Search (2 results, page 1 of 1)

  • × author_ss:"Zhang, P."
  • × author_ss:"Soergel, D."
  1. Zhang, P.; Soergel, D.: Cognitive mechanisms in sensemaking : a qualitative user study (2020) 0.00
    0.0036430482 = product of:
      0.014572193 = sum of:
        0.014572193 = weight(_text_:information in 5614) [ClassicSimilarity], result of:
          0.014572193 = score(doc=5614,freq=12.0), product of:
            0.06134496 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.034944877 = queryNorm
            0.23754507 = fieldWeight in 5614, product of:
              3.4641016 = tf(freq=12.0), with freq of:
                12.0 = termFreq=12.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.0390625 = fieldNorm(doc=5614)
      0.25 = coord(1/4)
    
    Abstract
    Throughout an information search, a user needs to make sense of the information found to create an understanding. This requires cognitive effort that can be demanding. Building on prior sensemaking models and expanding them with ideas from learning and cognitive psychology, we examined the use of cognitive mechanisms during individual sensemaking. We conducted a qualitative user study of 15 students who searched for and made sense of information for business analysis and news writing tasks. Through the analysis of think-aloud protocols, recordings of screen movements, intermediate work products of sensemaking, including notes and concept maps, and final reports, we observed the use of 17 data-driven and structure-driven mechanisms for processing new information, examining individual concepts and relationships, and detecting anomalies. These cognitive mechanisms, as the basic operators that move sensemaking forward, provide in-depth understanding of how people process information to produce sense. Meaningful learning and sensemaking are closely related, so our findings apply to learning as well. Our results contribute to a better understanding of the sensemaking process-how people think-and this better understanding can inform the teaching of thinking skills and the design of improved sensemaking assistants and mind tools.
    Source
    Journal of the Association for Information Science and Technology. 71(2020) no.2, S.158-171
  2. Zhang, P.; Soergel, D.: Towards a comprehensive model of the cognitive process and mechanisms of individual sensemaking (2014) 0.00
    0.0033256328 = product of:
      0.013302531 = sum of:
        0.013302531 = weight(_text_:information in 1344) [ClassicSimilarity], result of:
          0.013302531 = score(doc=1344,freq=10.0), product of:
            0.06134496 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.034944877 = queryNorm
            0.21684799 = fieldWeight in 1344, product of:
              3.1622777 = tf(freq=10.0), with freq of:
                10.0 = termFreq=10.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.0390625 = fieldNorm(doc=1344)
      0.25 = coord(1/4)
    
    Abstract
    This review introduces a comprehensive model of the cognitive process and mechanisms of individual sensemaking to provide a theoretical basis for: - empirical studies that improve our understanding of the cognitive process and mechanisms of sensemaking and integration of results of such studies; - education in critical thinking and sensemaking skills; - the design of sensemaking assistant tools that support and guide users. The paper reviews and extends existing sensemaking models with ideas from learning and cognition. It reviews literature on sensemaking models in human-computer interaction (HCI), cognitive system engineering, organizational communication, and library and information sciences (LIS), learning theories, cognitive psychology, and task-based information seeking. The model resulting from this synthesis moves to a stronger basis for explaining sensemaking behaviors and conceptual changes. The model illustrates the iterative processes of sensemaking, extends existing models that focus on activities by integrating cognitive mechanisms and the creation of instantiated structure elements of knowledge, and different types of conceptual change to show a complete picture of the cognitive processes of sensemaking. The processes and cognitive mechanisms identified provide better foundations for knowledge creation, organization, and sharing practices and a stronger basis for design of sensemaking assistant systems and tools.
    Series
    Advances in information science
    Source
    Journal of the Association for Information Science and Technology. 65(2014) no.9, S.1733-1756
    Theme
    Information