Search (10 results, page 1 of 1)

  • × author_ss:"Kousha, K."
  1. Kousha, K.; Thelwall, M.: ¬An automatic method for assessing the teaching impact of books from online academic syllabi (2016) 0.01
    0.011199882 = product of:
      0.04479953 = sum of:
        0.04479953 = weight(_text_:data in 3226) [ClassicSimilarity], result of:
          0.04479953 = score(doc=3226,freq=6.0), product of:
            0.14807065 = queryWeight, product of:
              3.1620505 = idf(docFreq=5088, maxDocs=44218)
              0.046827413 = queryNorm
            0.30255508 = fieldWeight in 3226, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              3.1620505 = idf(docFreq=5088, maxDocs=44218)
              0.0390625 = fieldNorm(doc=3226)
      0.25 = coord(1/4)
    
    Abstract
    Scholars writing books that are widely used to support teaching in higher education may be undervalued because of a lack of evidence of teaching value. Although sales data may give credible evidence for textbooks, these data may poorly reflect educational uses of other types of books. As an alternative, this article proposes a method to search automatically for mentions of books in online academic course syllabi based on Bing searches for syllabi mentioning a given book, filtering out false matches through an extensive set of rules. The method had an accuracy of over 90% based on manual checks of a sample of 2,600 results from the initial Bing searches. Over one third of about 14,000 monographs checked had one or more academic syllabus mention, with more in the arts and humanities (56%) and social sciences (52%). Low but significant correlations between syllabus mentions and citations across most fields, except the social sciences, suggest that books tend to have different levels of impact for teaching and research. In conclusion, the automatic syllabus search method gives a new way to estimate the educational utility of books in a way that sales data and citation counts cannot.
  2. Kousha, K.; Thelwall, M.: Google book search : citation analysis for social science and the humanities (2009) 0.01
    0.009144665 = product of:
      0.03657866 = sum of:
        0.03657866 = weight(_text_:data in 2946) [ClassicSimilarity], result of:
          0.03657866 = score(doc=2946,freq=4.0), product of:
            0.14807065 = queryWeight, product of:
              3.1620505 = idf(docFreq=5088, maxDocs=44218)
              0.046827413 = queryNorm
            0.24703519 = fieldWeight in 2946, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              3.1620505 = idf(docFreq=5088, maxDocs=44218)
              0.0390625 = fieldNorm(doc=2946)
      0.25 = coord(1/4)
    
    Abstract
    In both the social sciences and the humanities, books and monographs play significant roles in research communication. The absence of citations from most books and monographs from the Thomson Reuters/Institute for Scientific Information databases (ISI) has been criticized, but attempts to include citations from or to books in the research evaluation of the social sciences and humanities have not led to widespread adoption. This article assesses whether Google Book Search (GBS) can partially fill this gap by comparing citations from books with citations from journal articles to journal articles in 10 science, social science, and humanities disciplines. Book citations were 31% to 212% of ISI citations and, hence, numerous enough to supplement ISI citations in the social sciences and humanities covered, but not in the sciences (3%-5%), except for computing (46%), due to numerous published conference proceedings. A case study was also made of all 1,923 articles in the 51 information science and library science ISI-indexed journals published in 2003. Within this set, highly book-cited articles tended to receive many ISI citations, indicating a significant relationship between the two types of citation data, but with important exceptions that point to the additional information provided by book citations. In summary, GBS is clearly a valuable new source of citation data for the social sciences and humanities. One practical implication is that book-oriented scholars should consult it for additional citations to their work when applying for promotion and tenure.
  3. Thelwall, M.; Kousha, K.: ResearchGate: Disseminating, communicating, and measuring scholarship? (2015) 0.01
    0.0077595054 = product of:
      0.031038022 = sum of:
        0.031038022 = weight(_text_:data in 1813) [ClassicSimilarity], result of:
          0.031038022 = score(doc=1813,freq=2.0), product of:
            0.14807065 = queryWeight, product of:
              3.1620505 = idf(docFreq=5088, maxDocs=44218)
              0.046827413 = queryNorm
            0.2096163 = fieldWeight in 1813, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.1620505 = idf(docFreq=5088, maxDocs=44218)
              0.046875 = fieldNorm(doc=1813)
      0.25 = coord(1/4)
    
