Search (6 results, page 1 of 1)

  • × author_ss:"Qin, J."
  1. Qin, J.; Paling, S.: Converting a controlled vocabulary into an ontology : the case of GEM (2001) 0.01
    0.005931762 = product of:
      0.02965881 = sum of:
        0.02965881 = product of:
          0.05931762 = sum of:
            0.05931762 = weight(_text_:22 in 3895) [ClassicSimilarity], result of:
              0.05931762 = score(doc=3895,freq=2.0), product of:
                0.12776221 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.036484417 = queryNorm
                0.46428138 = fieldWeight in 3895, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.09375 = fieldNorm(doc=3895)
          0.5 = coord(1/2)
      0.2 = coord(1/5)
    
    Date
    24. 8.2005 19:20:22
  2. Qin, J.; Wesley, K.: Web indexing with meta fields : a survey of Web objects in polymer chemistry (1998) 0.00
    0.0041203364 = product of:
      0.02060168 = sum of:
        0.02060168 = product of:
          0.04120336 = sum of:
            0.04120336 = weight(_text_:problems in 3589) [ClassicSimilarity], result of:
              0.04120336 = score(doc=3589,freq=2.0), product of:
                0.15058853 = queryWeight, product of:
                  4.1274753 = idf(docFreq=1937, maxDocs=44218)
                  0.036484417 = queryNorm
                0.27361554 = fieldWeight in 3589, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  4.1274753 = idf(docFreq=1937, maxDocs=44218)
                  0.046875 = fieldNorm(doc=3589)
          0.5 = coord(1/2)
      0.2 = coord(1/5)
    
    Abstract
    Reports results of a study of 4 WWW search engines: AltaVista; Lycos; Excite and WebCrawler to collect data on Web objects on polymer chemistry. 1.037 Web objects were examined for data in 4 categories: document information; use of meta fields; use of images and use of chemical names. Issues raised included: whether to provide metadata elements for parts of entities or whole entities only, the use of metasyntax, problems in representation of special types of objects, and whether links should be considered when encoding metadata. Use of metafields was not widespread in the sample and knowledge of metafields in HTML varied greatly among Web object creators. The study formed part of a metadata project funded by the OCLC Library and Information Science Research Grant Program
  3. Qin, J.; Chen, J.: ¬A multi-layered, multi-dimensional representation of digital educational resources (2003) 0.00
    0.0041203364 = product of:
      0.02060168 = sum of:
        0.02060168 = product of:
          0.04120336 = sum of:
            0.04120336 = weight(_text_:problems in 3818) [ClassicSimilarity], result of:
              0.04120336 = score(doc=3818,freq=2.0), product of:
                0.15058853 = queryWeight, product of:
                  4.1274753 = idf(docFreq=1937, maxDocs=44218)
                  0.036484417 = queryNorm
                0.27361554 = fieldWeight in 3818, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  4.1274753 = idf(docFreq=1937, maxDocs=44218)
                  0.046875 = fieldNorm(doc=3818)
          0.5 = coord(1/2)
      0.2 = coord(1/5)
    
    Abstract
    Semantic mapping between controlled vocabulary and keywords is the first step towards knowledge-based subject access. This study reports the preliminary result of a semantic mapping experiment for the Gateway to Educational Materials (GEM). A total of 3,555 keywords were mapped with 322 concept names in the GEM controlled vocabulary. The preliminary test to 10,000 metadata records presented widely varied sets of results between the mapped and non-mapped data. The paper discussed linguistic and technical problems encountered in the mapping process and raised issues in the representation technologies and methods, which will lead to future study of knowledge-based access to networked information resources.
  4. Chen, H.; Chung, W.; Qin, J.; Reid, E.; Sageman, M.; Weimann, G.: Uncovering the dark Web : a case study of Jihad on the Web (2008) 0.00
    0.0041203364 = product of:
      0.02060168 = sum of:
        0.02060168 = product of:
          0.04120336 = sum of:
            0.04120336 = weight(_text_:problems in 1880) [ClassicSimilarity], result of:
              0.04120336 = score(doc=1880,freq=2.0), product of:
                0.15058853 = queryWeight, product of:
                  4.1274753 = idf(docFreq=1937, maxDocs=44218)
                  0.036484417 = queryNorm
                0.27361554 = fieldWeight in 1880, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  4.1274753 = idf(docFreq=1937, maxDocs=44218)
                  0.046875 = fieldNorm(doc=1880)
          0.5 = coord(1/2)
      0.2 = coord(1/5)
    
    Abstract
    While the Web has become a worldwide platform for communication, terrorists share their ideology and communicate with members on the Dark Web - the reverse side of the Web used by terrorists. Currently, the problems of information overload and difficulty to obtain a comprehensive picture of terrorist activities hinder effective and efficient analysis of terrorist information on the Web. To improve understanding of terrorist activities, we have developed a novel methodology for collecting and analyzing Dark Web information. The methodology incorporates information collection, analysis, and visualization techniques, and exploits various Web information sources. We applied it to collecting and analyzing information of 39 Jihad Web sites and developed visualization of their site contents, relationships, and activity levels. An expert evaluation showed that the methodology is very useful and promising, having a high potential to assist in investigation and understanding of terrorist activities by producing results that could potentially help guide both policymaking and intelligence research.
  5. Chen, M.; Liu, X.; Qin, J.: Semantic relation extraction from socially-generated tags : a methodology for metadata generation (2008) 0.00
    0.0024715676 = product of:
      0.0123578375 = sum of:
        0.0123578375 = product of:
          0.024715675 = sum of:
            0.024715675 = weight(_text_:22 in 2648) [ClassicSimilarity], result of:
              0.024715675 = score(doc=2648,freq=2.0), product of:
                0.12776221 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.036484417 = queryNorm
                0.19345059 = fieldWeight in 2648, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=2648)
          0.5 = coord(1/2)
      0.2 = coord(1/5)
    
    Source
    Metadata for semantic and social applications : proceedings of the International Conference on Dublin Core and Metadata Applications, Berlin, 22 - 26 September 2008, DC 2008: Berlin, Germany / ed. by Jane Greenberg and Wolfgang Klas
  6. Qin, J.: Evolving paradigms of knowledge representation and organization : a comparative study of classification, XML/DTD and ontology (2003) 0.00
    0.001977254 = product of:
      0.009886269 = sum of:
        0.009886269 = product of:
          0.019772539 = sum of:
            0.019772539 = weight(_text_:22 in 2763) [ClassicSimilarity], result of:
              0.019772539 = score(doc=2763,freq=2.0), product of:
                0.12776221 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.036484417 = queryNorm
                0.15476047 = fieldWeight in 2763, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.03125 = fieldNorm(doc=2763)
          0.5 = coord(1/2)
      0.2 = coord(1/5)
    
    Date
    12. 9.2004 17:22:35