Search (17 results, page 1 of 1)

  • × author_ss:"Ding, Y."
  1. Ding, Y.: Applying weighted PageRank to author citation networks (2011) 0.03
    0.029208332 = product of:
      0.058416665 = sum of:
        0.036211025 = weight(_text_:data in 4188) [ClassicSimilarity], result of:
          0.036211025 = score(doc=4188,freq=2.0), product of:
            0.14807065 = queryWeight, product of:
              3.1620505 = idf(docFreq=5088, maxDocs=44218)
              0.046827413 = queryNorm
            0.24455236 = fieldWeight in 4188, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.1620505 = idf(docFreq=5088, maxDocs=44218)
              0.0546875 = fieldNorm(doc=4188)
        0.022205638 = product of:
          0.044411276 = sum of:
            0.044411276 = weight(_text_:22 in 4188) [ClassicSimilarity], result of:
              0.044411276 = score(doc=4188,freq=2.0), product of:
                0.16398162 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046827413 = queryNorm
                0.2708308 = fieldWeight in 4188, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=4188)
          0.5 = coord(1/2)
      0.5 = coord(2/4)
    
    Abstract
    This article aims to identify whether different weighted PageRank algorithms can be applied to author citation networks to measure the popularity and prestige of a scholar from a citation perspective. Information retrieval (IR) was selected as a test field and data from 1956-2008 were collected from Web of Science. Weighted PageRank with citation and publication as weighted vectors were calculated on author citation networks. The results indicate that both popularity rank and prestige rank were highly correlated with the weighted PageRank. Principal component analysis was conducted to detect relationships among these different measures. For capturing prize winners within the IR field, prestige rank outperformed all the other measures
    Date
    22. 1.2011 13:02:21
  2. Ding, Y.; Jacob, E.K.; Fried, M.; Toma, I.; Yan, E.; Foo, S.; Milojevicacute, S.: Upper tag ontology for integrating social tagging data (2010) 0.02
    0.020529725 = product of:
      0.0821189 = sum of:
        0.0821189 = weight(_text_:data in 3421) [ClassicSimilarity], result of:
          0.0821189 = score(doc=3421,freq=14.0), product of:
            0.14807065 = queryWeight, product of:
              3.1620505 = idf(docFreq=5088, maxDocs=44218)
              0.046827413 = queryNorm
            0.55459267 = fieldWeight in 3421, product of:
              3.7416575 = tf(freq=14.0), with freq of:
                14.0 = termFreq=14.0
              3.1620505 = idf(docFreq=5088, maxDocs=44218)
              0.046875 = fieldNorm(doc=3421)
      0.25 = coord(1/4)
    
    Abstract
    Data integration and mediation have become central concerns of information technology over the past few decades. With the advent of the Web and the rapid increases in the amount of data and the number of Web documents and users, researchers have focused on enhancing the interoperability of data through the development of metadata schemes. Other researchers have looked to the wealth of metadata generated by bookmarking sites on the Social Web. While several existing ontologies have capitalized on the semantics of metadata created by tagging activities, the Upper Tag Ontology (UTO) emphasizes the structure of tagging activities to facilitate modeling of tagging data and the integration of data from different bookmarking sites as well as the alignment of tagging ontologies. UTO is described and its utility in modeling, harvesting, integrating, searching, and analyzing data is demonstrated with metadata harvested from three major social tagging systems (Delicious, Flickr, and YouTube).
  3. Song, M.; Kim, S.Y.; Zhang, G.; Ding, Y.; Chambers, T.: Productivity and influence in bioinformatics : a bibliometric analysis using PubMed central (2014) 0.01
    0.013439858 = product of:
      0.053759433 = sum of:
        0.053759433 = weight(_text_:data in 1202) [ClassicSimilarity], result of:
          0.053759433 = score(doc=1202,freq=6.0), product of:
            0.14807065 = queryWeight, product of:
              3.1620505 = idf(docFreq=5088, maxDocs=44218)
              0.046827413 = queryNorm
            0.3630661 = fieldWeight in 1202, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              3.1620505 = idf(docFreq=5088, maxDocs=44218)
              0.046875 = fieldNorm(doc=1202)
      0.25 = coord(1/4)
    
