Search (10 results, page 1 of 1)

  • × subject_ss:"Semantic Web"
  1. Multimedia content and the Semantic Web : methods, standards, and tools (2005) 0.03
    0.030142525 = product of:
      0.07535631 = sum of:
        0.012139657 = product of:
          0.024279313 = sum of:
            0.024279313 = weight(_text_:problems in 150) [ClassicSimilarity], result of:
              0.024279313 = score(doc=150,freq=4.0), product of:
                0.15058853 = queryWeight, product of:
                  4.1274753 = idf(docFreq=1937, maxDocs=44218)
                  0.036484417 = queryNorm
                0.1612295 = fieldWeight in 150, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  4.1274753 = idf(docFreq=1937, maxDocs=44218)
                  0.01953125 = fieldNorm(doc=150)
          0.5 = coord(1/2)
        0.06321666 = sum of:
          0.041812256 = weight(_text_:etc in 150) [ClassicSimilarity], result of:
            0.041812256 = score(doc=150,freq=4.0), product of:
              0.19761753 = queryWeight, product of:
                5.4164915 = idf(docFreq=533, maxDocs=44218)
                0.036484417 = queryNorm
              0.2115817 = fieldWeight in 150, product of:
                2.0 = tf(freq=4.0), with freq of:
                  4.0 = termFreq=4.0
                5.4164915 = idf(docFreq=533, maxDocs=44218)
                0.01953125 = fieldNorm(doc=150)
          0.021404404 = weight(_text_:22 in 150) [ClassicSimilarity], result of:
            0.021404404 = score(doc=150,freq=6.0), product of:
              0.12776221 = queryWeight, product of:
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.036484417 = queryNorm
              0.16753313 = fieldWeight in 150, product of:
                2.4494898 = tf(freq=6.0), with freq of:
                  6.0 = termFreq=6.0
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.01953125 = fieldNorm(doc=150)
      0.4 = coord(2/5)
    
    Classification
    006.7 22
    Date
    7. 3.2007 19:30:22
    DDC
    006.7 22
    Footnote
    Semantic web technologies are explained, and ontology representation is emphasized. There is an excellent summary of the fundamental theory behind applying a knowledge-engineering approach to vision problems. This summary represents the concept of the semantic web and multimedia content analysis. A definition of the fuzzy knowledge representation that can be used for realization in multimedia content applications has been provided, with a comprehensive analysis. The second part of the book introduces the multimedia content analysis approaches and applications. In addition, some examples of methods applicable to multimedia content analysis are presented. Multimedia content analysis is a very diverse field and concerns many other research fields at the same time; this creates strong diversity issues, as everything from low-level features (e.g., colors, DCT coefficients, motion vectors, etc.) up to the very high and semantic level (e.g., Object, Events, Tracks, etc.) are involved. The second part includes topics on structure identification (e.g., shot detection for video sequences), and object-based video indexing. These conventional analysis methods are supplemented by results on semantic multimedia analysis, including three detailed chapters on the development and use of knowledge models for automatic multimedia analysis. Starting from object-based indexing and continuing with machine learning, these three chapters are very logically organized. Because of the diversity of this research field, including several chapters of recent research results is not sufficient to cover the state of the art of multimedia. The editors of the book should write an introductory chapter about multimedia content analysis approaches, basic problems, and technical issues and challenges, and try to survey the state of the art of the field and thus introduce the field to the reader.
  2. Antoniou, G.; Harmelen, F. van: ¬A semantic Web primer (2004) 0.02
    0.019272739 = product of:
      0.048181847 = sum of:
        0.012139657 = product of:
          0.024279313 = sum of:
            0.024279313 = weight(_text_:problems in 468) [ClassicSimilarity], result of:
              0.024279313 = score(doc=468,freq=4.0), product of:
                0.15058853 = queryWeight, product of:
                  4.1274753 = idf(docFreq=1937, maxDocs=44218)
                  0.036484417 = queryNorm
                0.1612295 = fieldWeight in 468, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  4.1274753 = idf(docFreq=1937, maxDocs=44218)
                  0.01953125 = fieldNorm(doc=468)
          0.5 = coord(1/2)
        0.03604219 = product of:
          0.07208438 = sum of:
            0.07208438 = weight(_text_:exercises in 468) [ClassicSimilarity], result of:
              0.07208438 = score(doc=468,freq=4.0), product of:
                0.25947425 = queryWeight, product of:
                  7.11192 = idf(docFreq=97, maxDocs=44218)
                  0.036484417 = queryNorm
                0.27780938 = fieldWeight in 468, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  7.11192 = idf(docFreq=97, maxDocs=44218)
                  0.01953125 = fieldNorm(doc=468)
          0.5 = coord(1/2)
      0.4 = coord(2/5)
    
