Search (113 results, page 1 of 6)

  • × theme_ss:"Visualisierung"
  • × type_ss:"a"
  1. Schwartz, D.: Graphische Datenanalyse für digitale Bibliotheken : Leistungs- und Funktionsumfang moderner Analyse- und Visualisierungsinstrumente (2006) 0.02
    0.01798105 = product of:
      0.0719242 = sum of:
        0.0719242 = weight(_text_:digitale in 30) [ClassicSimilarity], result of:
          0.0719242 = score(doc=30,freq=2.0), product of:
            0.18027179 = queryWeight, product of:
              5.158747 = idf(docFreq=690, maxDocs=44218)
              0.034944877 = queryNorm
            0.39897648 = fieldWeight in 30, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              5.158747 = idf(docFreq=690, maxDocs=44218)
              0.0546875 = fieldNorm(doc=30)
      0.25 = coord(1/4)
    
  2. Brantl, M.; Ceynowa, K.; Meiers, T.; Wolf, T.: Visuelle Suche in historischen Werken (2017) 0.01
    0.012843607 = product of:
      0.051374428 = sum of:
        0.051374428 = weight(_text_:digitale in 3467) [ClassicSimilarity], result of:
          0.051374428 = score(doc=3467,freq=2.0), product of:
            0.18027179 = queryWeight, product of:
              5.158747 = idf(docFreq=690, maxDocs=44218)
              0.034944877 = queryNorm
            0.2849832 = fieldWeight in 3467, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              5.158747 = idf(docFreq=690, maxDocs=44218)
              0.0390625 = fieldNorm(doc=3467)
      0.25 = coord(1/4)
    
    Abstract
    Die Bayerische Staatsbibliothek (BSB) zählt mit ihrem Bestand von knapp 11 Mio. Bänden zu den bedeutendsten Universalbibliotheken der Welt. Bereits 1,2 Mio. Werke sind digitalisiert, was die BSB zur größten digitalen Kulturinstitution in Deutschland macht. Dieser digitale Bestand umfasst vorwiegend urheberrechtsfreie Werke vom 8. bis ins 20. Jahrhundert, von der mittelalterlichen Bibelhandschrift bis zur Boulevardzeitung der 1920er-Jahre. Diese Vielfalt des zu digitalisierenden schriftlichen Kulturerbes und das hohe Tempo der Massendigitalisierung in den letzten Jahren haben ihren Preis - die inhaltliche Erschließung der Werke hinkt hinterher, insbesondere bei Werken, die nicht mittels Optical Character Recognition-Verfahren (OCR) automatisiert maschinenlesbar transformiert und zugänglich gemacht werden können. Dies gilt insbesondere für mittelalterliche Handschriften, Alte Druck- und Spezialbestände. Deshalb blieb auch der reichhaltige, in diesen Werken verborgene Bildbestand für den Nutzer weitestgehend verborgen und konnte lediglich durch das Durchblättern am Bildschirm entdeckt werden. Dies war Motivation für die Bayerische Staatsbibliothek, gemeinsam mit dem Fraunhofer Heinrich-Hertz-Institut in Berlin ein System zur ähnlichkeitsbasierten Bildsuche aufzubauen, welches sämtliche Bildinhalte aller 1,2 Mio. Digitalisate automatisch identifiziert. Hierbei werden mittels morphologischer Verfahren Bilder aus den Buchseiten extrahiert, die danach aufgrund von Farb- und Kantenmerkmalen klassifiziert werden. Bilder "ohne Informationswert" werden mit Hilfe von Methoden aus dem Bereich des maschinellen Lernens herausgefiltert. Damit konnten aus den digitalisierten Werken der BSB bislang mehr als 43 Mio. einzelne Bilder identifiziert werden, die mittels einer hochperformanten Suchmaschine über eine frei verfügbare Web-Applikation dem Anwender direkt zur Verfügung stehen. Dank der Vielfalt und Reichhaltigkeit der indexierten Bestände spricht dieses Angebot nicht nur Historiker und Buchwissenschaftler an, sondern Interessierte aus den unterschiedlichsten Fachrichtungen. Die Ähnlichkeitssuche stellt dabei unbekannte, ungewöhnliche und oftmals überraschende Bezüge zwischen unterschiedlichsten Werken her.
  3. Albertson, D.: Visual information seeking (2015) 0.01
    0.006182458 = product of:
      0.024729831 = sum of:
        0.024729831 = weight(_text_:information in 1847) [ClassicSimilarity], result of:
          0.024729831 = score(doc=1847,freq=24.0), product of:
            0.06134496 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.034944877 = queryNorm
            0.40312737 = fieldWeight in 1847, product of:
              4.8989797 = tf(freq=24.0), with freq of:
                24.0 = termFreq=24.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.046875 = fieldNorm(doc=1847)
      0.25 = coord(1/4)
    
