Search (51 results, page 1 of 3)

  • × year_i:[2000 TO 2010}
  • × theme_ss:"Klassifikationssysteme im Online-Retrieval"
  1. Schallier, W.: Why organize information if you can find it? : UDC and libraries in an Internet world (2007) 0.00
    0.0042066295 = product of:
      0.016826518 = sum of:
        0.016826518 = weight(_text_:information in 549) [ClassicSimilarity], result of:
          0.016826518 = score(doc=549,freq=16.0), product of:
            0.06134496 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.034944877 = queryNorm
            0.27429342 = fieldWeight in 549, product of:
              4.0 = tf(freq=16.0), with freq of:
                16.0 = termFreq=16.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.0390625 = fieldNorm(doc=549)
      0.25 = coord(1/4)
    
    Abstract
    The Belgians Otlet and LaFontaine created the Universal Decimal Classification in order to collect and organize the world's knowledge. This happened in an age when information was almost exclusively made available by libraries. Since the internet, the quantity of information outside libraries is enormous and keeps growing every day. The internet is accessible to anybody, it is fundamentally unorganized and its content changes constantly. Collecting and organizing the world's knowledge seem to have become an impossible ambition. Perhaps it is even unnecessary, since search engines make information retrievable now. And why would we organize information if we can find it? So what will be the role of UDC and libraries in this internet environment? Libraries can still play a role as a major information provider, if they adapt fully to the expectations of a modern end user. The design and the functionalities of online catalogues should allow maximal accessibility, usability and active participation of the end user in the internet environment. Metadata, like UDC, should maximize the visibility of information, enrich it and invite the end user to assign metadata himself.
    Content
    Beitrag anlässlich des 'UDC Seminar: Information Access for the Global Community, The Hague, 4-5 June 2007'. - http://www.udcc.org/seminar07/presentations/schallier.pdf.
  2. Hjoerland, B.; Kyllesbech Nielsen, L.: Subject access points in electronic retrieval (2001) 0.00
    0.004164351 = product of:
      0.016657405 = sum of:
        0.016657405 = weight(_text_:information in 3826) [ClassicSimilarity], result of:
          0.016657405 = score(doc=3826,freq=2.0), product of:
            0.06134496 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.034944877 = queryNorm
            0.27153665 = fieldWeight in 3826, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.109375 = fieldNorm(doc=3826)
      0.25 = coord(1/4)
    
    Source
    Annual review of information science and technology. 35(2001), S.249-298
  3. Peereboom, M.: DutchESS : Dutch Electronic Subject Service - a Dutch national collaborative effort (2000) 0.00
    0.004121639 = product of:
      0.016486555 = sum of:
        0.016486555 = weight(_text_:information in 4869) [ClassicSimilarity], result of:
          0.016486555 = score(doc=4869,freq=6.0), product of:
            0.06134496 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.034944877 = queryNorm
            0.2687516 = fieldWeight in 4869, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.0625 = fieldNorm(doc=4869)
      0.25 = coord(1/4)
    
    Abstract
    This article gives an overview of the design and organisation of DutchESS, a Dutch information subject gateway created as a national collaborative effort of the National Library and a number of academic libraries. The combined centralised and distributed model of DutchESS is discussed, as well as its selection policy, its metadata format, classification scheme and retrieval options. Also some options for future collaboration on an international level are explored
    Source
    Online information review. 24(2000) no.1, S.46-48
    Theme
    Information Gateway
  4. Tunkelang, D.: Faceted search (2009) 0.00
    0.004121639 = product of:
      0.016486555 = sum of:
        0.016486555 = weight(_text_:information in 26) [ClassicSimilarity], result of:
          0.016486555 = score(doc=26,freq=24.0), product of:
            0.06134496 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.034944877 = queryNorm
            0.2687516 = fieldWeight in 26, product of:
              4.8989797 = tf(freq=24.0), with freq of:
                24.0 = termFreq=24.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.03125 = fieldNorm(doc=26)
      0.25 = coord(1/4)
    
