Search (12 results, page 1 of 1)

  • × author_ss:"Thelwall, M."
  • × theme_ss:"Internet"
  • × theme_ss:"Informetrie"
  1. Thelwall, M.: Webometrics (2009) 0.00
    0.0039907596 = product of:
      0.015963038 = sum of:
        0.015963038 = weight(_text_:information in 3906) [ClassicSimilarity], result of:
          0.015963038 = score(doc=3906,freq=10.0), product of:
            0.06134496 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.034944877 = queryNorm
            0.2602176 = fieldWeight in 3906, product of:
              3.1622777 = tf(freq=10.0), with freq of:
                10.0 = termFreq=10.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.046875 = fieldNorm(doc=3906)
      0.25 = coord(1/4)
    
    Abstract
    Webometrics is an information science field concerned with measuring aspects of the World Wide Web (WWW) for a variety of information science research goals. It came into existence about five years after the Web was formed and has since grown to become a significant aspect of information science, at least in terms of published research. Although some webometrics research has focused on the structure or evolution of the Web itself or the performance of commercial search engines, most has used data from the Web to shed light on information provision or online communication in various contexts. Most prominently, techniques have been developed to track, map, and assess Web-based informal scholarly communication, for example, in terms of the hyperlinks between academic Web sites or the online impact of digital repositories. In addition, a range of nonacademic issues and groups of Web users have also been analyzed.
    Source
    Encyclopedia of library and information sciences. 3rd ed. Ed.: M.J. Bates
  2. Thelwall, M.; Vaughan, L.: Webometrics : an introduction to the special issue (2004) 0.00
    0.0033653039 = product of:
      0.013461215 = sum of:
        0.013461215 = weight(_text_:information in 2908) [ClassicSimilarity], result of:
          0.013461215 = score(doc=2908,freq=4.0), product of:
            0.06134496 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.034944877 = queryNorm
            0.21943474 = fieldWeight in 2908, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.0625 = fieldNorm(doc=2908)
      0.25 = coord(1/4)
    
    Abstract
    Webometrics, the quantitative study of Web phenomena, is a field encompassing contributions from information science, computer science, and statistical physics. Its methodology draws especially from bibliometrics. This special issue presents contributions that both push for ward the field and illustrate a wide range of webometric approaches.
    Source
    Journal of the American Society for Information Science and Technology. 55(2004) no.14, S.1213-1215
  3. Thelwall, M.; Wilkinson, D.: Finding similar academic Web sites with links, bibliometric couplings and colinks (2004) 0.00
    0.003091229 = product of:
      0.012364916 = sum of:
        0.012364916 = weight(_text_:information in 2571) [ClassicSimilarity], result of:
          0.012364916 = score(doc=2571,freq=6.0), product of:
            0.06134496 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.034944877 = queryNorm
            0.20156369 = fieldWeight in 2571, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.046875 = fieldNorm(doc=2571)
      0.25 = coord(1/4)
    
    Abstract
    A common task in both Webmetrics and Web information retrieval is to identify a set of Web pages or sites that are similar in content. In this paper we assess the extent to which links, colinks and couplings can be used to identify similar Web sites. As an experiment, a random sample of 500 pairs of domains from the UK academic Web were taken and human assessments of site similarity, based upon content type, were compared against ratings for the three concepts. The results show that using a combination of all three gives the highest probability of identifying similar sites, but surprisingly this was only a marginal improvement over using links alone. Another unexpected result was that high values for either colink counts or couplings were associated with only a small increased likelihood of similarity. The principal advantage of using couplings and colinks was found to be greater coverage in terms of a much larger number of pairs of sites being connected by these measures, instead of increased probability of similarity. In information retrieval terminology, this is improved recall rather than improved precision.
    Source
    Information processing and management. 40(2004) no.3, S.515-526
  4. Vaughan, L.; Thelwall, M.: Scholarly use of the Web : what are the key inducers of links to journal Web sites? (2003) 0.00
    0.0025760243 = product of:
      0.010304097 = sum of:
        0.010304097 = weight(_text_:information in 1236) [ClassicSimilarity], result of:
          0.010304097 = score(doc=1236,freq=6.0), product of:
            0.06134496 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.034944877 = queryNorm
            0.16796975 = fieldWeight in 1236, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.0390625 = fieldNorm(doc=1236)
      0.25 = coord(1/4)
    
