Search (1 results, page 1 of 1)

  • × classification_ss:"410.285 / DDC22ger"
  • × theme_ss:"Multilinguale Probleme"
  1. Markó, K.G.: Foundation, implementation and evaluation of the MorphoSaurus system (2008) 0.00
    0.0027544592 = product of:
      0.011017837 = sum of:
        0.011017837 = weight(_text_:information in 4415) [ClassicSimilarity], result of:
          0.011017837 = score(doc=4415,freq=14.0), product of:
            0.06134496 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.034944877 = queryNorm
            0.1796046 = fieldWeight in 4415, product of:
              3.7416575 = tf(freq=14.0), with freq of:
                14.0 = termFreq=14.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.02734375 = fieldNorm(doc=4415)
      0.25 = coord(1/4)
    
    Abstract
    This work proposes an approach which is intended to meet the particular challenges of Medical Language Processing, in particular medical information retrieval. At its core lies a new type of dictionary, in which the entries are equivalence classes of subwords, i.e., semantically minimal units. These equivalence classes capture intralingual as well as interlingual synonymy. As equivalence classes abstract away from subtle particularities within and between languages and reference to them is realized via a language-independent conceptual system, they form an interlingua. In this work, the theoretical foundations of this approach are elaborated on. Furthermore, design considerations of applications based on the subword methodology are drawn up and showcase implementations are evaluated in detail. Starting with the introduction of Medical Linguistics as a field of active research in Chapter two, its consideration as a domain separated form general linguistics is motivated. In particular, morphological phenomena inherent to medical language are figured in more detail, which leads to an alternative view on medical terms and the introduction of the notion of subwords. Chapter three describes the formal foundation of subwords and the underlying linguistic declarative as well as procedural knowledge. An implementation of the subword model for the medical domain, the MorphoSaurus system, is presented in Chapter four. Emphasis will be given on the multilingual aspect of the proposed approach, including English, German, and Portuguese. The automatic acquisition of (medical) subwords for other languages (Spanish, French, and Swedish), and their integration in already available resources is described in the fifth Chapter.
    The proper handling of acronyms plays a crucial role in medical texts, e.g. in patient records, as well as in scientific literature. Chapter six presents an approach, in which acronyms are automatically acquired from (bio-) medical literature. Furthermore, acronyms and their definitions in different languages are linked to each other using the MorphoSaurus text processing system. Automatic word sense disambiguation is still one of the most challenging tasks in Natural Language Processing. In Chapter seven, cross-lingual considerations lead to a new methodology for automatic disambiguation applied to subwords. Beginning with Chapter eight, a series of applications based onMorphoSaurus are introduced. Firstly, the implementation of the subword approach within a crosslanguage information retrieval setting for the medical domain is described and evaluated on standard test document collections. In Chapter nine, this methodology is extended to multilingual information retrieval in the Web, for which user queries are translated into target languages based on the segmentation into subwords and their interlingual mappings. The cross-lingual, automatic assignment of document descriptors to documents is the topic of Chapter ten. A large-scale evaluation of a heuristic, as well as a statistical algorithm is carried out using a prominent medical thesaurus as a controlled vocabulary. In Chapter eleven, it will be shown how MorphoSaurus can be used to map monolingual, lexical resources across different languages. As a result, a large multilingual medical lexicon with high coverage and complete lexical information is built and evaluated against a comparable, already available and commonly used lexical repository for the medical domain. Chapter twelve sketches a few applications based on MorphoSaurus. The generality and applicability of the subword approach to other domains is outlined, and proof-of-concepts in real-world scenarios are presented. Finally, Chapter thirteen recapitulates the most important aspects of MorphoSaurus and the potential benefit of its employment in medical information systems is carefully assessed, both for medical experts in their everyday life, but also with regard to health care consumers and their existential information needs.
    Source
    Subword indexing, lexical learning and word sense disambiguation for medical crosslanguage information retrieval