    Abstract
    Bioinformatics is a fast-growing field based on the optimal use of "big data" gathered in genomic, proteomics, and functional genomics research. In this paper, we conduct a comprehensive and in-depth bibliometric analysis of the field of bioinformatics by extracting citation data from PubMed Central full-text. Citation data for the period 2000 to 2011, comprising 20,869 papers with 546,245 citations, was used to evaluate the productivity and influence of this emerging field. Four measures were used to identify productivity; most productive authors, most productive countries, most productive organizations, and most popular subject terms. Research impact was analyzed based on the measures of most cited papers, most cited authors, emerging stars, and leading organizations. Results show the overall trends between the periods 2000 to 2003 and 2004 to 2007 were dissimilar, while trends between the periods 2004 to 2007 and 2008 to 2011 were similar. In addition, the field of bioinformatics has undergone a significant shift, co-evolving with other biomedical disciplines.
  4. Ding, Y.; Chowdhury, G.C.; Foo, S.: Bibliometric cartography of information retrieval research by using co-word analysis (2001) 0.01
    0.012717713 = product of:
      0.05087085 = sum of:
        0.05087085 = product of:
          0.1017417 = sum of:
            0.1017417 = weight(_text_:processing in 6487) [ClassicSimilarity], result of:
              0.1017417 = score(doc=6487,freq=2.0), product of:
                0.18956426 = queryWeight, product of:
                  4.048147 = idf(docFreq=2097, maxDocs=44218)
                  0.046827413 = queryNorm
                0.53671354 = fieldWeight in 6487, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  4.048147 = idf(docFreq=2097, maxDocs=44218)
                  0.09375 = fieldNorm(doc=6487)
          0.5 = coord(1/2)
      0.25 = coord(1/4)
    
    Source
    Information processing and management. 37(2001) no.6, S.817-842
  5. Ding, Y.; Jacob, E.K.; Zhang, Z.; Foo, S.; Yan, E.; George, N.L.; Guo, L.: Perspectives on social tagging (2009) 0.01
    0.010973599 = product of:
      0.043894395 = sum of:
        0.043894395 = weight(_text_:data in 3290) [ClassicSimilarity], result of:
          0.043894395 = score(doc=3290,freq=4.0), product of:
            0.14807065 = queryWeight, product of:
              3.1620505 = idf(docFreq=5088, maxDocs=44218)
              0.046827413 = queryNorm
            0.29644224 = fieldWeight in 3290, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              3.1620505 = idf(docFreq=5088, maxDocs=44218)
              0.046875 = fieldNorm(doc=3290)
      0.25 = coord(1/4)
    
    Abstract
    Social tagging is one of the major phenomena transforming the World Wide Web from a static platform into an actively shared information space. This paper addresses various aspects of social tagging, including different views on the nature of social tagging, how to make use of social tags, and how to bridge social tagging with other Web functionalities; it discusses the use of facets to facilitate browsing and searching of tagging data; and it presents an analogy between bibliometrics and tagometrics, arguing that established bibliometric methodologies can be applied to analyze tagging behavior on the Web. Based on the Upper Tag Ontology (UTO), a Web crawler was built to harvest tag data from Delicious, Flickr, and YouTube in September 2007. In total, 1.8 million objects, including bookmarks, photos, and videos, 3.1 million taggers, and 12.1 million tags were collected and analyzed. Some tagging patterns and variations are identified and discussed.
  6. Li, D.; Ding, Y.; Sugimoto, C.; He, B.; Tang, J.; Yan, E.; Lin, N.; Qin, Z.; Dong, T.: Modeling topic and community structure in social tagging : the TTR-LDA-Community model (2011) 0.01
    0.009144665 = product of:
      0.03657866 = sum of:
        0.03657866 = weight(_text_:data in 4759) [ClassicSimilarity], result of:
          0.03657866 = score(doc=4759,freq=4.0), product of:
            0.14807065 = queryWeight, product of:
              3.1620505 = idf(docFreq=5088, maxDocs=44218)
              0.046827413 = queryNorm
            0.24703519 = fieldWeight in 4759, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              3.1620505 = idf(docFreq=5088, maxDocs=44218)
              0.0390625 = fieldNorm(doc=4759)
      0.25 = coord(1/4)
    