    Abstract
    The present study reports on the information seeking processes in a visual context, referred to throughout as visual information seeking. This study synthesizes research throughout different, yet complementary, areas, each capable of contributing findings and understanding to visual information seeking. Methods previously applied for examining the visual information seeking process are reviewed, including interactive experiments, surveys, and various qualitative approaches. The methods and resulting findings are presented and structured according to generalized phases of existing information seeking models, which include the needs, actions, and assessments of users. A review of visual information needs focuses on need and thus query formulation; user actions, as reviewed, centers on search and browse behaviors and the observed trends, concluded by a survey of users' assessments of visual information as part of the interactive process. This separate examination, specific to a visual context, is significant; visual information can influence outcomes in an interactive process and presents variations in the types of needs, tasks, considerations, and decisions of users, as compared to information seeking in other contexts.
    Series
    Advances in information science
    Source
    Journal of the Association for Information Science and Technology. 66(2015) no.6, S.1091-1105
  4. Zhang, J.: TOFIR: A tool of facilitating information retrieval : introduce a visual retrieval model (2001) 0.01
    0.0058892816 = product of:
      0.023557127 = sum of:
        0.023557127 = weight(_text_:information in 7711) [ClassicSimilarity], result of:
          0.023557127 = score(doc=7711,freq=4.0), product of:
            0.06134496 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.034944877 = queryNorm
            0.3840108 = fieldWeight in 7711, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.109375 = fieldNorm(doc=7711)
      0.25 = coord(1/4)
    
    Source
    Information processing and management. 37(2001) no.4, S.639-657
  5. Wilson, M.: Interfaces for information retrieval (2011) 0.01
    0.0058892816 = product of:
      0.023557127 = sum of:
        0.023557127 = weight(_text_:information in 549) [ClassicSimilarity], result of:
          0.023557127 = score(doc=549,freq=4.0), product of:
            0.06134496 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.034944877 = queryNorm
            0.3840108 = fieldWeight in 549, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.109375 = fieldNorm(doc=549)
      0.25 = coord(1/4)
    
    Source
    Interactive information seeking, behaviour and retrieval. Eds.: Ruthven, I. u. D. Kelly
  6. Given, L.M.; Ruecker, S.; Simpson, H.; Sadler, E.; Ruskin, A.: Inclusive interface design for seniors : Image-browsing for a health information context (2007) 0.01
    0.0051002675 = product of:
      0.02040107 = sum of:
        0.02040107 = weight(_text_:information in 579) [ClassicSimilarity], result of:
          0.02040107 = score(doc=579,freq=12.0), product of:
            0.06134496 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.034944877 = queryNorm
            0.3325631 = fieldWeight in 579, product of:
              3.4641016 = tf(freq=12.0), with freq of:
                12.0 = termFreq=12.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.0546875 = fieldNorm(doc=579)
      0.25 = coord(1/4)
    