    Abstract
    Web links have been studied by information scientists for at least six years but it is only in the past two that clear evidence has emerged to show that counts of links to scholarly Web spaces (universities and departments) can correlate significantly with research measures, giving some credence to their use for the investigation of scholarly communication. This paper reports an a study to investigate the factors that influence the creation of links to journal Web sites. An empirical approach is used: collecting data and testing for significant patterns. The specific questions addressed are whether site age and site content are inducers of links to a journal's Web site as measured by the ratio of link counts to Journal Impact Factors, two variables previously discovered to be related. A new methodology for data collection is also introduced that uses the Internet Archive to obtain an earliest known creation date for Web sites. The results show that both site age and site content are significant factors for the disciplines studied: library and information science, and law. Comparisons between the two fields also show disciplinary differences in Web site characteristics. Scholars and publishers should be particularly aware that richer content an a journal's Web site tends to generate links and thus the traffic to the site.
    Source
    Journal of the American Society for Information Science and technology. 54(2003) no.1, S.29-38
  5. Thelwall, M.; Ruschenburg, T.: Grundlagen und Forschungsfelder der Webometrie (2006) 0.00
    0.002379629 = product of:
      0.009518516 = sum of:
        0.009518516 = weight(_text_:information in 77) [ClassicSimilarity], result of:
          0.009518516 = score(doc=77,freq=2.0), product of:
            0.06134496 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.034944877 = queryNorm
            0.1551638 = fieldWeight in 77, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.0625 = fieldNorm(doc=77)
      0.25 = coord(1/4)
    
    Source
    Information - Wissenschaft und Praxis. 57(2006) H.8, S.401-406
  6. Thelwall, M.: Extracting macroscopic information from Web links (2001) 0.00
    0.0021033147 = product of:
      0.008413259 = sum of:
        0.008413259 = weight(_text_:information in 6851) [ClassicSimilarity], result of:
          0.008413259 = score(doc=6851,freq=4.0), product of:
            0.06134496 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.034944877 = queryNorm
            0.13714671 = fieldWeight in 6851, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.0390625 = fieldNorm(doc=6851)
      0.25 = coord(1/4)
    
    Source
    Journal of the American Society for Information Science and technology. 52(2001) no.13, S.1157-1168
  7. Thelwall, M.; Vaughan, L.; Björneborn, L.: Webometrics (2004) 0.00
    0.0021033147 = product of:
      0.008413259 = sum of:
        0.008413259 = weight(_text_:information in 4279) [ClassicSimilarity], result of:
          0.008413259 = score(doc=4279,freq=4.0), product of:
            0.06134496 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.034944877 = queryNorm
            0.13714671 = fieldWeight in 4279, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.0390625 = fieldNorm(doc=4279)
      0.25 = coord(1/4)
    
    Abstract
    Webometrics, the quantitative study of Web-related phenomena, emerged from the realization that methods originally designed for bibliometric analysis of scientific journal article citation patterns could be applied to the Web, with commercial search engines providing the raw data. Almind and Ingwersen (1997) defined the field and gave it its name. Other pioneers included Rodriguez Gairin (1997) and Aguillo (1998). Larson (1996) undertook exploratory link structure analysis, as did Rousseau (1997). Webometrics encompasses research from fields beyond information science such as communication studies, statistical physics, and computer science. In this review we concentrate on link analysis, but also cover other aspects of webometrics, including Web log fle analysis. One theme that runs through this chapter is the messiness of Web data and the need for data cleansing heuristics. The uncontrolled Web creates numerous problems in the interpretation of results, for instance, from the automatic creation or replication of links. The loose connection between top-level domain specifications (e.g., com, edu, and org) and their actual content is also a frustrating problem. For example, many .com sites contain noncommercial content, although com is ostensibly the main commercial top-level domain. Indeed, a skeptical researcher could claim that obstacles of this kind are so great that all Web analyses lack value. As will be seen, one response to this view, a view shared by critics of evaluative bibliometrics, is to demonstrate that Web data correlate significantly with some non-Web data in order to prove that the Web data are not wholly random. A practical response has been to develop increasingly sophisticated data cleansing techniques and multiple data analysis methods.
    Source
    Annual review of information science and technology. 39(2005), S.81-138
  8. Thelwall, M.; Sud, P.: ¬A comparison of methods for collecting web citation data for academic organizations (2011) 0.00
    0.0021033147 = product of:
      0.008413259 = sum of:
        0.008413259 = weight(_text_:information in 4626) [ClassicSimilarity], result of:
          0.008413259 = score(doc=4626,freq=4.0), product of:
            0.06134496 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.034944877 = queryNorm
            0.13714671 = fieldWeight in 4626, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.0390625 = fieldNorm(doc=4626)
      0.25 = coord(1/4)
    