    Abstract
    The development of the Semantic Web, with machine-readable content, has the potential to revolutionise the World Wide Web and its use. A Semantic Web Primer provides an introduction and guide to this emerging field, describing its key ideas, languages and technologies. Suitable for use as a textbook or for self-study by professionals, it concentrates on undergraduate-level fundamental concepts and techniques that will enable readers to proceed with building applications on their own. It includes exercises, project descriptions and annotated references to relevant online materials. A Semantic Web Primer is the only available book on the Semantic Web to include a systematic treatment of the different languages (XML, RDF, OWL and rules) and technologies (explicit metadata, ontologies and logic and interference) that are central to Semantic Web development. The book also examines such crucial related topics as ontology engineering and application scenarios. After an introductory chapter, topics covered in succeeding chapters include XML and related technologies that support semantic interoperability; RDF and RDF Schema, the standard data model for machine-processable semantics; and OWL, the W3C-approved standard for a Web ontology language more extensive than RDF Schema; rules, both monotonic and nonmonotonic, in the framework of the Semantic Web; selected application domains and how the Semantic Web would benefit them; the development of ontology-based systems; and current debates on key issues and predictions for the future.
    Footnote
    Rez. in: JASIST 57(2006) no.8, S.1132-1133 (H. Che): "The World Wide Web has been the main source of an important shift in the way people communicate with each other, get information, and conduct business. However, most of the current Web content is only suitable for human consumption. The main obstacle to providing better quality of service is that the meaning of Web content is not machine-accessible. The "Semantic Web" is envisioned by Tim Berners-Lee as a logical extension to the current Web that enables explicit representations of term meaning. It aims to bring the Web to its full potential via the exploration of these machine-processable metadata. To fulfill this, it pros ides some meta languages like RDF, OWL, DAML+OIL, and SHOE for expressing knowledge that has clear, unambiguous meanings. The first steps in searing the Semantic Web into the current Web are successfully underway. In the forthcoming years, these efforts still remain highly focused in the research and development community. In the next phase, the Semantic Web will respond more intelligently to user queries. The first chapter gets started with an excellent introduction to the Semantic Web vision. At first, today's Web is introduced, and problems with some current applications like search engines are also covered. Subsequently, knowledge management. business-to-consumer electronic commerce, business-to-business electronic commerce, and personal agents are used as examples to show the potential requirements for the Semantic Web. Next comes the brief description of the underpinning technologies, including metadata, ontology, logic, and agent. The differences between the Semantic Web and Artificial Intelligence are also discussed in a later subsection. In section 1.4, the famous "laser-cake" diagram is given to show a layered view of the Semantic Web. From chapter 2, the book starts addressing some of the most important technologies for constructing the Semantic Web. In chapter 2, the authors discuss XML and its related technologies such as namespaces, XPath, and XSLT. XML is a simple, very flexible text format which is often used for the exchange of a wide variety of data on the Web and elsewhere. The W3C has defined various languages on top of XML, such as RDF. Although this chapter is very well planned and written, many details are not included because of the extensiveness of the XML technologies. Many other books on XML provide more comprehensive coverage.
    The chapter on ontology engineering describes the development of ontology-based systems for the Web using manual and semiautomatic methods. Ontology is a concept similar to taxonomy. As stated in the introduction, ontology engineering deals with some of the methodological issues that arise when building ontologies, in particular, con-structing ontologies manually, reusing existing ontologies. and using semiautomatic methods. A medium-scale project is included at the end of the chapter. Overall the book is a nice introduction to the key components of the Semantic Web. The reading is quite pleasant, in part due to the concise layout that allows just enough content per page to facilitate readers' comprehension. Furthermore, the book provides a large number of examples, code snippets, exercises, and annotated online materials. Thus, it is very suitable for use as a textbook for undergraduates and low-grade graduates, as the authors say in the preface. However, I believe that not only students but also professionals in both academia and iudustry will benefit from the book. The authors also built an accompanying Web site for the book at http://www.semanticwebprimer.org. On the main page, there are eight tabs for each of the eight chapters. For each tabm the following sections are included: overview, example, presentations, problems and quizzes, errata, and links. These contents will greatly facilitate readers: for example, readers can open the listed links to further their readings. The vacancy of the errata sections also proves the quality of the book."
  3. Gödert, W.; Hubrich, J.; Nagelschmidt, M.: Semantic knowledge representation for information retrieval (2014) 0.01
    0.014172435 = product of:
      0.035431087 = sum of:
        0.02060168 = product of:
          0.04120336 = sum of:
            0.04120336 = weight(_text_:problems in 987) [ClassicSimilarity], result of:
              0.04120336 = score(doc=987,freq=2.0), product of:
                0.15058853 = queryWeight, product of:
                  4.1274753 = idf(docFreq=1937, maxDocs=44218)
                  0.036484417 = queryNorm
                0.27361554 = fieldWeight in 987, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  4.1274753 = idf(docFreq=1937, maxDocs=44218)
                  0.046875 = fieldNorm(doc=987)
          0.5 = coord(1/2)
        0.014829405 = product of:
          0.02965881 = sum of:
            0.02965881 = weight(_text_:22 in 987) [ClassicSimilarity], result of:
              0.02965881 = score(doc=987,freq=2.0), product of:
                0.12776221 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.036484417 = queryNorm
                0.23214069 = fieldWeight in 987, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046875 = fieldNorm(doc=987)
          0.5 = coord(1/2)
      0.4 = coord(2/5)
    