    Abstract
    The presence of social networks in complex systems has made networks and community structure a focal point of study in many domains. Previous studies have focused on the structural emergence and growth of communities and on the topics displayed within the network. However, few scholars have closely examined the relationship between the thematic and structural properties of networks. Therefore, this article proposes the Tagger Tag Resource-Latent Dirichlet Allocation-Community model (TTR-LDA-Community model), which combines the Latent Dirichlet Allocation (LDA) model with the Girvan-Newman community detection algorithm through an inference mechanism. Using social tagging data from Delicious, this article demonstrates the clustering of active taggers into communities, the topic distributions within communities, and the ranking of taggers, tags, and resources within these communities. The data analysis evaluates patterns in community structure and topical affiliations diachronically. The article evaluates the effectiveness of community detection and the inference mechanism embedded in the model and finds that the TTR-LDA-Community model outperforms other traditional models in tag prediction. This has implications for scholars in domains interested in community detection, profiling, and recommender systems.
  7. Li, D.; Tang, J.; Ding, Y.; Shuai, X.; Chambers, T.; Sun, G.; Luo, Z.; Zhang, J.: Topic-level opinion influence model (TOIM) : an investigation using tencent microblogging (2015) 0.01
    0.009144665 = product of:
      0.03657866 = sum of:
        0.03657866 = weight(_text_:data in 2345) [ClassicSimilarity], result of:
          0.03657866 = score(doc=2345,freq=4.0), product of:
            0.14807065 = queryWeight, product of:
              3.1620505 = idf(docFreq=5088, maxDocs=44218)
              0.046827413 = queryNorm
            0.24703519 = fieldWeight in 2345, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              3.1620505 = idf(docFreq=5088, maxDocs=44218)
              0.0390625 = fieldNorm(doc=2345)
      0.25 = coord(1/4)
    
    Abstract
    Text mining has been widely used in multiple types of user-generated data to infer user opinion, but its application to microblogging is difficult because text messages are short and noisy, providing limited information about user opinion. Given that microblogging users communicate with each other to form a social network, we hypothesize that user opinion is influenced by its neighbors in the network. In this paper, we infer user opinion on a topic by combining two factors: the user's historical opinion about relevant topics and opinion influence from his/her neighbors. We thus build a topic-level opinion influence model (TOIM) by integrating both topic factor and opinion influence factor into a unified probabilistic model. We evaluate our model in one of the largest microblogging sites in China, Tencent Weibo, and the experiments show that TOIM outperforms baseline methods in opinion inference accuracy. Moreover, incorporating indirect influence further improves inference recall and f1-measure. Finally, we demonstrate some useful applications of TOIM in analyzing users' behaviors in Tencent Weibo.
    Theme
    Data Mining
  8. Li, D.; Luo, Z.; Ding, Y.; Tang, J.; Sun, G.G.-Z.; Dai, X.; Du, J.; Zhang, J.; Kong, S.: User-level microblogging recommendation incorporating social influence (2017) 0.01
    0.009144665 = product of:
      0.03657866 = sum of:
        0.03657866 = weight(_text_:data in 3426) [ClassicSimilarity], result of:
          0.03657866 = score(doc=3426,freq=4.0), product of:
            0.14807065 = queryWeight, product of:
              3.1620505 = idf(docFreq=5088, maxDocs=44218)
              0.046827413 = queryNorm
            0.24703519 = fieldWeight in 3426, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              3.1620505 = idf(docFreq=5088, maxDocs=44218)
              0.0390625 = fieldNorm(doc=3426)
      0.25 = coord(1/4)
    
