147 = product of:
      0.008413259 = sum of:
        0.008413259 = weight(_text_:information in 5702) [ClassicSimilarity], result of:
          0.008413259 = score(doc=5702,freq=4.0), product of:
            0.06134496 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.034944877 = queryNorm
            0.13714671 = fieldWeight in 5702, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.0390625 = fieldNorm(doc=5702)
      0.25 = coord(1/4)
    
    Abstract
    In this article, we evaluate the retrieval performance of an algorithm that automatically categorizes medical documents. The categorization, which consists in assigning an International Code of Disease (ICD) to the medical document under examination, is based on wellknown information retrieval techniques. The algorithm, which we proposed, operates in a fully automatic mode and requires no supervision or training data. Using a database of 20,569 documents, we verify that the algorithm attains levels of average precision in the 70-80% range for category coding and in the 60-70% range for subcategory coding. We also carefully analyze the case of those documents whose categorization is not in accordance with the one provided by the human specialists. The vast majority of them represent cases that can only be fully categorized with the assistance of a human subject (because, for instance, they require specific knowledge of a given pathology). For a slim fraction of all documents (0.77% for category coding and 1.4% for subcategory coding), the algorithm makes assignments that are clearly incorrect. However, this fraction corresponds to only one-fourth of the mistakes made by the human specialists
    Source
    Journal of the American Society for Information Science and technology. 52(2001) no.5, S.391-401