Search (14 results, page 1 of 1)

  • × type_ss:"el"
  • × theme_ss:"Konzeption und Anwendung des Prinzips Thesaurus"
  1. Eckert, K: ¬The ICE-map visualization (2011) 0.00
    0.004121639 = product of:
      0.016486555 = sum of:
        0.016486555 = weight(_text_:information in 4743) [ClassicSimilarity], result of:
          0.016486555 = score(doc=4743,freq=6.0), product of:
            0.06134496 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.034944877 = queryNorm
            0.2687516 = fieldWeight in 4743, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.0625 = fieldNorm(doc=4743)
      0.25 = coord(1/4)
    
    Abstract
    In this paper, we describe in detail the Information Content Evaluation Map (ICE-Map Visualization, formerly referred to as IC Difference Analysis). The ICE-Map Visualization is a visual data mining approach for all kinds of concept hierarchies that uses statistics about the concept usage to help a user in the evaluation and maintenance of the hierarchy. It consists of a statistical framework that employs the the notion of information content from information theory, as well as a visualization of the hierarchy and the result of the statistical analysis by means of a treemap.
  2. Jing, Y.; Croft, W.B.: ¬An association thesaurus for information retrieval (199?) 0.00
    0.003606434 = product of:
      0.014425736 = sum of:
        0.014425736 = weight(_text_:information in 4494) [ClassicSimilarity], result of:
          0.014425736 = score(doc=4494,freq=6.0), product of:
            0.06134496 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.034944877 = queryNorm
            0.23515764 = fieldWeight in 4494, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.0546875 = fieldNorm(doc=4494)
      0.25 = coord(1/4)
    
    Abstract
    Although commonly used in both commercial and experimental information retrieval systems, thesauri have not demonstrated consistent benefits for retrieval performance, and it is difficult to construct a thesaurus automatically for large text databases. In this paper, an approach, called PhraseFinder, is proposed to construct collection-dependent association thesauri automatically using large full-text document collections. The association thesaurus can be accessed through natural language queries in INQUERY, an information retrieval system based on the probabilistic inference network. Experiments are conducted in INQUERY to evaluate different types of association thesauri, and thesauri constructed for a variety of collections
  3. Qin, J.; Paling, S.: Converting a controlled vocabulary into an ontology : the case of GEM (2001) 0.00
    0.0035694437 = product of:
      0.014277775 = sum of:
        0.014277775 = weight(_text_:information in 3895) [ClassicSimilarity], result of:
          0.014277775 = score(doc=3895,freq=2.0), product of:
            0.06134496 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.034944877 = queryNorm
            0.23274569 = fieldWeight in 3895, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.09375 = fieldNorm(doc=3895)
      0.25 = coord(1/4)
    
    Source
    Information Research. 6(2001), no.2
  4. Thesaurus software (2001) 0.00
    0.0029446408 = product of:
      0.011778563 = sum of:
        0.011778563 = weight(_text_:information in 6773) [ClassicSimilarity], result of:
          0.011778563 = score(doc=6773,freq=4.0), product of:
            0.06134496 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.034944877 = queryNorm
            0.1920054 = fieldWeight in 6773, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.0546875 = fieldNorm(doc=6773)
      0.25 = coord(1/4)
    
    Abstract
    Members offer comments and suggest resources on programs for creating, maintaining, and publishing thesauri. Formerly a tool for writers and indexers, the thesaurus has taken on a new role as an essential component of the corporate information infrastructure. Many people are using word processor or database programs to create and maintain thesauri, while others are using specialized tools that perform consistency checks and offer special reporting capabilities. Some also use thesaurus modules integrated into another application, such as web publishing, content management, or e-commerce. This article includes material comes from our own experience, email responses from members, and comments from participants in our seminars and roundtables. There's also an introduction to thesauri in a corporate information management system
  5. Gladun, A.; Rogushina, J.: Development of domain thesaurus as a set of ontology concepts with use of semantic similarity and elements of combinatorial optimization (2021) 0.00
    0.0029446408 = product of:
      0.011778563 = sum of:
        0.011778563 = weight(_text_:information in 572) [ClassicSimilarity], result of:
          0.011778563 = score(doc=572,freq=4.0), product of:
            0.06134496 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.034944877 = queryNorm
            0.1920054 = fieldWeight in 572, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.0546875 = fieldNorm(doc=572)
      0.25 = coord(1/4)
    