    Abstract
    With the information overload of user-generated content in microblogging, users find it extremely challenging to browse and find valuable information in their first attempt. In this paper we propose a microblogging recommendation algorithm, TSI-MR (Topic-Level Social Influence-based Microblogging Recommendation), which can significantly improve users' microblogging experiences. The main innovation of this proposed algorithm is that we consider social influences and their indirect structural relationships, which are largely based on social status theory, from the topic level. The primary advantage of this approach is that it can build an accurate description of latent relationships between two users with weak connections, which can improve the performance of the model; furthermore, it can solve sparsity problems of training data to a certain extent. The realization of the model is mainly based on Factor Graph. We also applied a distributed strategy to further improve the efficiency of the model. Finally, we use data from Tencent Weibo, one of the most popular microblogging services in China, to evaluate our methods. The results show that incorporating social influence can improve microblogging performance considerably, and outperform the baseline methods.
  9. Li, D.; Wang, Y.; Madden, A.; Ding, Y.; Sun, G.G.; Zhang, N.; Zhou, E.: Analyzing stock market trends using social media user moods and social influence (2019) 0.01
    0.009144665 = product of:
      0.03657866 = sum of:
        0.03657866 = weight(_text_:data in 5362) [ClassicSimilarity], result of:
          0.03657866 = score(doc=5362,freq=4.0), product of:
            0.14807065 = queryWeight, product of:
              3.1620505 = idf(docFreq=5088, maxDocs=44218)
              0.046827413 = queryNorm
            0.24703519 = fieldWeight in 5362, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              3.1620505 = idf(docFreq=5088, maxDocs=44218)
              0.0390625 = fieldNorm(doc=5362)
      0.25 = coord(1/4)
    
    Abstract
    Information from microblogs is gaining increasing attention from researchers interested in analyzing fluctuations in stock markets. Behavioral financial theory draws on social psychology to explain some of the irrational behaviors associated with financial decisions to help explain some of the fluctuations. In this study we argue that social media users who demonstrate an interest in finance can offer insights into ways in which irrational behaviors may affect a stock market. To test this, we analyzed all the data collected over a 3-month period in 2011 from Tencent Weibo (one of the largest microblogging websites in China). We designed a social influence (SI)-based Tencent finance-related moods model to simulate investors' irrational behaviors, and designed a Tencent Moods-based Stock Trend Analysis (TM_STA) model to detect correlations between Tencent moods and the Hushen-300 index (one of the most important financial indexes in China). Experimental results show that the proposed method can help explain the data fluctuation. The findings support the existing behavioral financial theory, and can help to understand short-term rises and falls in a stock market. We use behavioral financial theory to further explain our findings, and to propose a trading model to verify the proposed model.
  10. Ding, Y.: Visualization of intellectual structure in information retrieval : author cocitation analysis (1998) 0.01
    0.009052756 = product of:
      0.036211025 = sum of:
        0.036211025 = weight(_text_:data in 2792) [ClassicSimilarity], result of:
          0.036211025 = score(doc=2792,freq=2.0), product of:
            0.14807065 = queryWeight, product of:
              3.1620505 = idf(docFreq=5088, maxDocs=44218)
              0.046827413 = queryNorm
            0.24455236 = fieldWeight in 2792, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.1620505 = idf(docFreq=5088, maxDocs=44218)
              0.0546875 = fieldNorm(doc=2792)
      0.25 = coord(1/4)
    
    Abstract
    Reports results of a cocitation analysis study from the international retrieval research field from 1987 to 1997. Data was taken from Social SciSearch, via Dialog, and the top 40 authors were submitted to author cocitation analysis to yield the intellectual structure of information retrieval. The resulting multidimensional scaling map revealed: identifiable author groups for information retrieval; location of these groups with respect to each other; extend of centrality and peripherality of authors within groups, proximities of authors within groups and across group boundaries; and the meaning of the axes of the map. Factor analysis was used to reveal the extent of the authors' research areas and statistical routines included: ALSCAL; clustering analysis and factor analysis
  11. Yan, E.; Ding, Y.: Applying centrality measures to impact analysis : a coauthorship network analysis (2009) 0.01
    0.009052756 = product of:
      0.036211025 = sum of:
        0.036211025 = weight(_text_:data in 3083) [ClassicSimilarity], result of:
          0.036211025 = score(doc=3083,freq=2.0), product of:
            0.14807065 = queryWeight, product of:
              3.1620505 = idf(docFreq=5088, maxDocs=44218)
              0.046827413 = queryNorm
            0.24455236 = fieldWeight in 3083, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.1620505 = idf(docFreq=5088, maxDocs=44218)
              0.0546875 = fieldNorm(doc=3083)
      0.25 = coord(1/4)
    