    Abstract
    ResearchGate is a social network site for academics to create their own profiles, list their publications, and interact with each other. Like Academia.edu, it provides a new way for scholars to disseminate their work and hence potentially changes the dynamics of informal scholarly communication. This article assesses whether ResearchGate usage and publication data broadly reflect existing academic hierarchies and whether individual countries are set to benefit or lose out from the site. The results show that rankings based on ResearchGate statistics correlate moderately well with other rankings of academic institutions, suggesting that ResearchGate use broadly reflects the traditional distribution of academic capital. Moreover, while Brazil, India, and some other countries seem to be disproportionately taking advantage of ResearchGate, academics in China, South Korea, and Russia may be missing opportunities to use ResearchGate to maximize the academic impact of their publications.
  4. Kousha, K.; Thelwall, M.: Google Scholar citations and Google Web/URL citations : a multi-discipline exploratory analysis (2007) 0.01
    0.006466255 = product of:
      0.02586502 = sum of:
        0.02586502 = weight(_text_:data in 337) [ClassicSimilarity], result of:
          0.02586502 = score(doc=337,freq=2.0), product of:
            0.14807065 = queryWeight, product of:
              3.1620505 = idf(docFreq=5088, maxDocs=44218)
              0.046827413 = queryNorm
            0.17468026 = fieldWeight in 337, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.1620505 = idf(docFreq=5088, maxDocs=44218)
              0.0390625 = fieldNorm(doc=337)
      0.25 = coord(1/4)
    
    Abstract
    We use a new data gathering method, "Web/URL citation," Web/URL and Google Scholar to compare traditional and Web-based citation patterns across multiple disciplines (biology, chemistry, physics, computing, sociology, economics, psychology, and education) based upon a sample of 1,650 articles from 108 open access (OA) journals published in 2001. A Web/URL citation of an online journal article is a Web mention of its title, URL, or both. For each discipline, except psychology, we found significant correlations between Thomson Scientific (formerly Thomson ISI, here: ISI) citations and both Google Scholar and Google Web/URL citations. Google Scholar citations correlated more highly with ISI citations than did Google Web/URL citations, indicating that the Web/URL method measures a broader type of citation phenomenon. Google Scholar citations were more numerous than ISI citations in computer science and the four social science disciplines, suggesting that Google Scholar is more comprehensive for social sciences and perhaps also when conference articles are valued and published online. We also found large disciplinary differences in the percentage overlap between ISI and Google Scholar citation sources. Finally, although we found many significant trends, there were also numerous exceptions, suggesting that replacing traditional citation sources with the Web or Google Scholar for research impact calculations would be problematic.
  5. Kousha, K.; Thelwall, M.: Assessing the impact of disciplinary research on teaching : an automatic analysis of online syllabuses (2008) 0.01
    0.006466255 = product of:
      0.02586502 = sum of:
        0.02586502 = weight(_text_:data in 2383) [ClassicSimilarity], result of:
          0.02586502 = score(doc=2383,freq=2.0), product of:
            0.14807065 = queryWeight, product of:
              3.1620505 = idf(docFreq=5088, maxDocs=44218)
              0.046827413 = queryNorm
            0.17468026 = fieldWeight in 2383, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.1620505 = idf(docFreq=5088, maxDocs=44218)
              0.0390625 = fieldNorm(doc=2383)
      0.25 = coord(1/4)
    
    Abstract
    The impact of published academic research in the sciences and social sciences, when measured, is commonly estimated by counting citations from journal articles. The Web has now introduced new potential sources of quantitative data online that could be used to measure aspects of research impact. In this article we assess the extent to which citations from online syllabuses could be a valuable source of evidence about the educational utility of research. An analysis of online syllabus citations to 70,700 articles published in 2003 in the journals of 12 subjects indicates that online syllabus citations were sufficiently numerous to be a useful impact indictor in some social sciences, including political science and information and library science, but not in others, nor in any sciences. This result was consistent with current social science research having, in general, more educational value than current science research. Moreover, articles frequently cited in online syllabuses were not necessarily highly cited by other articles. Hence it seems that online syllabus citations provide a valuable additional source of evidence about the impact of journals, scholars, and research articles in some social sciences.
  6. Mohammadi, E.; Thelwall, M.; Kousha, K.: Can Mendeley bookmarks reflect readership? : a survey of user motivations (2016) 0.01
    0.006466255 = product of:
      0.02586502 = sum of:
        0.02586502 = weight(_text_:data in 2897) [ClassicSimilarity], result of:
          0.02586502 = score(doc=2897,freq=2.0), product of:
            0.14807065 = queryWeight, product of:
              3.1620505 = idf(docFreq=5088, maxDocs=44218)
              0.046827413 = queryNorm
            0.17468026 = fieldWeight in 2897, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.1620505 = idf(docFreq=5088, maxDocs=44218)
              0.0390625 = fieldNorm(doc=2897)
      0.25 = coord(1/4)
    
