Search (9 results, page 1 of 1)

  • × year_i:[2010 TO 2020}
  • × author_ss:"Chen, C."
  1. Liu, S.; Chen, C.: ¬The differences between latent topics in abstracts and citation contexts of citing papers (2013) 0.00
    0.0029745363 = product of:
      0.011898145 = sum of:
        0.011898145 = weight(_text_:information in 671) [ClassicSimilarity], result of:
          0.011898145 = score(doc=671,freq=8.0), product of:
            0.06134496 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.034944877 = queryNorm
            0.19395474 = fieldWeight in 671, product of:
              2.828427 = tf(freq=8.0), with freq of:
                8.0 = termFreq=8.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.0390625 = fieldNorm(doc=671)
      0.25 = coord(1/4)
    
    Abstract
    Although it is commonly expected that the citation context of a reference is likely to provide more detailed and direct information about the nature of a citation, few studies in the literature have specifically addressed the extent to which the information in different parts of a scientific publication differs. Do abstracts tend to use conceptually broader terms than sentences in a citation context in the body of a publication? In this article, we propose a method to analyze and compare latent topics in scientific publications, in particular, from abstracts of papers that cited a target reference and from sentences that cited the target reference. We conducted an experiment and applied topical modeling techniques to full-text papers in eight biomedicine journals. Topics derived from the two sources are compared in terms of their similarities and broad-narrow relationships defined based on information entropy. The results show that abstracts and citation contexts are characterized by distinct sets of topics with moderate overlaps. Furthermore, the results confirm that topics from abstracts of citing papers have broader terms than topics from citation contexts formed by citing sentences. The method and the findings could be used to enhance and extend the current methodologies for research evaluation and citation evaluation.
    Source
    Journal of the American Society for Information Science and Technology. 64(2013) no.3, S.627-639
  2. He, J.; Ping, Q.; Lou, W.; Chen, C.: PaperPoles : facilitating adaptive visual exploration of scientific publications by citation links (2019) 0.00
    0.0029745363 = product of:
      0.011898145 = sum of:
        0.011898145 = weight(_text_:information in 5326) [ClassicSimilarity], result of:
          0.011898145 = score(doc=5326,freq=8.0), product of:
            0.06134496 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.034944877 = queryNorm
            0.19395474 = fieldWeight in 5326, product of:
              2.828427 = tf(freq=8.0), with freq of:
                8.0 = termFreq=8.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.0390625 = fieldNorm(doc=5326)
      0.25 = coord(1/4)
    
    Abstract
    Finding relevant publications is a common task. Typically, a researcher browses through a list of publications and traces additional relevant publications. When relevant publications are identified, the list may be expanded by the citation links of the relevant publications. The information needs of researchers may change as they go through such iterative processes. The exploration process quickly becomes cumbersome as the list expands. Most existing academic search systems tend to be limited in terms of the extent to which searchers can adapt their search as they proceed. In this article, we introduce an adaptive visual exploration system named PaperPoles to support exploration of scientific publications in a context-aware environment. Searchers can express their information needs by intuitively formulating positive and negative queries. The search results are grouped and displayed in a cluster view, which shows aspects and relevance patterns of the results to support navigation and exploration. We conducted an experiment to compare PaperPoles with a list-based interface in performing two academic search tasks with different complexity. The results show that PaperPoles can improve the accuracy of searching for the simple and complex tasks. It can also reduce the completion time of searching and improve exploration effectiveness in the complex task. PaperPoles demonstrates a potentially effective workflow for adaptive visual search of complex information.
    Source
    Journal of the Association for Information Science and Technology. 70(2019) no.8, S.843-857
  3. Chen, C.: Predictive effects of structural variation on citation counts (2012) 0.00
    0.0026605062 = product of:
      0.010642025 = sum of:
        0.010642025 = weight(_text_:information in 64) [ClassicSimilarity], result of:
          0.010642025 = score(doc=64,freq=10.0), product of:
            0.06134496 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.034944877 = queryNorm
            0.1734784 = fieldWeight in 64, product of:
              3.1622777 = tf(freq=10.0), with freq of:
                10.0 = termFreq=10.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.03125 = fieldNorm(doc=64)
      0.25 = coord(1/4)
    
    Abstract
    A critical part of a scientific activity is to discern how a new idea is related to what we know and what may become possible. As the number of new scientific publications arrives at a rate that rapidly outpaces our capacity of reading, analyzing, and synthesizing scientific knowledge, we need to augment ourselves with information that can effectively guide us through the rapidly growing intellectual space. In this article, we address a fundamental issue concerning what kinds of information may serve as early signs of potentially valuable ideas. In particular, we are interested in information that is routinely available and derivable upon the publication of a scientific paper without assuming the availability of additional information such as its usage and citations. We propose a theoretical and computational model that predicts the potential of a scientific publication in terms of the degree to which it alters the intellectual structure of the state of the art. The structural variation approach focuses on the novel boundary-spanning connections introduced by a new article to the intellectual space. We validate the role of boundary-spanning in predicting future citations using three metrics of structural variation-namely, modularity change rate, cluster linkage, and Centrality Divergence-along with more commonly studied predictors of citations such as the number of coauthors, the number of cited references, and the number of pages. Main effects of these factors are estimated for five cases using zero-inflated negative binomial regression models of citation counts. Key findings indicate that (a) structural variations measured by cluster linkage are a better predictor of citation counts than are the more commonly studied variables such as the number of references cited, (b) the number of coauthors and the number of references are both good predictors of global citation counts to a lesser extent, and (c) the Centrality Divergence metric is potentially valuable for detecting boundary-spanning activities at interdisciplinary levels. The structural variation approach offers a new way to monitor and discern the potential of newly published papers in context. The boundary-spanning mechanism offers a conceptually simplified and unifying explanation of the roles played by commonly studied extrinsic properties of a publication in the study of citation behavior.
    Source
    Journal of the American Society for Information Science and Technology. 63(2012) no.3, S.431-449
  4. Chen, C.; Ibekwe-SanJuan, F.; Hou, J.: ¬The structure and dynamics of cocitation clusters : a multiple-perspective cocitation analysis (2010) 0.00
    0.0025239778 = product of:
      0.010095911 = sum of:
        0.010095911 = weight(_text_:information in 3591) [ClassicSimilarity], result of:
          0.010095911 = score(doc=3591,freq=4.0), product of:
            0.06134496 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.034944877 = queryNorm
            0.16457605 = fieldWeight in 3591, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.046875 = fieldNorm(doc=3591)
      0.25 = coord(1/4)
    