    Abstract
    Many studies on coauthorship networks focus on network topology and network statistical mechanics. This article takes a different approach by studying micro-level network properties with the aim of applying centrality measures to impact analysis. Using coauthorship data from 16 journals in the field of library and information science (LIS) with a time span of 20 years (1988-2007), we construct an evolving coauthorship network and calculate four centrality measures (closeness centrality, betweenness centrality, degree centrality, and PageRank) for authors in this network. We find that the four centrality measures are significantly correlated with citation counts. We also discuss the usability of centrality measures in author ranking and suggest that centrality measures can be useful indicators for impact analysis.
  12. Yan, E.; Ding, Y.: Discovering author impact : a PageRank perspective (2011) 0.01
    0.008478476 = product of:
      0.033913903 = sum of:
        0.033913903 = product of:
          0.067827806 = sum of:
            0.067827806 = weight(_text_:processing in 2704) [ClassicSimilarity], result of:
              0.067827806 = score(doc=2704,freq=2.0), product of:
                0.18956426 = queryWeight, product of:
                  4.048147 = idf(docFreq=2097, maxDocs=44218)
                  0.046827413 = queryNorm
                0.35780904 = fieldWeight in 2704, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  4.048147 = idf(docFreq=2097, maxDocs=44218)
                  0.0625 = fieldNorm(doc=2704)
          0.5 = coord(1/2)
      0.25 = coord(1/4)
    
    Source
    Information processing and management. 47(2011) no.1, S.125-134
  13. Ni, C.; Shaw, D.; Lind, S.M.; Ding, Y.: Journal impact and proximity : an assessment using bibliographic features (2013) 0.01
    0.0077595054 = product of:
      0.031038022 = sum of:
        0.031038022 = weight(_text_:data in 686) [ClassicSimilarity], result of:
          0.031038022 = score(doc=686,freq=2.0), product of:
            0.14807065 = queryWeight, product of:
              3.1620505 = idf(docFreq=5088, maxDocs=44218)
              0.046827413 = queryNorm
            0.2096163 = fieldWeight in 686, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.1620505 = idf(docFreq=5088, maxDocs=44218)
              0.046875 = fieldNorm(doc=686)
      0.25 = coord(1/4)
    
    Abstract
    Journals in the Information Science & Library Science category of Journal Citation Reports (JCR) were compared using both bibliometric and bibliographic features. Data collected covered journal impact factor (JIF), number of issues per year, number of authors per article, longevity, editorial board membership, frequency of publication, number of databases indexing the journal, number of aggregators providing full-text access, country of publication, JCR categories, Dewey decimal classification, and journal statement of scope. Three features significantly correlated with JIF: number of editorial board members and number of JCR categories in which a journal is listed correlated positively; journal longevity correlated negatively with JIF. Coword analysis of journal descriptions provided a proximity clustering of journals, which differed considerably from the clusters based on editorial board membership. Finally, a multiple linear regression model was built to predict the JIF based on all the collected bibliographic features.
  14. Lu, C.; Bu, Y.; Wang, J.; Ding, Y.; Torvik, V.; Schnaars, M.; Zhang, C.: Examining scientific writing styles from the perspective of linguistic complexity : a cross-level moderation model (2019) 0.01
    0.0077595054 = product of:
      0.031038022 = sum of:
        0.031038022 = weight(_text_:data in 5219) [ClassicSimilarity], result of:
          0.031038022 = score(doc=5219,freq=2.0), product of:
            0.14807065 = queryWeight, product of:
              3.1620505 = idf(docFreq=5088, maxDocs=44218)
              0.046827413 = queryNorm
            0.2096163 = fieldWeight in 5219, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.1620505 = idf(docFreq=5088, maxDocs=44218)
              0.046875 = fieldNorm(doc=5219)
      0.25 = coord(1/4)
    