    Abstract
    Although Mendeley bookmarking counts appear to correlate moderately with conventional citation metrics, it is not known whether academic publications are bookmarked in Mendeley in order to be read or not. Without this information, it is not possible to give a confident interpretation of altmetrics derived from Mendeley. In response, a survey of 860 Mendeley users shows that it is reasonable to use Mendeley bookmarking counts as an indication of readership because most (55%) users with a Mendeley library had read or intended to read at least half of their bookmarked publications. This was true across all broad areas of scholarship except for the arts and humanities (42%). About 85% of the respondents also declared that they bookmarked articles in Mendeley to cite them in their publications, but some also bookmark articles for use in professional (50%), teaching (25%), and educational activities (13%). Of course, it is likely that most readers do not record articles in Mendeley and so these data do not represent all readers. In conclusion, Mendeley bookmark counts seem to be indicators of readership leading to a combination of scholarly impact and wider professional impact.
  7. Kousha, K.; Thelwall, M.: Are wikipedia citations important evidence of the impact of scholarly articles and books? (2017) 0.01
    0.006466255 = product of:
      0.02586502 = sum of:
        0.02586502 = weight(_text_:data in 3440) [ClassicSimilarity], result of:
          0.02586502 = score(doc=3440,freq=2.0), product of:
            0.14807065 = queryWeight, product of:
              3.1620505 = idf(docFreq=5088, maxDocs=44218)
              0.046827413 = queryNorm
            0.17468026 = fieldWeight in 3440, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.1620505 = idf(docFreq=5088, maxDocs=44218)
              0.0390625 = fieldNorm(doc=3440)
      0.25 = coord(1/4)
    
    Abstract
    Individual academics and research evaluators often need to assess the value of published research. Although citation counts are a recognized indicator of scholarly impact, alternative data is needed to provide evidence of other types of impact, including within education and wider society. Wikipedia is a logical choice for both of these because the role of a general encyclopaedia is to be an understandable repository of facts about a diverse array of topics and hence it may cite research to support its claims. To test whether Wikipedia could provide new evidence about the impact of scholarly research, this article counted citations to 302,328 articles and 18,735 monographs in English indexed by Scopus in the period 2005 to 2012. The results show that citations from Wikipedia to articles are too rare for most research evaluation purposes, with only 5% of articles being cited in all fields. In contrast, a third of monographs have at least one citation from Wikipedia, with the most in the arts and humanities. Hence, Wikipedia citations can provide extra impact evidence for academic monographs. Nevertheless, the results may be relatively easily manipulated and so Wikipedia is not recommended for evaluations affecting stakeholder interests.
  8. Kousha, K.; Thelwall, M.: How is science cited on the Web? : a classification of google unique Web citations (2007) 0.00
    0.0039652926 = product of:
      0.01586117 = sum of:
        0.01586117 = product of:
          0.03172234 = sum of:
            0.03172234 = weight(_text_:22 in 586) [ClassicSimilarity], result of:
              0.03172234 = score(doc=586,freq=2.0), product of:
                0.16398162 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046827413 = queryNorm
                0.19345059 = fieldWeight in 586, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=586)
          0.5 = coord(1/2)
      0.25 = coord(1/4)
    
    Abstract
    Although the analysis of citations in the scholarly literature is now an established and relatively well understood part of information science, not enough is known about citations that can be found on the Web. In particular, are there new Web types, and if so, are these trivial or potentially useful for studying or evaluating research communication? We sought evidence based upon a sample of 1,577 Web citations of the URLs or titles of research articles in 64 open-access journals from biology, physics, chemistry, and computing. Only 25% represented intellectual impact, from references of Web documents (23%) and other informal scholarly sources (2%). Many of the Web/URL citations were created for general or subject-specific navigation (45%) or for self-publicity (22%). Additional analyses revealed significant disciplinary differences in the types of Google unique Web/URL citations as well as some characteristics of scientific open-access publishing on the Web. We conclude that the Web provides access to a new and different type of citation information, one that may therefore enable us to measure different aspects of research, and the research process in particular; but to obtain good information, the different types should be separated.
  9. Li, X.; Thelwall, M.; Kousha, K.: ¬The role of arXiv, RePEc, SSRN and PMC in formal scholarly communication (2015) 0.00
    0.0039652926 = product of:
      0.01586117 = sum of:
        0.01586117 = product of:
          0.03172234 = sum of:
            0.03172234 = weight(_text_:22 in 2593) [ClassicSimilarity], result of:
              0.03172234 = score(doc=2593,freq=2.0), product of:
                0.16398162 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046827413 = queryNorm
                0.19345059 = fieldWeight in 2593, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=2593)
          0.5 = coord(1/2)
      0.25 = coord(1/4)
    
    Date
    20. 1.2015 18:30:22
  10. Thelwall, M.; Kousha, K.; Abdoli, M.; Stuart, E.; Makita, M.; Wilson, P.; Levitt, J.: Why are coauthored academic articles more cited : higher quality or larger audience? (2023) 0.00
    0.0039652926 = product of:
      0.01586117 = sum of:
        0.01586117 = product of:
          0.03172234 = sum of:
            0.03172234 = weight(_text_:22 in 995) [ClassicSimilarity], result of:
              0.03172234 = score(doc=995,freq=2.0), product of:
                0.16398162 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046827413 = queryNorm
                0.19345059 = fieldWeight in 995, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=995)
          0.5 = coord(1/2)
      0.25 = coord(1/4)
    
    Date
    22. 6.2023 18:11:50