    Abstract
    This study explores an image-based retrieval interface for drug information, focusing on usability for a specific population - seniors. Qualitative, task-based interviews examined participants' health information behaviors and documented search strategies using an existing database (www.drugs.com) and a new prototype that uses similarity-based clustering of pill images for retrieval. Twelve participants (aged 65 and older), reflecting a diversity of backgrounds and experience with Web-based resources, located pill information using the interfaces and discussed navigational and other search preferences. Findings point to design features (e.g., image enlargement) that meet seniors' needs in the context of other health-related information-seeking strategies (e.g., contacting pharmacists).
    Source
    Journal of the American Society for Information Science and Technology. 58(2007) no.11, S.1610-1617
  7. Lin, X.; Bui, Y.: Information visualization (2009) 0.01
    0.0051002675 = product of:
      0.02040107 = sum of:
        0.02040107 = weight(_text_:information in 3818) [ClassicSimilarity], result of:
          0.02040107 = score(doc=3818,freq=12.0), product of:
            0.06134496 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.034944877 = queryNorm
            0.3325631 = fieldWeight in 3818, product of:
              3.4641016 = tf(freq=12.0), with freq of:
                12.0 = termFreq=12.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.0546875 = fieldNorm(doc=3818)
      0.25 = coord(1/4)
    
    Abstract
    The goal of information visualization (IV) is to amplify human cognition through computer-generated, interactive, and visual data representation. By combining the computational power with human perceptional and associative capabilities, IV will make it easier for users to navigate through large amounts of information, discover patterns or hidden structures of the information, and understand semantics of the information space. This entry reviews the history and background of IV and discusses its basic principles with pointers to relevant resources. The entry also summarizes major IV techniques and toolkits and shows various examples of IV applications.
    Source
    Encyclopedia of library and information sciences. 3rd ed. Ed.: M.J. Bates
  8. Ekström, B.: Trace data visualisation enquiry : a methodological coupling for studying information practices in relation to information systems (2022) 0.00
    0.0049327104 = product of:
      0.019730842 = sum of:
        0.019730842 = weight(_text_:information in 687) [ClassicSimilarity], result of:
          0.019730842 = score(doc=687,freq=22.0), product of:
            0.06134496 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.034944877 = queryNorm
            0.32163754 = fieldWeight in 687, product of:
              4.690416 = tf(freq=22.0), with freq of:
                22.0 = termFreq=22.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.0390625 = fieldNorm(doc=687)
      0.25 = coord(1/4)
    
    Abstract
    Purpose The purpose of this paper is to examine whether and how a methodological coupling of visualisations of trace data and interview methods can be utilised for information practices studies. Design/methodology/approach Trace data visualisation enquiry is suggested as the coupling of visualising exported data from an information system and using these visualisations as basis for interview guides and elicitation in information practices research. The methodology is illustrated and applied through a small-scale empirical study of a citizen science project. Findings The study found that trace data visualisation enquiry enabled fine-grained investigations of temporal aspects of information practices and to compare and explore temporal and geographical aspects of practices. Moreover, the methodology made possible inquiries for understanding information practices through trace data that were discussed through elicitation with participants. The study also found that it can aid a researcher of gaining a simultaneous overarching and close picture of information practices, which can lead to theoretical and methodological implications for information practices research. Originality/value Trace data visualisation enquiry extends current methods for investigating information practices as it enables focus to be placed on the traces of practices as recorded through interactions with information systems and study participants' accounts of activities.
  9. Zhu, B.; Chen, H.: Information visualization (2004) 0.00
    0.004770863 = product of:
      0.019083451 = sum of:
        0.019083451 = weight(_text_:information in 4276) [ClassicSimilarity], result of:
          0.019083451 = score(doc=4276,freq=42.0), product of:
            0.06134496 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.034944877 = queryNorm
            0.31108427 = fieldWeight in 4276, product of:
              6.4807405 = tf(freq=42.0), with freq of:
                42.0 = termFreq=42.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.02734375 = fieldNorm(doc=4276)
      0.25 = coord(1/4)
    