    Abstract
    The primary webometric method for estimating the online impact of an organization is to count links to its website. Link counts have been available from commercial search engines for over a decade but this was set to end by early 2012 and so a replacement is needed. This article compares link counts to two alternative methods: URL citations and organization title mentions. New variations of these methods are also introduced. The three methods are compared against each other using Yahoo!. Two of the three methods (URL citations and organization title mentions) are also compared against each other using Bing. Evidence from a case study of 131 UK universities and 49 US Library and Information Science (LIS) departments suggests that Bing's Hit Count Estimates (HCEs) for popular title searches are not useful for webometric research but that Yahoo!'s HCEs for all three types of search and Bing's URL citation HCEs seem to be consistent. For exact URL counts the results of all three methods in Yahoo! and both methods in Bing are also consistent. Four types of accuracy factors are also introduced and defined: search engine coverage, search engine retrieval variation, search engine retrieval anomalies, and query polysemy.
    Source
    Journal of the American Society for Information Science and Technology. 62(2011) no.8, S.1488-1497
  9. Payne, N.; Thelwall, M.: Mathematical models for academic webs : linear relationship or non-linear power law? (2005) 0.00
    0.0020821756 = product of:
      0.008328702 = sum of:
        0.008328702 = weight(_text_:information in 1066) [ClassicSimilarity], result of:
          0.008328702 = score(doc=1066,freq=2.0), product of:
            0.06134496 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.034944877 = queryNorm
            0.13576832 = fieldWeight in 1066, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.0546875 = fieldNorm(doc=1066)
      0.25 = coord(1/4)
    
    Source
    Information processing and management. 41(2005) no.6, S.1495-1510
  10. Thelwall, M.: ¬A comparison of sources of links for academic Web impact factor calculations (2002) 0.00
    0.0017847219 = product of:
      0.0071388874 = sum of:
        0.0071388874 = weight(_text_:information in 4474) [ClassicSimilarity], result of:
          0.0071388874 = score(doc=4474,freq=2.0), product of:
            0.06134496 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.034944877 = queryNorm
            0.116372846 = fieldWeight in 4474, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.046875 = fieldNorm(doc=4474)
      0.25 = coord(1/4)
    
    Abstract
    There has been much recent interest in extracting information from collections of Web links. One tool that has been used is Ingwersen's Web impact factor. It has been demonstrated that several versions of this metric can produce results that correlate with research ratings of British universities showing that, despite being a measure of a purely Internet phenomenon, the results are susceptible to a wider interpretation. This paper addresses the question of which is the best possible domain to count backlinks from, if research is the focus of interest. WIFs for British universities calculated from several different source domains are compared, primarily the .edu, .ac.uk and .uk domains, and the entire Web. The results show that all four areas produce WIFs that correlate strongly with research ratings, but that none produce incontestably superior figures. It was also found that the WIF was less able to differentiate in more homogeneous subsets of universities, although positive results are still possible.
  11. Thelwall, M.: Interpreting social science link analysis research : a theoretical framework (2006) 0.00
    0.0017847219 = product of:
      0.0071388874 = sum of:
        0.0071388874 = weight(_text_:information in 4908) [ClassicSimilarity], result of:
          0.0071388874 = score(doc=4908,freq=2.0), product of:
            0.06134496 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.034944877 = queryNorm
            0.116372846 = fieldWeight in 4908, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.046875 = fieldNorm(doc=4908)
      0.25 = coord(1/4)
    
    Source
    Journal of the American Society for Information Science and Technology. 57(2006) no.1, S.60-68
  12. Thelwall, M.: Conceptualizing documentation on the Web : an evaluation of different heuristic-based models for counting links between university Web sites (2002) 0.00
    0.0014872681 = product of:
      0.0059490725 = sum of:
        0.0059490725 = weight(_text_:information in 978) [ClassicSimilarity], result of:
          0.0059490725 = score(doc=978,freq=2.0), product of:
            0.06134496 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.034944877 = queryNorm
            0.09697737 = fieldWeight in 978, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.0390625 = fieldNorm(doc=978)
      0.25 = coord(1/4)
    
    Source
    Journal of the American Society for Information Science and technology. 53(2002) no.12, S.995-1005