Search (7 results, page 1 of 1)

  • × theme_ss:"Informetrie"
  • × theme_ss:"Suchmaschinen"
  1. Herring, S.D.: ¬The value of interdisciplinarity : a study based on the design of Internet search engines (1999) 0.00
    0.0033256328 = product of:
      0.013302531 = sum of:
        0.013302531 = weight(_text_:information in 3458) [ClassicSimilarity], result of:
          0.013302531 = score(doc=3458,freq=10.0), product of:
            0.06134496 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.034944877 = queryNorm
            0.21684799 = fieldWeight in 3458, product of:
              3.1622777 = tf(freq=10.0), with freq of:
                10.0 = termFreq=10.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.0390625 = fieldNorm(doc=3458)
      0.25 = coord(1/4)
    
    Abstract
    Continued development of the Internet requires the development of efficient, easy-to-use search engines. Ideally, such development should call upon knowledge and skills from a variety of disciplines, including computer science, information science, psychology, and ergonomics. The current study is intended to determine whether search engines shows a pattern of interdisciplinarity. 2 disciplines were selected as the focus for the study: computer science, and library/information science. A citation analysis was conducted to measure levels of interdisciplinary research and publishing in Internet search engine design and development. The results show a higher level of interdisciplinarity among library and information scientists than among computer scientists or among any of those categorized as 'other'. This is reflected both in the types of journals in which the authors publish, and in the references they cite to support their work. However, almost no authors published articles or cited references in fields such as cognitive science, ergonomics, or psychology. The results of this study are analyzed in terms of the writings of Patrick Wilson, Bruno Latour, Pierre Bordieu, Fritz Ringer, and Thomas Pinelli, focusing on cognitive authority within a profession, interaction between disciplines, and information-gathering habits of professionals. Suggestions for further research are given
    Source
    Journal of the American Society for Information Science. 50(1999) no.4, S.358-365
  2. Ortega, J.L.; Aguillo, I.F.: Microsoft academic search and Google scholar citations : comparative analysis of author profiles (2014) 0.00
    0.003091229 = product of:
      0.012364916 = sum of:
        0.012364916 = weight(_text_:information in 1284) [ClassicSimilarity], result of:
          0.012364916 = score(doc=1284,freq=6.0), product of:
            0.06134496 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.034944877 = queryNorm
            0.20156369 = fieldWeight in 1284, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.046875 = fieldNorm(doc=1284)
      0.25 = coord(1/4)
    
    Abstract
    This article offers a comparative analysis of the personal profiling capabilities of the two most important free citation-based academic search engines, namely, Microsoft Academic Search (MAS) and Google Scholar Citations (GSC). Author profiles can be useful for evaluation purposes once the advantages and the shortcomings of these services are described and taken into consideration. In total, 771 personal profiles appearing in both the MAS and the GSC databases were analyzed. Results show that the GSC profiles include more documents and citations than those in MAS but with a strong bias toward the information and computing sciences, whereas the MAS profiles are disciplinarily better balanced. MAS shows technical problems such as a higher number of duplicated profiles and a lower updating rate than GSC. It is concluded that both services could be used for evaluation proposes only if they are applied along with other citation indices as a way to supplement that information.
    Source
    Journal of the Association for Information Science and Technology. 65(2014) no.6, S.1149-1156
  3. Ding, Y.; Yan, E.; Frazho, A.; Caverlee, J.: PageRank for ranking authors in co-citation networks (2009) 0.00
    0.0025239778 = product of:
      0.010095911 = sum of:
        0.010095911 = weight(_text_:information in 3161) [ClassicSimilarity], result of:
          0.010095911 = score(doc=3161,freq=4.0), product of:
            0.06134496 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.034944877 = queryNorm
            0.16457605 = fieldWeight in 3161, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.046875 = fieldNorm(doc=3161)
      0.25 = coord(1/4)
    
    Abstract
    This paper studies how varied damping factors in the PageRank algorithm influence the ranking of authors and proposes weighted PageRank algorithms. We selected the 108 most highly cited authors in the information retrieval (IR) area from the 1970s to 2008 to form the author co-citation network. We calculated the ranks of these 108 authors based on PageRank with the damping factor ranging from 0.05 to 0.95. In order to test the relationship between different measures, we compared PageRank and weighted PageRank results with the citation ranking, h-index, and centrality measures. We found that in our author co-citation network, citation rank is highly correlated with PageRank with different damping factors and also with different weighted PageRank algorithms; citation rank and PageRank are not significantly correlated with centrality measures; and h-index rank does not significantly correlate with centrality measures but does significantly correlate with other measures. The key factors that have impact on the PageRank of authors in the author co-citation network are being co-cited with important authors.
    Source
    Journal of the American Society for Information Science and Technology. 60(2009) no.11, S.2229-2243
  4. Jepsen, E.T.; Seiden, P.; Ingwersen, P.; Björneborn, L.; Borlund, P.: Characteristics of scientific Web publications : preliminary data gathering and analysis (2004) 0.00
    0.0021033147 = product of:
      0.008413259 = sum of:
        0.008413259 = weight(_text_:information in 3091) [ClassicSimilarity], result of:
          0.008413259 = score(doc=3091,freq=4.0), product of:
            0.06134496 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.034944877 = queryNorm
            0.13714671 = fieldWeight in 3091, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.0390625 = fieldNorm(doc=3091)
      0.25 = coord(1/4)
    