    Abstract
    We consider use of ontological background knowledge in intelligent information systems and analyze directions of their reduction in compliance with specifics of particular user task. Such reduction is aimed at simplification of knowledge processing without loss of significant information. We propose methods of generation of task thesauri based on domain ontology that contain such subset of ontological concepts and relations that can be used in task solving. Combinatorial optimization is used for minimization of task thesaurus. In this approach, semantic similarity estimates are used for determination of concept significance for user task. Some practical examples of optimized thesauri application for semantic retrieval and competence analysis demonstrate efficiency of proposed approach.
  6. Lee, M.; Baillie, S.; Dell'Oro, J.: TML: a Thesaural Markpup Language (200?) 0.00
    0.0025239778 = product of:
      0.010095911 = sum of:
        0.010095911 = weight(_text_:information in 1622) [ClassicSimilarity], result of:
          0.010095911 = score(doc=1622,freq=4.0), product of:
            0.06134496 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.034944877 = queryNorm
            0.16457605 = fieldWeight in 1622, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.046875 = fieldNorm(doc=1622)
      0.25 = coord(1/4)
    
    Abstract
    Thesauri are used to provide controlled vocabularies for resource classification. Their use can greatly assist document discovery because thesauri man date a consistent shared terminology for describing documents. A particular thesauras classifies documents according to an information community's needs. As a result, there are many different thesaural schemas. This has led to a proliferation of schema-specific thesaural systems. In our research, we exploit schematic regularities to design a generic thesaural ontology and specfiy it as a markup language. The language provides a common representational framework in which to encode the idiosyncrasies of specific thesauri. This approach has several advantages: it offers consistent syntax and semantics in which to express thesauri; it allows general purpose thesaural applications to leverage many thesauri; and it supports a single thesaural user interface by which information communities can consistently organise, score and retrieve electronic documents.
  7. Doerr, M.: Semantic problems of thesaurus mapping (2001) 0.00
    0.0021033147 = product of:
      0.008413259 = sum of:
        0.008413259 = weight(_text_:information in 5902) [ClassicSimilarity], result of:
          0.008413259 = score(doc=5902,freq=4.0), product of:
            0.06134496 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.034944877 = queryNorm
            0.13714671 = fieldWeight in 5902, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.0390625 = fieldNorm(doc=5902)
      0.25 = coord(1/4)
    
    Abstract
    With networked information access to heterogeneous data sources, the problem of terminology provision and interoperability of controlled vocabulary schemes such as thesauri becomes increasingly urgent. Solutions are needed to improve the performance of full-text retrieval systems and to guide the design of controlled terminology schemes for use in structured data, including metadata. Thesauri are created in different languages, with different scope and points of view and at different levels of abstraction and detail, to accomodate access to a specific group of collections. In any wider search accessing distributed collections, the user would like to start with familiar terminology and let the system find out the correspondences to other terminologies in order to retrieve equivalent results from all addressed collections. This paper investigates possible semantic differences that may hinder the unambiguous mapping and transition from one thesaurus to another. It focusses on the differences of meaning of terms and their relations as intended by their creators for indexing and querying a specific collection, in contrast to methods investigating the statistical relevance of terms for objects in a collection. It develops a notion of optimal mapping, paying particular attention to the intellectual quality of mappings between terms from different vocabularies and to problems of polysemy. Proposals are made to limit the vagueness introduced by the transition from one vocabulary to another. The paper shows ways in which thesaurus creators can improve their methodology to meet the challenges of networked access of distributed collections created under varying conditions. For system implementers, the discussion will lead to a better understanding of the complexity of the problem
    Source
    Journal of digital information. 1(2001) no.8,
  8. ALA / Subcommittee on Subject Relationships/Reference Structures: Final Report to the ALCTS/CCS Subject Analysis Committee (1997) 0.00
    0.0020821756 = product of:
      0.008328702 = sum of:
        0.008328702 = weight(_text_:information in 1800) [ClassicSimilarity], result of:
          0.008328702 = score(doc=1800,freq=8.0), product of:
            0.06134496 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.034944877 = queryNorm
            0.13576832 = fieldWeight in 1800, product of:
              2.828427 = tf(freq=8.0), with freq of:
                8.0 = termFreq=8.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.02734375 = fieldNorm(doc=1800)
      0.25 = coord(1/4)
    