    Abstract
    We live in an information age that requires us, more than ever, to represent, access, and use information. Over the last several decades, we have developed a modern science and technology for information retrieval, relentlessly pursuing the vision of a "memex" that Vannevar Bush proposed in his seminal article, "As We May Think." Faceted search plays a key role in this program. Faceted search addresses weaknesses of conventional search approaches and has emerged as a foundation for interactive information retrieval. User studies demonstrate that faceted search provides more effective information-seeking support to users than best-first search. Indeed, faceted search has become increasingly prevalent in online information access systems, particularly for e-commerce and site search. In this lecture, we explore the history, theory, and practice of faceted search. Although we cannot hope to be exhaustive, our aim is to provide sufficient depth and breadth to offer a useful resource to both researchers and practitioners. Because faceted search is an area of interest to computer scientists, information scientists, interface designers, and usability researchers, we do not assume that the reader is a specialist in any of these fields. Rather, we offer a self-contained treatment of the topic, with an extensive bibliography for those who would like to pursue particular aspects in more depth.
    Content
    Table of Contents: I. Key Concepts / Introduction: What Are Facets? / Information Retrieval / Faceted Information Retrieval / II. Research and Practice / Academic Research / Commercial Applications / III. Practical Concerns / Back-End Concerns / Front-End Concerns / Conclusion / Glossary
    RSWK
    Information Retrieval
    Series
    Synthesis lectures on information concepts, retrieval & services; 5
    Subject
    Information Retrieval
  5. Mills, J.: Faceted classification and logical division in information retrieval (2004) 0.00
    0.0039907596 = product of:
      0.015963038 = sum of:
        0.015963038 = weight(_text_:information in 831) [ClassicSimilarity], result of:
          0.015963038 = score(doc=831,freq=10.0), product of:
            0.06134496 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.034944877 = queryNorm
            0.2602176 = fieldWeight in 831, product of:
              3.1622777 = tf(freq=10.0), with freq of:
                10.0 = termFreq=10.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.046875 = fieldNorm(doc=831)
      0.25 = coord(1/4)
    
    Abstract
    The main object of the paper is to demonstrate in detail the role of classification in information retrieval (IR) and the design of classificatory structures by the application of logical division to all forms of the content of records, subject and imaginative. The natural product of such division is a faceted classification. The latter is seen not as a particular kind of library classification but the only viable form enabling the locating and relating of information to be optimally predictable. A detailed exposition of the practical steps in facet analysis is given, drawing on the experience of the new Bliss Classification (BC2). The continued existence of the library as a highly organized information store is assumed. But, it is argued, it must acknowledge the relevance of the revolution in library classification that has taken place. It considers also how alphabetically arranged subject indexes may utilize controlled use of categorical (generically inclusive) and syntactic relations to produce similarly predictable locating and relating systems for IR.
    Footnote
    Artikel in einem Themenheft: The philosophy of information
  6. Lim, E.: Southeast Asian subject gateways : an examination of their classification practices (2000) 0.00
    0.0035694437 = product of:
      0.014277775 = sum of:
        0.014277775 = weight(_text_:information in 6040) [ClassicSimilarity], result of:
          0.014277775 = score(doc=6040,freq=2.0), product of:
            0.06134496 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.034944877 = queryNorm
            0.23274569 = fieldWeight in 6040, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.09375 = fieldNorm(doc=6040)
      0.25 = coord(1/4)
    
    Theme
    Information Gateway
  7. Dumais, S.; Chen, H.: Hierarchical classification of Web content (2000) 0.00
    0.0035694437 = product of:
      0.014277775 = sum of:
        0.014277775 = weight(_text_:information in 492) [ClassicSimilarity], result of:
          0.014277775 = score(doc=492,freq=2.0), product of:
            0.06134496 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.034944877 = queryNorm
            0.23274569 = fieldWeight in 492, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.09375 = fieldNorm(doc=492)
      0.25 = coord(1/4)
    