    Content
    Introduction: envisioning semantic information spacesIndexing and knowledge organization -- Semantic technologies for knowledge representation -- Information retrieval and knowledge exploration -- Approaches to handle heterogeneity -- Problems with establishing semantic interoperability -- Formalization in indexing languages -- Typification of semantic relations -- Inferences in retrieval processes -- Semantic interoperability and inferences -- Remaining research questions.
    Date
    23. 7.2017 13:49:22
  4. Manning, C.D.; Raghavan, P.; Schütze, H.: Introduction to information retrieval (2008) 0.01
    0.008155417 = product of:
      0.040777083 = sum of:
        0.040777083 = product of:
          0.08155417 = sum of:
            0.08155417 = weight(_text_:exercises in 4041) [ClassicSimilarity], result of:
              0.08155417 = score(doc=4041,freq=2.0), product of:
                0.25947425 = queryWeight, product of:
                  7.11192 = idf(docFreq=97, maxDocs=44218)
                  0.036484417 = queryNorm
                0.31430542 = fieldWeight in 4041, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  7.11192 = idf(docFreq=97, maxDocs=44218)
                  0.03125 = fieldNorm(doc=4041)
          0.5 = coord(1/2)
      0.2 = coord(1/5)
    
    Abstract
    Class-tested and coherent, this textbook teaches information retrieval, including web search, text classification, and text clustering from basic concepts. Ideas are explained using examples and figures, making it perfect for introductory courses in information retrieval for advanced undergraduates and graduate students. Slides and additional exercises are available for lecturers. - This book provides what Salton and Van Rijsbergen both failed to achieve. Even more important, unlike some other books in IR, the authors appear to care about making the theory as accessible as possible to the reader, on occasion including short primers to certain topics or choosing to explain difficult concepts using simplified approaches. Its coverage [is] excellent, the quality of writing high and I was surprised how much I learned from reading it. I think the online resources are impressive.
  5. Hitzler, P.; Krötzsch, M.; Rudolph, S.: Foundations of Semantic Web technologies (2010) 0.01
    0.008155417 = product of:
      0.040777083 = sum of:
        0.040777083 = product of:
          0.08155417 = sum of:
            0.08155417 = weight(_text_:exercises in 359) [ClassicSimilarity], result of:
              0.08155417 = score(doc=359,freq=2.0), product of:
                0.25947425 = queryWeight, product of:
                  7.11192 = idf(docFreq=97, maxDocs=44218)
                  0.036484417 = queryNorm
                0.31430542 = fieldWeight in 359, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  7.11192 = idf(docFreq=97, maxDocs=44218)
                  0.03125 = fieldNorm(doc=359)
          0.5 = coord(1/2)
      0.2 = coord(1/5)
    
    Abstract
    This text introduces the standardized knowledge representation languages for modeling ontologies operating at the core of the semantic web. It covers RDF schema, Web Ontology Language (OWL), rules, query languages, the OWL 2 revision, and the forthcoming Rule Interchange Format (RIF). A 2010 CHOICE Outstanding Academic Title ! The nine chapters of the book guide the reader through the major foundational languages for the semantic Web and highlight the formal semantics. ! the book has very interesting supporting material and exercises, is oriented to W3C