    Abstract
    Advanced technology has resulted in the generation of about one million terabytes of information every year. Ninety-reine percent of this is available in digital format (Keim, 2001). More information will be generated in the next three years than was created during all of previous human history (Keim, 2001). Collecting information is no longer a problem, but extracting value from information collections has become progressively more difficult. Various search engines have been developed to make it easier to locate information of interest, but these work well only for a person who has a specific goal and who understands what and how information is stored. This usually is not the Gase. Visualization was commonly thought of in terms of representing human mental processes (MacEachren, 1991; Miller, 1984). The concept is now associated with the amplification of these mental processes (Card, Mackinlay, & Shneiderman, 1999). Human eyes can process visual cues rapidly, whereas advanced information analysis techniques transform the computer into a powerful means of managing digitized information. Visualization offers a link between these two potent systems, the human eye and the computer (Gershon, Eick, & Card, 1998), helping to identify patterns and to extract insights from large amounts of information. The identification of patterns is important because it may lead to a scientific discovery, an interpretation of clues to solve a crime, the prediction of catastrophic weather, a successful financial investment, or a better understanding of human behavior in a computermediated environment. Visualization technology shows considerable promise for increasing the value of large-scale collections of information, as evidenced by several commercial applications of TreeMap (e.g., http://www.smartmoney.com) and Hyperbolic tree (e.g., http://www.inxight.com) to visualize large-scale hierarchical structures. Although the proliferation of visualization technologies dates from the 1990s where sophisticated hardware and software made increasingly faster generation of graphical objects possible, the role of visual aids in facilitating the construction of mental images has a long history. Visualization has been used to communicate ideas, to monitor trends implicit in data, and to explore large volumes of data for hypothesis generation. Imagine traveling to a strange place without a map, having to memorize physical and chemical properties of an element without Mendeleyev's periodic table, trying to understand the stock market without statistical diagrams, or browsing a collection of documents without interactive visual aids. A collection of information can lose its value simply because of the effort required for exhaustive exploration. Such frustrations can be overcome by visualization.
    Visualization can be classified as scientific visualization, software visualization, or information visualization. Although the data differ, the underlying techniques have much in common. They use the same elements (visual cues) and follow the same rules of combining visual cues to deliver patterns. They all involve understanding human perception (Encarnacao, Foley, Bryson, & Feiner, 1994) and require domain knowledge (Tufte, 1990). Because most decisions are based an unstructured information, such as text documents, Web pages, or e-mail messages, this chapter focuses an the visualization of unstructured textual documents. The chapter reviews information visualization techniques developed over the last decade and examines how they have been applied in different domains. The first section provides the background by describing visualization history and giving overviews of scientific, software, and information visualization as well as the perceptual aspects of visualization. The next section assesses important visualization techniques that convert abstract information into visual objects and facilitate navigation through displays an a computer screen. It also explores information analysis algorithms that can be applied to identify or extract salient visualizable structures from collections of information. Information visualization systems that integrate different types of technologies to address problems in different domains are then surveyed; and we move an to a survey and critique of visualization system evaluation studies. The chapter concludes with a summary and identification of future research directions.
    Source
    Annual review of information science and technology. 39(2005), S.139-177
  10. Fowler, R.H.; Wilson, B.A.; Fowler, W.A.L.: Information navigator : an information system using associative networks for display and retrieval (1992) 0.00
    0.0047219303 = product of:
      0.018887721 = sum of:
        0.018887721 = weight(_text_:information in 919) [ClassicSimilarity], result of:
          0.018887721 = score(doc=919,freq=14.0), product of:
            0.06134496 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.034944877 = queryNorm
            0.3078936 = fieldWeight in 919, product of:
              3.7416575 = tf(freq=14.0), with freq of:
                14.0 = termFreq=14.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.046875 = fieldNorm(doc=919)
      0.25 = coord(1/4)
    
    Abstract
    Document retrieval is a highly interactive process dealing with large amounts of information. Visual representations can provide both a means for managing the complexity of large information structures and an interface style well suited to interactive manipulation. The system we have designed utilizes visually displayed graphic structures and a direct manipulation interface style to supply an integrated environment for retrieval. A common visually displayed network structure is used for query, document content, and term relations. A query can be modified through direct manipulation of its visual form by incorporating terms from any other information structure the system displays. An associative thesaurus of terms and an inter-document network provide information about a document collection that can complement other retrieval aids. Visualization of these large data structures makes use of fisheye views and overview diagrams to help overcome some of the inherent difficulties of orientation and navigation in large information structures.
  11. Zhu, Y.; Yan, E.; Song, I.-Y..: ¬The use of a graph-based system to improve bibliographic information retrieval : system design, implementation, and evaluation (2017) 0.00
    0.0047219303 = product of:
      0.018887721 = sum of:
        0.018887721 = weight(_text_:information in 3356) [ClassicSimilarity], result of:
          0.018887721 = score(doc=3356,freq=14.0), product of:
            0.06134496 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.034944877 = queryNorm
            0.3078936 = fieldWeight in 3356, product of:
              3.7416575 = tf(freq=14.0), with freq of:
                14.0 = termFreq=14.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.046875 = fieldNorm(doc=3356)
      0.25 = coord(1/4)
    
