Search (8 results, page 1 of 1)

  • × theme_ss:"Formale Begriffsanalyse"
  1. Lex, W.: ¬A representation of concepts for their computerization (1987) 0.01
    0.009461033 = product of:
      0.047305163 = sum of:
        0.047305163 = product of:
          0.094610326 = sum of:
            0.094610326 = weight(_text_:etc in 618) [ClassicSimilarity], result of:
              0.094610326 = score(doc=618,freq=2.0), product of:
                0.19761753 = queryWeight, product of:
                  5.4164915 = idf(docFreq=533, maxDocs=44218)
                  0.036484417 = queryNorm
                0.47875473 = fieldWeight in 618, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  5.4164915 = idf(docFreq=533, maxDocs=44218)
                  0.0625 = fieldNorm(doc=618)
          0.5 = coord(1/2)
      0.2 = coord(1/5)
    
    Abstract
    A lattice theoretical description of concept hierarchies is developed using for attributes the terms "given", "negated", "open" and "impossible" as the truth-values of a four-valued logic. Similar to the theory of B. Ganter and R. Wille so does this framework permit a precise representation of the usual interdependences in a field of related concepts - such as superconcepts, subconcept, contrary concepts etc. -, whenever the concepts under consideration can be sufficiently described by the presence or absence of certain attributes ...
  2. Kaytoue, M.; Kuznetsov, S.O.; Assaghir, Z.; Napoli, A.: Embedding tolerance relations in concept lattices : an application in information fusion (2010) 0.01
    0.0059131454 = product of:
      0.029565725 = sum of:
        0.029565725 = product of:
          0.05913145 = sum of:
            0.05913145 = weight(_text_:etc in 4843) [ClassicSimilarity], result of:
              0.05913145 = score(doc=4843,freq=2.0), product of:
                0.19761753 = queryWeight, product of:
                  5.4164915 = idf(docFreq=533, maxDocs=44218)
                  0.036484417 = queryNorm
                0.2992217 = fieldWeight in 4843, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  5.4164915 = idf(docFreq=533, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=4843)
          0.5 = coord(1/2)
      0.2 = coord(1/5)
    
    Abstract
    Formal Concept Analysis (FCA) is a well founded mathematical framework used for conceptual classication and knowledge management. Given a binary table describing a relation between objects and attributes, FCA consists in building a set of concepts organized by a subsumption relation within a concept lattice. Accordingly, FCA requires to transform complex data, e.g. numbers, intervals, graphs, into binary data leading to loss of information and poor interpretability of object classes. In this paper, we propose a pre-processing method producing binary data from complex data taking advantage of similarity between objects. As a result, the concept lattice is composed of classes being maximal sets of pairwise similar objects. This method is based on FCA and on a formalization of similarity as a tolerance relation (reexive and symmetric). It applies to complex object descriptions and especially here to interval data. Moreover, it can be applied to any kind of structured data for which a similarity can be dened (sequences, graphs, etc.). Finally, an application highlights that the resulting concept lattice plays an important role in information fusion problem, as illustrated with a real-world example in agronomy.
  3. Conceptual structures : logical, linguistic, and computational issues. 8th International Conference on Conceptual Structures, ICCS 2000, Darmstadt, Germany, August 14-18, 2000 (2000) 0.01
    0.00501747 = product of:
      0.025087351 = sum of:
        0.025087351 = product of:
          0.050174702 = sum of:
            0.050174702 = weight(_text_:etc in 691) [ClassicSimilarity], result of:
              0.050174702 = score(doc=691,freq=4.0), product of:
                0.19761753 = queryWeight, product of:
                  5.4164915 = idf(docFreq=533, maxDocs=44218)
                  0.036484417 = queryNorm
                0.25389802 = fieldWeight in 691, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  5.4164915 = idf(docFreq=533, maxDocs=44218)
                  0.0234375 = fieldNorm(doc=691)
          0.5 = coord(1/2)
      0.2 = coord(1/5)
    