    Source
    Proceedings of ACM SIGIR 23rd International Conference on Research and Development in Information Retrieval. Ed. by N.J. Belkin, P. Ingwersen u. M.K. Leong
  8. Chowdhury, S.; Chowdhury, G.G.: Using DDC to create a visual knowledge map as an aid to online information retrieval (2004) 0.00
    0.0035694435 = product of:
      0.014277774 = sum of:
        0.014277774 = weight(_text_:information in 2643) [ClassicSimilarity], result of:
          0.014277774 = score(doc=2643,freq=18.0), product of:
            0.06134496 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.034944877 = queryNorm
            0.23274568 = fieldWeight in 2643, product of:
              4.2426405 = tf(freq=18.0), with freq of:
                18.0 = termFreq=18.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.03125 = fieldNorm(doc=2643)
      0.25 = coord(1/4)
    
    Content
    1. Introduction Web search engines and digital libraries usually expect the users to use search terms that most accurately represent their information needs. Finding the most appropriate search terms to represent an information need is an age old problem in information retrieval. Keyword or phrase search may produce good search results as long as the search terms or phrase(s) match those used by the authors and have been chosen for indexing by the concerned information retrieval system. Since this does not always happen, a large number of false drops are produced by information retrieval systems. The retrieval results become worse in very large systems that deal with millions of records, such as the Web search engines and digital libraries. Vocabulary control tools are used to improve the performance of text retrieval systems. Thesauri, the most common type of vocabulary control tool used in information retrieval, appeared in the late fifties, designed for use with the emerging post-coordinate indexing systems of that time. They are used to exert terminology control in indexing, and to aid in searching by allowing the searcher to select appropriate search terms. A large volume of literature exists describing the design features, and experiments with the use, of thesauri in various types of information retrieval systems (see for example, Furnas et.al., 1987; Bates, 1986, 1998; Milstead, 1997, and Shiri et al., 2002).
    Source
    Knowledge organization and the global information society: Proceedings of the 8th International ISKO Conference 13-16 July 2004, London, UK. Ed.: I.C. McIlwaine
  9. Lee, H.-L.; Olson, H.A.: Hierarchical navigation : an exploration of Yahoo! directories (2005) 0.00
    0.0035694437 = product of:
      0.014277775 = sum of:
        0.014277775 = weight(_text_:information in 3991) [ClassicSimilarity], result of:
          0.014277775 = score(doc=3991,freq=8.0), product of:
            0.06134496 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.034944877 = queryNorm
            0.23274569 = fieldWeight in 3991, product of:
              2.828427 = tf(freq=8.0), with freq of:
                8.0 = termFreq=8.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.046875 = fieldNorm(doc=3991)
      0.25 = coord(1/4)
    
    Abstract
    Although researchers have theorized the critical importance of classification in the organization of information, the classification approach seems to have given way to the alphabetical subject approach in retrieval tools widely used in libraries, and research an how users utilize classification or classification-like arrangements in information seeking has been scant. To better understand whether searchers consider classificatory structures a viable alternative to information retrieval, this article reports an a study of how 24 library and information science students used Yahoo! directories, a popular search service resembling classification, in completing an assigned simple task. Several issues emerged from the students' reporting of their search process and a comparison between hierarchical navigation and keyword searching: citation order of facets, precision vs. recall, and other factors influencing searchers' successes and preferences. The latter included search expertise, knowledge of the discipline, and time required to complete the search. Without a definitive conclusion, we suggest a number of directoons for further research.
  10. Wheatley, A.: Subject trees on the Internet : a new role for bibliographic classification? (2000) 0.00
    0.0033653039 = product of:
      0.013461215 = sum of:
        0.013461215 = weight(_text_:information in 6108) [ClassicSimilarity], result of:
          0.013461215 = score(doc=6108,freq=4.0), product of:
            0.06134496 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.034944877 = queryNorm
            0.21943474 = fieldWeight in 6108, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.0625 = fieldNorm(doc=6108)
      0.25 = coord(1/4)
    