    Abstract
    In this article, we propose a graph-based interactive bibliographic information retrieval system-GIBIR. GIBIR provides an effective way to retrieve bibliographic information. The system represents bibliographic information as networks and provides a form-based query interface. Users can develop their queries interactively by referencing the system-generated graph queries. Complex queries such as "papers on information retrieval, which were cited by John's papers that had been presented in SIGIR" can be effectively answered by the system. We evaluate the proposed system by developing another relational database-based bibliographic information retrieval system with the same interface and functions. Experiment results show that the proposed system executes the same queries much faster than the relational database-based system, and on average, our system reduced the execution time by 72% (for 3-node query), 89% (for 4-node query), and 99% (for 5-node query).
    Source
    Journal of the Association for Information Science and Technology. 68(2017) no.2, S.480-490
  12. Hall, P.: Disorderly reasoning in information design (2009) 0.00
    0.004655886 = product of:
      0.018623544 = sum of:
        0.018623544 = weight(_text_:information in 3099) [ClassicSimilarity], result of:
          0.018623544 = score(doc=3099,freq=10.0), product of:
            0.06134496 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.034944877 = queryNorm
            0.3035872 = fieldWeight in 3099, product of:
              3.1622777 = tf(freq=10.0), with freq of:
                10.0 = termFreq=10.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.0546875 = fieldNorm(doc=3099)
      0.25 = coord(1/4)
    
    Abstract
    The importance of information visualization as a means of transforming data into visual, understandable form is now embraced across university campuses and research institutes world-wide. Yet, the role of designers in this field of activity is often overlooked by the dominant scientific and technological interests in data visualization, and a corporate culture reliant on off-the-shelf visualization tools. This article is an attempt to describe the value of design thinking in information visualization with reference to Horst Rittel's ([1988]) definition of disorderly reasoning, and to frame design as a critical act of translating between scientific, technical, and aesthetic interests.
    Footnote
    Beitrag im Schwerpunktthema "Perspectives on design: information technologies and creative practices"
    Source
    Journal of the American Society for Information Science and Technology. 60(2009) no.9, S.1877-1882
  13. Hemmje, M.: LyberWorld - a 3D graphical user interface for fulltext retrieval (1995) 0.00
    0.004655886 = product of:
      0.018623544 = sum of:
        0.018623544 = weight(_text_:information in 2385) [ClassicSimilarity], result of:
          0.018623544 = score(doc=2385,freq=10.0), product of:
            0.06134496 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.034944877 = queryNorm
            0.3035872 = fieldWeight in 2385, product of:
              3.1622777 = tf(freq=10.0), with freq of:
                10.0 = termFreq=10.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.0546875 = fieldNorm(doc=2385)
      0.25 = coord(1/4)
    
    Abstract
    LyberWorld is a prototype IR user interface. It implements visualizations of an abstract information space: fulltext. The video demonstrates a visual user interface for the probabilistic fulltext retrieval system INQUERY. Visualizations are used to communicate information search and browsing activities in a natural way by applying metaphors of spatial navigation in abstract information spaces. Visualization tools for exploring information spaces and judging relevance of information items are introduced and an example session demonstrates the prototype. The presence of a spatial model in the user's mind is regarded as an essential contribution towards natural interaction and reduction of cognitive costs during retrieval dialogues.
  14. Catarci, T.; Spaccapietra, S.: Visual information querying (2002) 0.00
    0.004636843 = product of:
      0.018547373 = sum of:
        0.018547373 = weight(_text_:information in 4268) [ClassicSimilarity], result of:
          0.018547373 = score(doc=4268,freq=54.0), product of:
            0.06134496 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.034944877 = queryNorm
            0.3023455 = fieldWeight in 4268, product of:
              7.3484693 = tf(freq=54.0), with freq of:
                54.0 = termFreq=54.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.0234375 = fieldNorm(doc=4268)
      0.25 = coord(1/4)
    