    Abstract
    Computer scientists create models of a perceived reality. Through AI techniques, these models aim at providing the basic support for emulating cognitive behavior such as reasoning and learning, which is one of the main goals of the Al research effort. Such computer models are formed through the interaction of various acquisition and inference mechanisms: perception, concept learning, conceptual clustering, hypothesis testing, probabilistic inference, etc., and are represented using different paradigms tightly linked to the processes that use them. Among these paradigms let us cite: biological models (neural nets, genetic programming), logic-based models (first-order logic, modal logic, rule-based systems), virtual reality models (object systems, agent systems), probabilistic models (Bayesian nets, fuzzy logic), linguistic models (conceptual dependency graphs, language-based rep resentations), etc. One of the strengths of the Conceptual Graph (CG) theory is its versatility in terms of the representation paradigms under which it falls. It can be viewed and therefore used, under different representation paradigms, which makes it a popular choice for a wealth of applications. Its full coupling with different cognitive processes lead to the opening of the field toward related research communities such as the Description Logic, Formal Concept Analysis, and Computational Linguistic communities. We now see more and more research results from one community enrich the other, laying the foundations of common philosophical grounds from which a successful synergy can emerge. ICCS 2000 embodies this spirit of research collaboration. It presents a set of papers that we believe, by their exposure, will benefit the whole community. For instance, the technical program proposes tracks on Conceptual Ontologies, Language, Formal Concept Analysis, Computational Aspects of Conceptual Structures, and Formal Semantics, with some papers on pragmatism and human related aspects of computing. Never before was the program of ICCS formed by so heterogeneously rooted theories of knowledge representation and use. We hope that this swirl of ideas will benefit you as much as it already has benefited us while putting together this program
  4. Prediger, S.: Kontextuelle Urteilslogik mit Begriffsgraphen : Ein Beitrag zur Restrukturierung der mathematischen Logik (1998) 0.00
    0.004943135 = product of:
      0.024715675 = sum of:
        0.024715675 = product of:
          0.04943135 = sum of:
            0.04943135 = weight(_text_:22 in 3142) [ClassicSimilarity], result of:
              0.04943135 = score(doc=3142,freq=2.0), product of:
                0.12776221 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.036484417 = queryNorm
                0.38690117 = fieldWeight in 3142, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.078125 = fieldNorm(doc=3142)
          0.5 = coord(1/2)
      0.2 = coord(1/5)
    
    Date
    26. 2.2008 15:58:22
  5. Vogt, F.; Wille, R.: TOSCANA - a graphical tool for analyzing and exploring data (1995) 0.00
    0.003954508 = product of:
      0.019772539 = sum of:
        0.019772539 = product of:
          0.039545078 = sum of:
            0.039545078 = weight(_text_:22 in 1901) [ClassicSimilarity], result of:
              0.039545078 = score(doc=1901,freq=2.0), product of:
                0.12776221 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.036484417 = queryNorm
                0.30952093 = fieldWeight in 1901, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0625 = fieldNorm(doc=1901)
          0.5 = coord(1/2)
      0.2 = coord(1/5)
    
    Source
    Knowledge organization. 22(1995) no.2, S.78-81
  6. Priss, U.: Faceted information representation (2000) 0.00
    0.0034601947 = product of:
      0.017300973 = sum of:
        0.017300973 = product of:
          0.034601945 = sum of:
            0.034601945 = weight(_text_:22 in 5095) [ClassicSimilarity], result of:
              0.034601945 = score(doc=5095,freq=2.0), product of:
                0.12776221 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.036484417 = queryNorm
                0.2708308 = fieldWeight in 5095, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=5095)
          0.5 = coord(1/2)
      0.2 = coord(1/5)
    
    Date
    22. 1.2016 17:47:06
  7. Priss, U.: Faceted knowledge representation (1999) 0.00
    0.0034601947 = product of:
      0.017300973 = sum of:
        0.017300973 = product of:
          0.034601945 = sum of:
            0.034601945 = weight(_text_:22 in 2654) [ClassicSimilarity], result of:
              0.034601945 = score(doc=2654,freq=2.0), product of:
                0.12776221 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.036484417 = queryNorm
                0.2708308 = fieldWeight in 2654, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=2654)
          0.5 = coord(1/2)
      0.2 = coord(1/5)
    
    Date
    22. 1.2016 17:30:31
  8. Priss, U.; Jacob, E.: Utilizing faceted structures for information systems design (1999) 0.00
    0.0027468908 = product of:
      0.013734453 = sum of:
        0.013734453 = product of:
          0.027468907 = sum of:
            0.027468907 = weight(_text_:problems in 2470) [ClassicSimilarity], result of:
              0.027468907 = score(doc=2470,freq=2.0), product of:
                0.15058853 = queryWeight, product of:
                  4.1274753 = idf(docFreq=1937, maxDocs=44218)
                  0.036484417 = queryNorm
                0.18241036 = fieldWeight in 2470, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  4.1274753 = idf(docFreq=1937, maxDocs=44218)
                  0.03125 = fieldNorm(doc=2470)
          0.5 = coord(1/2)
      0.2 = coord(1/5)
    
    Abstract
    Even for the experienced information professional, designing an efficient multi-purpose information access structure can be a very difficult task. This paper argues for the use of a faceted thesaurus as the basis for organizing a small-scale institutional website. We contend that a faceted approach to knowledge organization can make the process of organization less random and more manageable. We begin by reporting on an informal survey of three institutional websites. This study underscores the problems of organization that can impact access to information. We then formalize the terminology of faceted thesauri and demonstrate its application with several examples.