    Abstract
    Because of the increasing presence of scientific publications an the Web, combined with the existing difficulties in easily verifying and retrieving these publications, research an techniques and methods for retrieval of scientific Web publications is called for. In this article, we report an the initial steps taken toward the construction of a test collection of scientific Web publications within the subject domain of plant biology. The steps reported are those of data gathering and data analysis aiming at identifying characteristics of scientific Web publications. The data used in this article were generated based an specifically selected domain topics that are searched for in three publicly accessible search engines (Google, AlITheWeb, and AItaVista). A sample of the retrieved hits was analyzed with regard to how various publication attributes correlated with the scientific quality of the content and whether this information could be employed to harvest, filter, and rank Web publications. The attributes analyzed were inlinks, outlinks, bibliographic references, file format, language, search engine overlap, structural position (according to site structure), and the occurrence of various types of metadata. As could be expected, the ranked output differs between the three search engines. Apparently, this is caused by differences in ranking algorithms rather than the databases themselves. In fact, because scientific Web content in this subject domain receives few inlinks, both AItaVista and AlITheWeb retrieved a higher degree of accessible scientific content than Google. Because of the search engine cutoffs of accessible URLs, the feasibility of using search engine output for Web content analysis is also discussed.
    Source
    Journal of the American Society for Information Science and Technology. 55(2004) no.14, S.1239-1249
  5. Thelwall, M.: Quantitative comparisons of search engine results (2008) 0.00
    0.0021033147 = product of:
      0.008413259 = sum of:
        0.008413259 = weight(_text_:information in 2350) [ClassicSimilarity], result of:
          0.008413259 = score(doc=2350,freq=4.0), product of:
            0.06134496 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.034944877 = queryNorm
            0.13714671 = fieldWeight in 2350, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.0390625 = fieldNorm(doc=2350)
      0.25 = coord(1/4)
    
    Abstract
    Search engines are normally used to find information or Web sites, but Webometric investigations use them for quantitative data such as the number of pages matching a query and the international spread of those pages. For this type of application, the accuracy of the hit count estimates and range of URLs in the full results are important. Here, we compare the applications programming interfaces of Google, Yahoo!, and Live Search for 1,587 single word searches. The hit count estimates were broadly consistent but with Yahoo! and Google, reporting 5-6 times more hits than Live Search. Yahoo! tended to return slightly more matching URLs than Google, with Live Search returning significantly fewer. Yahoo!'s result URLs included a significantly wider range of domains and sites than the other two, and there was little consistency between the three engines in the number of different domains. In contrast, the three engines were reasonably consistent in the number of different top-level domains represented in the result URLs, although Yahoo! tended to return the most. In conclusion, quantitative results from the three search engines are mostly consistent but with unexpected types of inconsistency that users should be aware of. Google is recommended for hit count estimates but Yahoo! is recommended for all other Webometric purposes.
    Source
    Journal of the American Society for Information Science and Technology. 59(2008) no.11, S.1702-1710
  6. Mayr, P.; Tosques, F.: Webometrische Analysen mit Hilfe der Google Web APIs (2005) 0.00
    0.0020821756 = product of:
      0.008328702 = sum of:
        0.008328702 = weight(_text_:information in 3189) [ClassicSimilarity], result of:
          0.008328702 = score(doc=3189,freq=2.0), product of:
            0.06134496 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.034944877 = queryNorm
            0.13576832 = fieldWeight in 3189, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.0546875 = fieldNorm(doc=3189)
      0.25 = coord(1/4)
    
    Source
    Information - Wissenschaft und Praxis. 56(2005) H.1, S.41-48
  7. Cheng, S.; YunTao, P.; JunPeng, Y.; Hong, G.; ZhengLu, Y.; ZhiYu, H.: PageRank, HITS and impact factor for journal ranking (2009) 0.00
    0.0014872681 = product of:
      0.0059490725 = sum of:
        0.0059490725 = weight(_text_:information in 2513) [ClassicSimilarity], result of:
          0.0059490725 = score(doc=2513,freq=2.0), product of:
            0.06134496 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.034944877 = queryNorm
            0.09697737 = fieldWeight in 2513, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.0390625 = fieldNorm(doc=2513)
      0.25 = coord(1/4)
    
    Source
    Proceeding CSIE '09: Proceedings of the 2009 WRI World Congress on Computer Science and Information Engineering - Volume 06