    Abstract
    Computers have become our companions in many of the activities we pursue in our life. They assist us, in particular, in searching relevant information that is needed to perform a variety of tasks, from professional usage to personal entertainment. They hold this information in a huge number of heterogeneous sources, either dedicated to a specific user community (e.g., enterprise databases) or maintained for the general public (e.g., websites and digital libraries). Whereas progress in basic information technology is nowadays capable of guaranteeing effective information management, information retrieval and dissemination has become a core issue that needs further accomplishments to achieve user satisfaction. The research communities in databases, information retrieval, information visualization, and human-computer interaction have already largely investigated these domains. However, the technical environment has so dramatically evolved in recent years, inducing a parallel and very significant evolution in user habits and expectations, that new approaches are definitely needed to meet current demand. One of the most evident and significant changes is the human-computer interaction paradigm. Traditional interactions relayed an programming to express user information requirements in formal code and an textual output to convey to users the information extracted by the system. Except for professional data-intensive application frameworks, still in the hands of computer speciahsts, we have basically moved away from this pattern both in terms of expressing information requests and conveying results. The new goal is direct interaction with the final user (the person who is looking for information and is not necessarily familiar with computer technology). The key motto to achieve this is "go visual." The well-known high bandwidth of the human-vision channel allows both recognition and understanding of large quantities of information in no more than a few seconds. Thus, for instance, if the result of an information request can be organized as a visual display, or a sequence of visual displays, the information throughput is immensely superior to the one that can be achieved using textual support. User interaction becomes an iterative query-answer game that very rapidly leads to the desired final result. Conversely, the system can provide efficient visual support for easy query formulation. Displaying a visual representation of the information space, for instance, lets users directly point at the information they are looking for, without any need to be trained into the complex syntax of current query languages. Alternatively, users can navigate in the information space, following visible paths that will lead them to the targeted items. Again, thanks to the visual support, users are able to easily understand how to formulate queries and they are likely to achieve the task more rapidly and less prone to errors than with traditional textual interaction modes.
    The two facets of "going visual" are usually referred to as visual query systems, for query formulation, and information visualization, for result display. Visual Query Systems (VQSs) are defined as systems for querying databases that use a visual representation to depict the domain of interest and express related requests. VQSs provide both a language to express the queries in a visual format and a variety of functionalities to facilitate user-system interaction. As such, they are oriented toward a wide spectrum of users, especially novices who have limited computer expertise and generally ignore the inner structure of the accessed database. Information visualization, an increasingly important subdiscipline within the field of Human-Computer Interaction (HCI), focuses an visual mechanisms designed to communicate clearly to the user the structure of information and improve an the cost of accessing large data repositories. In printed form, information visualization has included the display of numerical data (e.g., bar charts, plot charts, pie charts), combinatorial relations (e.g., drawings of graphs), and geographic data (e.g., encoded maps). In addition to these "static" displays, computer-based systems, such as the Information Visualizer and Dynamic Queries, have coupled powerful visualization techniques (e.g., 3D, animation) with near real-time interactivity (i.e., the ability of the system to respond quickly to the user's direct manipulation commands). Information visualization is tightly combined with querying capabilities in some recent database-centered approaches. More opportunities for information visualization in a database environment may be found today in data mining and data warehousing applications, which typically access large data repositories. The enormous quantity of information sources an the World-Wide Web (WWW) available to users with diverse capabilities also calls for visualization techniques. In this article, we survey the main features and main proposals for visual query systems and touch upon the visualization of results mainly discussing traditional visualization forms. A discussion of modern database visualization techniques may be found elsewhere. Many related articles by Daniel Keim are available at http://www. informatik.uni-halle.de/dbs/publications.html.
    Source
    Encyclopedia of library and information science. Vol.72, [=Suppl.35]
  15. Hemmje, M.; Kunkel, C.; Willett, A.: LyberWorld - a visualization user interface supporting fulltext retrieval (1994) 0.00
    0.004371658 = product of:
      0.017486632 = sum of:
        0.017486632 = weight(_text_:information in 2384) [ClassicSimilarity], result of:
          0.017486632 = score(doc=2384,freq=12.0), product of:
            0.06134496 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.034944877 = queryNorm
            0.2850541 = fieldWeight in 2384, product of:
              3.4641016 = tf(freq=12.0), with freq of:
                12.0 = termFreq=12.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.046875 = fieldNorm(doc=2384)
      0.25 = coord(1/4)
    