standards, and provides the necessary foundations for the semantic Web. It will be easy to follow by the computer scientist who already has a basic background on semantic Web issues; it will also be helpful for both self-study and teaching purposes. I recommend this book primarily as a complementary textbook for a graduate or undergraduate course in a computer science or a Web science academic program. --Computing Reviews, February 2010 This book is unique in several respects. It contains an in-depth treatment of all the major foundational languages for the Semantic Web and provides a full treatment of the underlying formal semantics, which is central to the Semantic Web effort. It is also the very first textbook that addresses the forthcoming W3C recommended standards OWL 2 and RIF. Furthermore, the covered topics and underlying concepts are easily accessible for the reader due to a clear separation of syntax and semantics ! I am confident this book will be well received and play an important role in training a larger number of students who will seek to become proficient in this growing discipline.
  6. Weller, K.: Knowledge representation in the Social Semantic Web (2010) 0.00
    0.0041392017 = product of:
      0.020696009 = sum of:
        0.020696009 = product of:
          0.041392017 = sum of:
            0.041392017 = weight(_text_:etc in 4515) [ClassicSimilarity], result of:
              0.041392017 = score(doc=4515,freq=2.0), product of:
                0.19761753 = queryWeight, product of:
                  5.4164915 = idf(docFreq=533, maxDocs=44218)
                  0.036484417 = queryNorm
                0.20945519 = fieldWeight in 4515, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  5.4164915 = idf(docFreq=533, maxDocs=44218)
                  0.02734375 = fieldNorm(doc=4515)
          0.5 = coord(1/2)
      0.2 = coord(1/5)
    
    Abstract
    The main purpose of this book is to sum up the vital and highly topical research issue of knowledge representation on the Web and to discuss novel solutions by combining benefits of folksonomies and Web 2.0 approaches with ontologies and semantic technologies. This book contains an overview of knowledge representation approaches in past, present and future, introduction to ontologies, Web indexing and in first case the novel approaches of developing ontologies. This title combines aspects of knowledge representation for both the Semantic Web (ontologies) and the Web 2.0 (folksonomies). Currently there is no monographic book which provides a combined overview over these topics. focus on the topic of using knowledge representation methods for document indexing purposes. For this purpose, considerations from classical librarian interests in knowledge representation (thesauri, classification schemes etc.) are included, which are not part of most other books which have a stronger background in computer science.
  7. Fensel, D.: Ontologies : a silver bullet for knowledge management and electronic commerce (2004) 0.00
    0.0034953242 = product of:
      0.01747662 = sum of:
        0.01747662 = product of:
          0.03495324 = sum of:
            0.03495324 = weight(_text_:22 in 1949) [ClassicSimilarity], result of:
              0.03495324 = score(doc=1949,freq=4.0), product of:
                0.12776221 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.036484417 = queryNorm
                0.27358043 = fieldWeight in 1949, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=1949)
          0.5 = coord(1/2)
      0.2 = coord(1/5)
    