    Abstract
    A multiple-perspective cocitation analysis method is introduced for characterizing and interpreting the structure and dynamics of cocitation clusters. The method facilitates analytic and sense making tasks by integrating network visualization, spectral clustering, automatic cluster labeling, and text summarization. Cocitation networks are decomposed into cocitation clusters. The interpretation of these clusters is augmented by automatic cluster labeling and summarization. The method focuses on the interrelations between a cocitation cluster's members and their citers. The generic method is applied to a three-part analysis of the field of information science as defined by 12 journals published between 1996 and 2008: (a) a comparative author cocitation analysis (ACA), (b) a progressive ACA of a time series of cocitation networks, and (c) a progressive document cocitation analysis (DCA). Results show that the multiple-perspective method increases the interpretability and accountability of both ACA and DCA networks.
    Source
    Journal of the American Society for Information Science and Technology. 61(2010) no.7, S.1386-1409
  5. Ding, W.; Chen, C.: Dynamic topic detection and tracking : a comparison of HDP, C-word, and cocitation methods (2014) 0.00
    0.0017847219 = product of:
      0.0071388874 = sum of:
        0.0071388874 = weight(_text_:information in 1502) [ClassicSimilarity], result of:
          0.0071388874 = score(doc=1502,freq=2.0), product of:
            0.06134496 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.034944877 = queryNorm
            0.116372846 = fieldWeight in 1502, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.046875 = fieldNorm(doc=1502)
      0.25 = coord(1/4)
    
    Source
    Journal of the Association for Information Science and Technology. 65(2014) no.10, S.2084-2097
  6. Chen, C.; Hu, Z.; Milbank, J.; Schultz, T.: ¬A visual analytic study of retracted articles in scientific literature (2013) 0.00
    0.0014872681 = product of:
      0.0059490725 = sum of:
        0.0059490725 = weight(_text_:information in 610) [ClassicSimilarity], result of:
          0.0059490725 = score(doc=610,freq=2.0), product of:
            0.06134496 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.034944877 = queryNorm
            0.09697737 = fieldWeight in 610, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.0390625 = fieldNorm(doc=610)
      0.25 = coord(1/4)
    
    Source
    Journal of the American Society for Information Science and Technology. 64(2013) no.2, S.234-253
  7. Leydesdorff, L.; Rafols, I.; Chen, C.: Interactive overlays of journals and the measurement of interdisciplinarity on the basis of aggregated journal-journal citations (2013) 0.00
    0.0014872681 = product of:
      0.0059490725 = sum of:
        0.0059490725 = weight(_text_:information in 1131) [ClassicSimilarity], result of:
          0.0059490725 = score(doc=1131,freq=2.0), product of:
            0.06134496 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.034944877 = queryNorm
            0.09697737 = fieldWeight in 1131, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.0390625 = fieldNorm(doc=1131)
      0.25 = coord(1/4)
    
    Source
    Journal of the American Society for Information Science and Technology. 64(2013) no.12, S.2573-2586
  8. Chen, C.; Leydesdorff, L.: Patterns of connections and movements in dual-map overlays : a new method of publication portfolio analysis (2014) 0.00
    0.0014872681 = product of:
      0.0059490725 = sum of:
        0.0059490725 = weight(_text_:information in 1200) [ClassicSimilarity], result of:
          0.0059490725 = score(doc=1200,freq=2.0), product of:
            0.06134496 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.034944877 = queryNorm
            0.09697737 = fieldWeight in 1200, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.0390625 = fieldNorm(doc=1200)
      0.25 = coord(1/4)
    
    Source
    Journal of the Association for Information Science and Technology. 65(2014) no.2, S.334-351
  9. Ping, Q.; He, J.; Chen, C.: How many ways to use CiteSpace? : a study of user interactive events over 14 months (2017) 0.00
    0.0014872681 = product of:
      0.0059490725 = sum of:
        0.0059490725 = weight(_text_:information in 3602) [ClassicSimilarity], result of:
          0.0059490725 = score(doc=3602,freq=2.0), product of:
            0.06134496 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.034944877 = queryNorm
            0.09697737 = fieldWeight in 3602, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.0390625 = fieldNorm(doc=3602)
      0.25 = coord(1/4)
    
    Source
    Journal of the Association for Information Science and Technology. 68(2017) no.5, S.1234-1256