    Abstract
    The SAC Subcommittee on Subject Relationships/Reference Structures was authorized at the 1995 Midwinter Meeting and appointed shortly before Annual Conference. Its creation was one result of a discussion of how (and why) to promote the display and use of broader-term subject heading references, and its charge reads as follows: To investigate: (1) the kinds of relationships that exist between subjects, the display of which are likely to be useful to catalog users; (2) how these relationships are or could be recorded in authorities and classification formats; (3) options for how these relationships should be presented to users of online and print catalogs, indexes, lists, etc. By the summer 1996 Annual Conference, make some recommendations to SAC about how to disseminate the information and/or implement changes. At that time assess the need for additional time to investigate these issues. The Subcommittee's work on each of the imperatives in the charge was summarized in a report issued at the 1996 Annual Conference (Appendix A). Highlights of this work included the development of a taxonomy of 165 subject relationships; a demonstration that, using existing MARC coding, catalog systems could be programmed to generate references they do not currently support; and an examination of reference displays in several CD-ROM database products. Since that time, work has continued on identifying term relationships and display options; on tracking research, discussion, and implementation of subject relationships in information systems; and on compiling a list of further research needs.
    Content
    Enthält: Appendix A: Subcommittee on Subject Relationships/Reference Structures - REPORT TO THE ALCTS/CCS SUBJECT ANALYSIS COMMITTEE - July 1996 Appendix B (part 1): Taxonomy of Subject Relationships. Compiled by Dee Michel with the assistance of Pat Kuhr - June 1996 draft (alphabetical display) (Separat in: http://web2.ala.org/ala/alctscontent/CCS/committees/subjectanalysis/subjectrelations/msrscu2.pdf) Appendix B (part 2): Taxonomy of Subject Relationships. Compiled by Dee Michel with the assistance of Pat Kuhr - June 1996 draft (hierarchical display) Appendix C: Checklist of Candidate Subject Relationships for Information Retrieval. Compiled by Dee Michel, Pat Kuhr, and Jane Greenberg; edited by Greg Wool - June 1997 Appendix D: Review of Reference Displays in Selected CD-ROM Abstracts and Indexes by Harriette Hemmasi and Steven Riel Appendix E: Analysis of Relationships in Six LC Subject Authority Records by Harriette Hemmasi and Gary Strawn Appendix F: Report of a Preliminary Survey of Subject Referencing in OPACs by Gregory Wool Appendix G: LC Subject Referencing in OPACs--Why Bother? by Gregory Wool Appendix H: Research Needs on Subject Relationships and Reference Structures in Information Access compiled by Jane Greenberg and Steven Riel with contributions from Dee Michel and others edited by Gregory Wool Appendix I: Bibliography on Subject Relationships compiled mostly by Dee Michel with additional contributions from Jane Greenberg, Steven Riel, and Gregory Wool
  9. Bandholtz, T.; Schulte-Coerne, T.; Glaser, R.; Fock, J.; Keller, T.: iQvoc - open source SKOS(XL) maintenance and publishing tool (2010) 0.00
    0.0020821756 = product of:
      0.008328702 = sum of:
        0.008328702 = weight(_text_:information in 604) [ClassicSimilarity], result of:
          0.008328702 = score(doc=604,freq=2.0), product of:
            0.06134496 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.034944877 = queryNorm
            0.13576832 = fieldWeight in 604, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.0546875 = fieldNorm(doc=604)
      0.25 = coord(1/4)
    
    Abstract
    iQvoc is a new open source SKOS-XL vocabulary management tool developed by the Federal Environment Agency, Germany, and innoQ Deutschland GmbH. Its immediate purpose is maintaining and publishing reference vocabularies in the upcoming Linked Data cloud of environmental information, but it may be easily adapted to host any SKOS- XL compliant vocabulary. iQvoc is implemented as a Ruby on Rails application running on top of JRuby - the Java implementation of the Ruby Programming Language. To increase the user experience when editing content, iQvoc uses heavily the JavaScript library jQuery.
  10. Dextre Clarke, S.G.: Overview of ISO NP 25964 : structured vocabularies for information retrieval (2007) 0.00
    0.0017847219 = product of:
      0.0071388874 = sum of:
        0.0071388874 = weight(_text_:information in 535) [ClassicSimilarity], result of:
          0.0071388874 = score(doc=535,freq=2.0), product of:
            0.06134496 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.034944877 = queryNorm
            0.116372846 = fieldWeight in 535, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.046875 = fieldNorm(doc=535)
      0.25 = coord(1/4)
    