    Classification
    004.67/8 22
    DDC
    004.67/8 22
  8. Chaudhury, S.; Mallik, A.; Ghosh, H.: Multimedia ontology : representation and applications (2016) 0.00
    0.0034336136 = product of:
      0.017168067 = sum of:
        0.017168067 = product of:
          0.034336135 = sum of:
            0.034336135 = weight(_text_:problems in 2801) [ClassicSimilarity], result of:
              0.034336135 = score(doc=2801,freq=2.0), product of:
                0.15058853 = queryWeight, product of:
                  4.1274753 = idf(docFreq=1937, maxDocs=44218)
                  0.036484417 = queryNorm
                0.22801295 = fieldWeight in 2801, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  4.1274753 = idf(docFreq=1937, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=2801)
          0.5 = coord(1/2)
      0.2 = coord(1/5)
    
    Abstract
    The book covers multimedia ontology in heritage preservation with intellectual explorations of various themes of Indian cultural heritage. The result of more than 15 years of collective research, Multimedia Ontology: Representation and Applications provides a theoretical foundation for understanding the nature of media data and the principles involved in its interpretation. The book presents a unified approach to recent advances in multimedia and explains how a multimedia ontology can fill the semantic gap between concepts and the media world. It relays real-life examples of implementations in different domains to illustrate how this gap can be filled. The book contains information that helps with building semantic, content-based search and retrieval engines and also with developing vertical application-specific search applications. It guides you in designing multimedia tools that aid in logical and conceptual organization of large amounts of multimedia data. As a practical demonstration, it showcases multimedia applications in cultural heritage preservation efforts and the creation of virtual museums. The book describes the limitations of existing ontology techniques in semantic multimedia data processing, as well as some open problems in the representations and applications of multimedia ontology. As an antidote, it introduces new ontology representation and reasoning schemes that overcome these limitations. The long, compiled efforts reflected in Multimedia Ontology: Representation and Applications are a signpost for new achievements and developments in efficiency and accessibility in the field.
  9. Keyser, P. de: Indexing : from thesauri to the Semantic Web (2012) 0.00
    0.002965881 = product of:
      0.014829405 = sum of:
        0.014829405 = product of:
          0.02965881 = sum of:
            0.02965881 = weight(_text_:22 in 3197) [ClassicSimilarity], result of:
              0.02965881 = score(doc=3197,freq=2.0), product of:
                0.12776221 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.036484417 = queryNorm
                0.23214069 = fieldWeight in 3197, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046875 = fieldNorm(doc=3197)
          0.5 = coord(1/2)
      0.2 = coord(1/5)
    
    Date
    24. 8.2016 14:03:22
  10. Daconta, M.C.; Oberst, L.J.; Smith, K.T.: ¬The Semantic Web : A guide to the future of XML, Web services and knowledge management (2003) 0.00
    0.001977254 = product of:
      0.009886269 = sum of:
        0.009886269 = product of:
          0.019772539 = sum of:
            0.019772539 = weight(_text_:22 in 320) [ClassicSimilarity], result of:
              0.019772539 = score(doc=320,freq=2.0), product of:
                0.12776221 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.036484417 = queryNorm
                0.15476047 = fieldWeight in 320, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.03125 = fieldNorm(doc=320)
          0.5 = coord(1/2)
      0.2 = coord(1/5)
    
    Date
    22. 5.2007 10:37:38

Languages

Types

  • m 10
  • s 1