    Abstract
    Internet information retrieval is largely the preserve of search engines and the even more popular subject trees. Subject trees have adapted principles of conventional bibliographic classification for structuring hierarchic browsing interfaces, thus providing easily used pathways to their selected resources. This combination of browsing and selectivity is especially valuable to untrained users. For the forseeable future, it appears that subject trees will remain the Internet's only practicable use of classificatory methods for information retrieval
  11. Louie, A.J.; Maddox, E.L.; Washington, W.: Using faceted classification to provide structure for information architecture (2003) 0.00
    0.003091229 = product of:
      0.012364916 = sum of:
        0.012364916 = weight(_text_:information in 2471) [ClassicSimilarity], result of:
          0.012364916 = score(doc=2471,freq=6.0), product of:
            0.06134496 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.034944877 = queryNorm
            0.20156369 = fieldWeight in 2471, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.046875 = fieldNorm(doc=2471)
      0.25 = coord(1/4)
    
    Abstract
    This is a short, but very thorough and very interesting, report on how the writers built a faceted classification for some legal information and used it to structure a web site with navigation and searching. There is a good summary of why facets work well and how they fit into bibliographic control in general. The last section is about their implementation of a web site for the Washington State Bar Association's Council for Legal Public Education. Their classification uses three facets: Purpose (the general aim of the document, e.g. Resources for K-12 Teachers), Topic (the subject of the document), and Type (the legal format of the document). See Example Web Sites, below, for a discussion of the site and a problem with its design.
    Footnote
    Paper presented at the ASIS&T 2003 Information Architecture Summit, Portland, OR, 21-23 March 2003.
  12. Hennecke, J.: Workshop DDC and Knowledge Organization in the Digital Library (2000) 0.00
    0.0029745363 = product of:
      0.011898145 = sum of:
        0.011898145 = weight(_text_:information in 4742) [ClassicSimilarity], result of:
          0.011898145 = score(doc=4742,freq=2.0), product of:
            0.06134496 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.034944877 = queryNorm
            0.19395474 = fieldWeight in 4742, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.078125 = fieldNorm(doc=4742)
      0.25 = coord(1/4)
    
    Theme
    Information Gateway
  13. Reiner, U.: Automatische DDC-Klassifizierung von bibliografischen Titeldatensätzen (2009) 0.00
    0.0029745363 = product of:
      0.011898145 = sum of:
        0.011898145 = weight(_text_:information in 611) [ClassicSimilarity], result of:
          0.011898145 = score(doc=611,freq=2.0), product of:
            0.06134496 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.034944877 = queryNorm
            0.19395474 = fieldWeight in 611, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.078125 = fieldNorm(doc=611)
      0.25 = coord(1/4)
    
    Content
    Präsentation zum Vortrag anlässlich des 98. Deutscher Bibliothekartag in Erfurt: Ein neuer Blick auf Bibliotheken; TK10: Information erschließen und recherchieren Inhalte erschließen - mit neuen Tools
  14. Hickey, T.B.; Vizine-Goetz, D.: ¬The Role of Classification in CORC (2001) 0.00
    0.0029745363 = product of:
      0.011898145 = sum of:
        0.011898145 = weight(_text_:information in 1448) [ClassicSimilarity], result of:
          0.011898145 = score(doc=1448,freq=2.0), product of:
            0.06134496 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.034944877 = queryNorm
            0.19395474 = fieldWeight in 1448, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.078125 = fieldNorm(doc=1448)
      0.25 = coord(1/4)
    
    Theme
    Information Gateway
  15. LaBarre, K.; Cochrane, P.A.: Facet analysis as a knowledge management tool on the Internet (2006) 0.00
    0.0029745363 = product of:
      0.011898145 = sum of:
        0.011898145 = weight(_text_:information in 1489) [ClassicSimilarity], result of:
          0.011898145 = score(doc=1489,freq=8.0), product of:
            0.06134496 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.034944877 = queryNorm
            0.19395474 = fieldWeight in 1489, product of:
              2.828427 = tf(freq=8.0), with freq of:
                8.0 = termFreq=8.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.0390625 = fieldNorm(doc=1489)
      0.25 = coord(1/4)
    