    Abstract
    Publishing articles in high-impact English journals is difficult for scholars around the world, especially for non-native English-speaking scholars (NNESs), most of whom struggle with proficiency in English. To uncover the differences in English scientific writing between native English-speaking scholars (NESs) and NNESs, we collected a large-scale data set containing more than 150,000 full-text articles published in PLoS between 2006 and 2015. We divided these articles into three groups according to the ethnic backgrounds of the first and corresponding authors, obtained by Ethnea, and examined the scientific writing styles in English from a two-fold perspective of linguistic complexity: (a) syntactic complexity, including measurements of sentence length and sentence complexity; and (b) lexical complexity, including measurements of lexical diversity, lexical density, and lexical sophistication. The observations suggest marginal differences between groups in syntactical and lexical complexity.
  15. Li, R.; Chambers, T.; Ding, Y.; Zhang, G.; Meng, L.: Patent citation analysis : calculating science linkage based on citing motivation (2014) 0.01
    0.006466255 = product of:
      0.02586502 = sum of:
        0.02586502 = weight(_text_:data in 1257) [ClassicSimilarity], result of:
          0.02586502 = score(doc=1257,freq=2.0), product of:
            0.14807065 = queryWeight, product of:
              3.1620505 = idf(docFreq=5088, maxDocs=44218)
              0.046827413 = queryNorm
            0.17468026 = fieldWeight in 1257, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.1620505 = idf(docFreq=5088, maxDocs=44218)
              0.0390625 = fieldNorm(doc=1257)
      0.25 = coord(1/4)
    
    Abstract
    Science linkage is a widely used patent bibliometric indicator to measure patent linkage to scientific research based on the frequency of citations to scientific papers within the patent. Science linkage is also regarded as noisy because the subject of patent citation behavior varies from inventors/applicants to examiners. In order to identify and ultimately reduce this noise, we analyzed the different citing motivations of examiners and inventors/applicants. We built 4 hypotheses based upon our study of patent law, the unique economic nature of a patent, and a patent citation's market effect. To test our hypotheses, we conducted an expert survey based on our science linkage calculation in the domain of catalyst from U.S. patent data (2006-2009) over 3 types of citations: self-citation by inventor/applicant, non-self-citation by inventor/applicant, and citation by examiner. According to our results, evaluated by domain experts, we conclude that the non-self-citation by inventor/applicant is quite noisy and cannot indicate science linkage and that self-citation by inventor/applicant, although limited, is more appropriate for understanding science linkage.
  16. Lu, C.; Zhang, Y.; Ahn, Y.-Y.; Ding, Y.; Zhang, C.; Ma, D.: Co-contributorship network and division of labor in individual scientific collaborations (2020) 0.01
    0.006466255 = product of:
      0.02586502 = sum of:
        0.02586502 = weight(_text_:data in 5963) [ClassicSimilarity], result of:
          0.02586502 = score(doc=5963,freq=2.0), product of:
            0.14807065 = queryWeight, product of:
              3.1620505 = idf(docFreq=5088, maxDocs=44218)
              0.046827413 = queryNorm
            0.17468026 = fieldWeight in 5963, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.1620505 = idf(docFreq=5088, maxDocs=44218)
              0.0390625 = fieldNorm(doc=5963)
      0.25 = coord(1/4)
    
    Abstract
    Collaborations are pervasive in current science. Collaborations have been studied and encouraged in many disciplines. However, little is known about how a team really functions from the detailed division of labor within. In this research, we investigate the patterns of scientific collaboration and division of labor within individual scholarly articles by analyzing their co-contributorship networks. Co-contributorship networks are constructed by performing the one-mode projection of the author-task bipartite networks obtained from 138,787 articles published in PLoS journals. Given an article, we define 3 types of contributors: Specialists, Team-players, and Versatiles. Specialists are those who contribute to all their tasks alone; team-players are those who contribute to every task with other collaborators; and versatiles are those who do both. We find that team-players are the majority and they tend to contribute to the 5 most common tasks as expected, such as "data analysis" and "performing experiments." The specialists and versatiles are more prevalent than expected by our designed 2 null models. Versatiles tend to be senior authors associated with funding and supervision. Specialists are associated with 2 contrasting roles: the supervising role as team leaders or marginal and specialized contributors.
  17. Ding, Y.; Zhang, G.; Chambers, T.; Song, M.; Wang, X.; Zhai, C.: Content-based citation analysis : the next generation of citation analysis (2014) 0.00
    0.0047583506 = product of:
      0.019033402 = sum of:
        0.019033402 = product of:
          0.038066804 = sum of:
            0.038066804 = weight(_text_:22 in 1521) [ClassicSimilarity], result of:
              0.038066804 = score(doc=1521,freq=2.0), product of:
                0.16398162 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046827413 = queryNorm
                0.23214069 = fieldWeight in 1521, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046875 = fieldNorm(doc=1521)
          0.5 = coord(1/2)
      0.25 = coord(1/4)
    
    Date
    22. 8.2014 16:52:04