  11. Assem, M. van; Gangemi, A.; Schreiber, G.: Conversion of WordNet to a standard RDF/OWL representation (2006) 0.00
    0.0017847219 = product of:
      0.0071388874 = sum of:
        0.0071388874 = weight(_text_:information in 4641) [ClassicSimilarity], result of:
          0.0071388874 = score(doc=4641,freq=2.0), product of:
            0.06134496 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.034944877 = queryNorm
            0.116372846 = fieldWeight in 4641, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.046875 = fieldNorm(doc=4641)
      0.25 = coord(1/4)
    
    Abstract
    This paper presents an overview of the work in progress at the W3C to produce a standard conversion of WordNet to the RDF/OWL representation language in use in the SemanticWeb community. Such a standard representation is useful to provide application developers a high-quality resource and to promote interoperability. Important requirements in this conversion process are that it should be complete and should stay close to WordNet's conceptual model. The paper explains the steps taken to produce the conversion and details design decisions such as the composition of the class hierarchy and properties, the addition of suitable OWL semantics and the chosen format of the URIs. Additional topics include a strategy to incorporate OWL and RDFS semantics in one schema such that both RDF(S) infrastructure and OWL infrastructure can interpret the information correctly, problems encountered in understanding the Prolog source files and the description of the two versions that are provided (Basic and Full) to accommodate different usages of WordNet.
  12. Tudhope, D.; Alani, H.; Jones, C.: Augmenting thesaurus relationships : possibilities for retrieval (2001) 0.00
    0.0014872681 = product of:
      0.0059490725 = sum of:
        0.0059490725 = weight(_text_:information in 1520) [ClassicSimilarity], result of:
          0.0059490725 = score(doc=1520,freq=2.0), product of:
            0.06134496 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.034944877 = queryNorm
            0.09697737 = fieldWeight in 1520, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.0390625 = fieldNorm(doc=1520)
      0.25 = coord(1/4)
    
    Source
    Journal of digital information. 1(2001) no.8
  13. Martínez-González, M.M.; Alvite-Díez, M.L.: Thesauri and Semantic Web : discussion of the evolution of thesauri toward their integration with the Semantic Web (2019) 0.00
    0.0014872681 = product of:
      0.0059490725 = sum of:
        0.0059490725 = weight(_text_:information in 5997) [ClassicSimilarity], result of:
          0.0059490725 = score(doc=5997,freq=2.0), product of:
            0.06134496 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.034944877 = queryNorm
            0.09697737 = fieldWeight in 5997, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.0390625 = fieldNorm(doc=5997)
      0.25 = coord(1/4)
    
    Abstract
    Thesauri are Knowledge Organization Systems (KOS), that arise from the consensus of wide communities. They have been in use for many years and are regularly updated. Whereas in the past thesauri were designed for information professionals for indexing and searching, today there is a demand for conceptual vocabularies that enable inferencing by machines. The development of the Semantic Web has brought a new opportunity for thesauri, but thesauri also face the challenge of proving that they add value to it. The evolution of thesauri toward their integration with the Semantic Web is examined. Elements and structures in the thesaurus standard, ISO 25964, and SKOS (Simple Knowledge Organization System), the Semantic Web standard for representing KOS, are reviewed and compared. Moreover, the integrity rules of thesauri are contrasted with the axioms of SKOS. How SKOS has been applied to represent some real thesauri is taken into account. Three thesauri are chosen for this aim: AGROVOC, EuroVoc and the UNESCO Thesaurus. Based on the results of this comparison and analysis, the benefits that Semantic Web technologies offer to thesauri, how thesauri can contribute to the Semantic Web, and the challenges that would help to improve their integration with the Semantic Web are discussed.
  14. Assem, M. van: Converting and integrating vocabularies for the Semantic Web (2010) 0.00
    0.0011898145 = product of:
      0.004759258 = sum of:
        0.004759258 = weight(_text_:information in 4639) [ClassicSimilarity], result of:
          0.004759258 = score(doc=4639,freq=2.0), product of:
            0.06134496 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.034944877 = queryNorm
            0.0775819 = fieldWeight in 4639, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.03125 = fieldNorm(doc=4639)
      0.25 = coord(1/4)
    
    Abstract
    We refine the problem statement into three research questions. The first two focus on the problem of conversion of a vocabulary to a Semantic Web representation from its original format. Conversion of a vocabulary to a representation in a Semantic Web language is necessary to make the vocabulary available to SemanticWeb applications. In the last question we focus on integration of collection metadata schemas in a way that allows for vocabulary representations as produced by our methods. Academisch proefschrift ter verkrijging van de graad Doctor aan de Vrije Universiteit Amsterdam, Dutch Research School for Information and Knowledge Systems.