    Abstract
    In 2001, a group of information architects involved in designing websites, and knowledge management specialists involved in creating access to corporate knowledge bases appeared to have re-discovered facet analysis and faceted classification. These groups have been instrumental in creating new and different ways of handling digital content of the Internet. Some of these practitioners explicitly use the forms and language of facet analysis and faceted classification, while others seem to do so implicitly. Following a brief overview of the work and discussions on facets and faceted classification in recent years, we focus on our observations about new information resources which seem more in line with the Fourth law of Library Science ("Save the time of the reader") than most library OPACs today. These new developments on the Internet point to a partial grasp of a disciplined approach to subject access. This is where Ranganathan and Neelameghan's approach needs to be reviewed for the new audience of information system designers. A report on the work undertaken by us forms a principal part of this paper.
    Source
    Knowledge organization, information systems and other essays: Professor A. Neelameghan Festschrift. Ed. by K.S. Raghavan and K.N. Prasad
  16. LaBarre, K.: Adventures in faceted classification: a brave new world or a world of confusion? (2004) 0.00
    0.0029446408 = product of:
      0.011778563 = sum of:
        0.011778563 = weight(_text_:information in 2634) [ClassicSimilarity], result of:
          0.011778563 = score(doc=2634,freq=4.0), product of:
            0.06134496 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.034944877 = queryNorm
            0.1920054 = fieldWeight in 2634, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.0546875 = fieldNorm(doc=2634)
      0.25 = coord(1/4)
    
    Source
    Knowledge organization and the global information society: Proceedings of the 8th International ISKO Conference 13-16 July 2004, London, UK. Ed.: I.C. McIlwaine
    Theme
    Information Gateway
  17. Hajdu Barát, A.: Usability and the user interfaces of classical information retrieval languages (2006) 0.00
    0.0029446408 = product of:
      0.011778563 = sum of:
        0.011778563 = weight(_text_:information in 232) [ClassicSimilarity], result of:
          0.011778563 = score(doc=232,freq=4.0), product of:
            0.06134496 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.034944877 = queryNorm
            0.1920054 = fieldWeight in 232, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.0546875 = fieldNorm(doc=232)
      0.25 = coord(1/4)
    
    Abstract
    This paper examines some traditional information searching methods and their role in Hungarian OPACs. What challenges are there in the digital and online environment? How do users work with them and do they give users satisfactory results? What kinds of techniques are users employing? In this paper I examine the user interfaces of UDC, thesauri, subject headings etc. in the Hungarian library. The key question of the paper is whether a universal system or local solutions is the best approach for searching in the digital environment.
  18. Slavic-Overfield, A.: Classification management and use in a networked environment : the case of the Universal Decimal Classification (2005) 0.00
    0.0026605062 = product of:
      0.010642025 = sum of:
        0.010642025 = weight(_text_:information in 2191) [ClassicSimilarity], result of:
          0.010642025 = score(doc=2191,freq=10.0), product of:
            0.06134496 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.034944877 = queryNorm
            0.1734784 = fieldWeight in 2191, product of:
              3.1622777 = tf(freq=10.0), with freq of:
                10.0 = termFreq=10.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.03125 = fieldNorm(doc=2191)
      0.25 = coord(1/4)
    