    Abstract
    LyberWorld is a prototype IR user interface. It implements visualizations of an abstract information space-fulltext. The paper derives a model for such visualizations and an exemplar user interface design is implemented for the probabilistic fulltext retrieval system INQUERY. Visualizations are used to communicate information search and browsing activities in a natural way by applying metaphors of spatial navigation in abstract information spaces. Visualization tools for exploring information spaces and judging relevance of information items are introduced and an example session demonstrates the prototype. The presence of a spatial model in the user's mind and interaction with a system's corresponding display methods is regarded as an essential contribution towards natural interaction and reduction of cognitive costs during e.g. query construction, orientation within the database content, relevance judgement and orientation within the retrieval context.
    Source
    Proceeding SIGIR '94: Proceedings of the 17th annual international ACM SIGIR conference on Research and development in information retrieval
  16. Kocijan, K.: Visualizing natural language resources (2015) 0.00
    0.0042066295 = product of:
      0.016826518 = sum of:
        0.016826518 = weight(_text_:information in 2995) [ClassicSimilarity], result of:
          0.016826518 = score(doc=2995,freq=4.0), product of:
            0.06134496 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.034944877 = queryNorm
            0.27429342 = fieldWeight in 2995, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.078125 = fieldNorm(doc=2995)
      0.25 = coord(1/4)
    
    Source
    Re:inventing information science in the networked society: Proceedings of the 14th International Symposium on Information Science, Zadar/Croatia, 19th-21st May 2015. Eds.: F. Pehar, C. Schloegl u. C. Wolff
  17. Gelernter, J.: Visual classification with information visualization (Infoviz) for digital library collections (2007) 0.00
    0.004164351 = product of:
      0.016657405 = sum of:
        0.016657405 = weight(_text_:information in 423) [ClassicSimilarity], result of:
          0.016657405 = score(doc=423,freq=8.0), product of:
            0.06134496 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.034944877 = queryNorm
            0.27153665 = fieldWeight in 423, product of:
              2.828427 = tf(freq=8.0), with freq of:
                8.0 = termFreq=8.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.0546875 = fieldNorm(doc=423)
      0.25 = coord(1/4)
    
    Abstract
    The purpose of information visualization (infoviz) is to show information graphically. That purpose is often obscured by infoviz designs that are not well understood in practice. This paper offers an overview of infoviz culled from the literature on applications of information visualization for the digital library: how the clustering works that creates the topics and those topics are represented graphically. It presents a taxonomy of infoviz designs in one, two and three dimensions. It is suggested that user evaluations of infoviz designs might be used to enrich infoviz theory and, whether through application of the theory or through application of user remarks, developers might improve infoviz interface comprehensibility. Design recommendations are made in an effort to improve weaknesses and capitalize on strengths of present interfaces in representing knowledge visually.
  18. Enser, P.: ¬The evolution of visual information retrieval (2009) 0.00
    0.004164351 = product of:
      0.016657405 = sum of:
        0.016657405 = weight(_text_:information in 3659) [ClassicSimilarity], result of:
          0.016657405 = score(doc=3659,freq=8.0), product of:
            0.06134496 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.034944877 = queryNorm
            0.27153665 = fieldWeight in 3659, product of:
              2.828427 = tf(freq=8.0), with freq of:
                8.0 = termFreq=8.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.0546875 = fieldNorm(doc=3659)
      0.25 = coord(1/4)
    