    Abstract
    In the Internet information space, advanced information retrieval (IR) methods and automatic text processing are used in conjunction with traditional knowledge organization systems (KOS). New information technology provides a platform for better KOS publishing, exploitation and sharing both for human and machine use. Networked KOS services are now being planned and developed as powerful tools for resource discovery. They will enable automatic contextualisation, interpretation and query matching to different indexing languages. The Semantic Web promises to be an environment in which the quality of semantic relationships in bibliographic classification systems can be fully exploited. Their use in the networked environment is, however, limited by the fact that they are not prepared or made available for advanced machine processing. The UDC was chosen for this research because of its widespread use and its long-term presence in online information retrieval systems. It was also the first system to be used for the automatic classification of Internet resources, and the first to be made available as a classification tool on the Web. The objective of this research is to establish the advantages of using UDC for information retrieval in a networked environment, to highlight the problems of automation and classification exchange, and to offer possible solutions. The first research question was is there enough evidence of the use of classification on the Internet to justify further development with this particular environment in mind? The second question is what are the automation requirements for the full exploitation of UDC and its exchange? The third question is which areas are in need of improvement and what specific recommendations can be made for implementing the UDC in a networked environment? A summary of changes required in the management and development of the UDC to facilitate its full adaptation for future use is drawn from this analysis.
  19. Place, E.: International collaboration on Internet subject gateways (2000) 0.00
    0.0025760243 = product of:
      0.010304097 = sum of:
        0.010304097 = weight(_text_:information in 4584) [ClassicSimilarity], result of:
          0.010304097 = score(doc=4584,freq=6.0), product of:
            0.06134496 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.034944877 = queryNorm
            0.16796975 = fieldWeight in 4584, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.0390625 = fieldNorm(doc=4584)
      0.25 = coord(1/4)
    
    Abstract
    Eine ganze Anzahl von Bibliotheken in Europa befaßt sich mit der Entwicklung von Internet Subject Gateways - einer Serviceleistung, die den Nutzern helfen soll, qualitativ hochwertige Internetquellen zu finden. Subject Gateways wie SOSIG (The Social Science Information Gateway) sind bereits seit einigen Jahren im Internet verfügbar und stellen eine Alternative zu Internet-Suchmaschinen wie AltaVista und Verzeichnissen wie Yahoo dar. Bezeichnenderweise stützen sich Subject Gateways auf die Fertigkeiten, Verfahrensweisen und Standards der internationalen Bibliothekswelt und wenden diese auf Informationen aus dem Internet an. Dieses Referat will daher betonen, daß Bibliothekare/innen idealerweise eine vorherrschende Rolle im Aufbau von Suchservices für Internetquellen spielen und daß Information Gateways eine Möglichkeit dafür darstellen. Es wird einige der Subject Gateway-Initiativen in Europa umreißen und die Werkzeuge und Technologien beschreiben, die vom Projekt DESIRE entwickelt wurden, um die Entwicklung neuer Gateways in anderen Ländern zu unterstützen. Es wird auch erörtert, wie IMesh, eine Gruppe für Gateways aus der ganzen Welt eine internationale Strategie für Gateways anstrebt und versucht, Standards zur Umsetzung dieses Projekts zu entwickeln
    Theme
    Information Gateway
  20. LaBarre, K.: ¬A multi faceted view : use of facet analysis in the practice of website organization and access (2006) 0.00
    0.0025760243 = product of:
      0.010304097 = sum of:
        0.010304097 = weight(_text_:information in 257) [ClassicSimilarity], result of:
          0.010304097 = score(doc=257,freq=6.0), product of:
            0.06134496 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.034944877 = queryNorm
            0.16796975 = fieldWeight in 257, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.0390625 = fieldNorm(doc=257)
      0.25 = coord(1/4)
    
    Abstract
    In 2001, information architects and knowledge management specialists charged with designing websites and access to corporate knowledge bases seemingly re-discovered a legacy form of information organization and access: faceted analytico-synthetic theory (FAST). Instrumental in creating new and different ways for people to engage with the digital content of the Web, the members of this group have clearly recognized that faceted approaches have the potential to improve access to information on the web. Some of these practitioners explicitly use the forms and language of FAST, while others seem to mimic the forms implicitly (Adkisson, 2003). The focus of this ongoing research study is two-fold. First, access and organizational structures in a stratified random sample of 200 DMOZ websites were examined for evidence of the use of FAST. Second, in the context of unstructured interviews, the understanding and use of FAST among a group of eighteen practitioners is uncovered. This is a preliminary report of the website component capture and interview phases of this research study. Future work will involve formalizing a set of feature guidelines drawn from the initial phases of this research study. Preliminary observations will be drawn from the first phase of this study.

Languages

  • e 47
  • d 4

Types

  • a 41
  • el 8
  • m 3
  • s 2
  • x 1
  • More… Less…