    Abstract
    This paper seeks to provide a brief overview of those developments which have taken the theory and practice of image and video retrieval into the digital age. Drawing on a voluminous literature, the context in which visual information retrieval takes place is followed by a consideration of the conceptual and practical challenges posed by the representation and recovery of visual material on the basis of its semantic content. An historical account of research endeavours in content-based retrieval, directed towards the automation of these operations in digital image scenarios, provides the main thrust of the paper. Finally, a look forwards locates visual information retrieval research within the wider context of content-based multimedia retrieval.
    Source
    Information science in transition, Ed.: A. Gilchrist
  19. Passath, C.: Information-Panels : Die Informationsvermittler der Zukunft (2005) 0.00
    0.0039907596 = product of:
      0.015963038 = sum of:
        0.015963038 = weight(_text_:information in 4991) [ClassicSimilarity], result of:
          0.015963038 = score(doc=4991,freq=10.0), product of:
            0.06134496 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.034944877 = queryNorm
            0.2602176 = fieldWeight in 4991, product of:
              3.1622777 = tf(freq=10.0), with freq of:
                10.0 = termFreq=10.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.046875 = fieldNorm(doc=4991)
      0.25 = coord(1/4)
    
    Abstract
    Je mehr Informationen gleichzeitig, übersichtlich dargestellt und überwacht werden können, desto höher wird der Informations-Nutzen für einen Besucher oder potentiellen Kunden von ihnen sein. Da wir in einer Zeit der Informationsüberflutung leben, hilft uns das Information-Panel in Zukunft als multimediales Informationssystem. Ein Interface ist in unserem heutigen multimedialen Umfeld ein Bestandteil eines Systems, das dem Austausch von Informationen dient. Durch Information-Panels (sog. I-Panels) kann der Mensch mit Geräten interagieren, indem er sich wahlweise die für ihn masßgeschneiderten Informationen darstellen lässt. Für den Interface-Theoretiker Artur P. Schmidt können Information-Panels heute als eine Art Enzyklopädie für Informationen und Nachrichten aller Art dienen, wie sein Internet-Projekt "Der Wissensnavigator" belegt. Das Vorbild für multimediale Panels ist die geordnete Verbindung von Inhalten. Das Information-Panel als MenschMaschine-Interface kann zum "Punkt der Begegnung" oder "Kopplung zwischen zwei oder mehr Systemen" werden. Es übernimmt eine Übersetzung- und Vermittlungsfunktion.
  20. Tang, M.-C.: Browsing and searching in a faceted information space : a naturalistic study of PubMed users' interaction with a display tool (2007) 0.00
    0.0039349417 = product of:
      0.015739767 = sum of:
        0.015739767 = weight(_text_:information in 617) [ClassicSimilarity], result of:
          0.015739767 = score(doc=617,freq=14.0), product of:
            0.06134496 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.034944877 = queryNorm
            0.256578 = fieldWeight in 617, product of:
              3.7416575 = tf(freq=14.0), with freq of:
                14.0 = termFreq=14.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.0390625 = fieldNorm(doc=617)
      0.25 = coord(1/4)
    
    Abstract
    The study adopts a naturalistic approach to investigate users' interaction with a browsable MeSH (medical subject headings) display designed to facilitate query construction for the PubMed bibliographic database. The purpose of the study is twofold: first, to test the usefulness of a browsable interface utilizing the principle of faceted classification; and second, to investigate users' preferred query submission methods in different problematic situations. An interface that incorporated multiple query submission methods - the conventional single-line query box as well as methods associated the faceted classification display was constructed. Participants' interactions with the interface were monitored remotely over a period of 10 weeks; information about their problematic situations and information retrieval behaviors were also collected during this time. The traditional controlled experiment was not adequate in answering the author's research questions; hence, the author provides his rationale for a naturalistic approach. The study's findings show that there is indeed a selective compatibility between query submission methods provided by the MeSH display and users' problematic situations. The query submission methods associated with the display were found to be the preferred search tools when users' information needs were vague and the search topics unfamiliar. The findings support the theoretical proposition that users engaging in an information retrieval process with a variety of problematic situations need different approaches. The author argues that rather than treat the information retrieval system as a general purpose tool, more attention should be given to the interaction between the functionality of the tool and the characteristics of users' problematic situations.
    Source
    Journal of the American Society for Information Science and Technology. 58(2007) no.13, S.1998-2006

Years

Languages

  • e 97
  • d 15
  • a 1
  • More… Less…

Types