Search (9 results, page 1 of 1)

  • × author_ss:"Rousseau, R."
  • × author_ss:"Egghe, L."
  1. Egghe, L.; Rousseau, R.: Averaging and globalising quotients of informetric and scientometric data (1996) 0.03
    0.025035713 = product of:
      0.050071426 = sum of:
        0.031038022 = weight(_text_:data in 7659) [ClassicSimilarity], result of:
          0.031038022 = score(doc=7659,freq=2.0), product of:
            0.14807065 = queryWeight, product of:
              3.1620505 = idf(docFreq=5088, maxDocs=44218)
              0.046827413 = queryNorm
            0.2096163 = fieldWeight in 7659, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.1620505 = idf(docFreq=5088, maxDocs=44218)
              0.046875 = fieldNorm(doc=7659)
        0.019033402 = product of:
          0.038066804 = sum of:
            0.038066804 = weight(_text_:22 in 7659) [ClassicSimilarity], result of:
              0.038066804 = score(doc=7659,freq=2.0), product of:
                0.16398162 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046827413 = queryNorm
                0.23214069 = fieldWeight in 7659, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046875 = fieldNorm(doc=7659)
          0.5 = coord(1/2)
      0.5 = coord(2/4)
    
    Source
    Journal of information science. 22(1996) no.3, S.165-170
  2. Egghe, L.; Rousseau, R.: ¬The influence of publication delays on the observed aging distribution of scientific literature (2000) 0.01
    0.0103460075 = product of:
      0.04138403 = sum of:
        0.04138403 = weight(_text_:data in 4385) [ClassicSimilarity], result of:
          0.04138403 = score(doc=4385,freq=2.0), product of:
            0.14807065 = queryWeight, product of:
              3.1620505 = idf(docFreq=5088, maxDocs=44218)
              0.046827413 = queryNorm
            0.2794884 = fieldWeight in 4385, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.1620505 = idf(docFreq=5088, maxDocs=44218)
              0.0625 = fieldNorm(doc=4385)
      0.25 = coord(1/4)
    
    Abstract
    Observed aging curves are influenced by publication delays. In this article, we show how the 'undisturbed' aging function and the publication delay combine to give the observed aging function. This combination is performed by a mathematical operation known as convolution. Examples are given, such as the convolution of 2 Poisson distributions, 2 exponential distributions, a 2 lognormal distributions. A paradox is observed between theory and real data
  3. Egghe, L.; Liang, L.; Rousseau, R.: ¬A relation between h-index and impact factor in the power-law model (2009) 0.01
    0.0103460075 = product of:
      0.04138403 = sum of:
        0.04138403 = weight(_text_:data in 6759) [ClassicSimilarity], result of:
          0.04138403 = score(doc=6759,freq=2.0), product of:
            0.14807065 = queryWeight, product of:
              3.1620505 = idf(docFreq=5088, maxDocs=44218)
              0.046827413 = queryNorm
            0.2794884 = fieldWeight in 6759, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.1620505 = idf(docFreq=5088, maxDocs=44218)
              0.0625 = fieldNorm(doc=6759)
      0.25 = coord(1/4)
    
    Abstract
    Using a power-law model, the two best-known topics in citation analysis, namely the impact factor and the Hirsch index, are unified into one relation (not a function). The validity of our model is, at least in a qualitative way, confirmed by real data.
  4. Egghe, L.; Rousseau, R.; Rousseau, S.: TOP-curves (2007) 0.01
    0.009052756 = product of:
      0.036211025 = sum of:
        0.036211025 = weight(_text_:data in 50) [ClassicSimilarity], result of:
          0.036211025 = score(doc=50,freq=2.0), product of:
            0.14807065 = queryWeight, product of:
              3.1620505 = idf(docFreq=5088, maxDocs=44218)
              0.046827413 = queryNorm
            0.24455236 = fieldWeight in 50, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.1620505 = idf(docFreq=5088, maxDocs=44218)
              0.0546875 = fieldNorm(doc=50)
      0.25 = coord(1/4)
    
    Abstract
    Several characteristics of classical Lorenz curves make them unsuitable for the study of a group of topperformers. TOP-curves, defined as a kind of mirror image of TIP-curves used in poverty studies, are shown to possess the properties necessary for adequate empirical ranking of various data arrays, based on the properties of the highest performers (i.e., the core). TOP-curves and essential TOP-curves, also introduced in this article, simultaneously represent the incidence, intensity, and inequality among the top. It is shown that TOPdominance partial order, introduced in this article, is stronger than Lorenz dominance order. In this way, this article contributes to the study of cores, a central issue in applied informetrics.
  5. Egghe, L.; Rousseau, R.: ¬A theoretical study of recall and precision using a topological approach to information retrieval (1998) 0.01
    0.008478476 = product of:
      0.033913903 = sum of:
        0.033913903 = product of:
          0.067827806 = sum of:
            0.067827806 = weight(_text_:processing in 3267) [ClassicSimilarity], result of:
              0.067827806 = score(doc=3267,freq=2.0), product of:
                0.18956426 = queryWeight, product of:
                  4.048147 = idf(docFreq=2097, maxDocs=44218)
                  0.046827413 = queryNorm
                0.35780904 = fieldWeight in 3267, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  4.048147 = idf(docFreq=2097, maxDocs=44218)
                  0.0625 = fieldNorm(doc=3267)
          0.5 = coord(1/2)
      0.25 = coord(1/4)
    
    Source
    Information processing and management. 34(1998) nos.2/3, S.191-218
  6. Egghe, L.; Rousseau, R.: ¬An h-index weighted by citation impact (2008) 0.01
    0.008478476 = product of:
      0.033913903 = sum of:
        0.033913903 = product of:
          0.067827806 = sum of:
            0.067827806 = weight(_text_:processing in 695) [ClassicSimilarity], result of:
              0.067827806 = score(doc=695,freq=2.0), product of:
                0.18956426 = queryWeight, product of:
                  4.048147 = idf(docFreq=2097, maxDocs=44218)
                  0.046827413 = queryNorm
                0.35780904 = fieldWeight in 695, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  4.048147 = idf(docFreq=2097, maxDocs=44218)
                  0.0625 = fieldNorm(doc=695)
          0.5 = coord(1/2)
      0.25 = coord(1/4)
    
    Source
    Information processing and management. 44(2008) no.2, S.770-780
  7. Egghe, L.; Guns, R.; Rousseau, R.; Leuven, K.U.: Erratum (2012) 0.01
    0.007930585 = product of:
      0.03172234 = sum of:
        0.03172234 = product of:
          0.06344468 = sum of:
            0.06344468 = weight(_text_:22 in 4992) [ClassicSimilarity], result of:
              0.06344468 = score(doc=4992,freq=2.0), product of:
                0.16398162 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046827413 = queryNorm
                0.38690117 = fieldWeight in 4992, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.078125 = fieldNorm(doc=4992)
          0.5 = coord(1/2)
      0.25 = coord(1/4)
    
    Date
    14. 2.2012 12:53:22
  8. Egghe, L.; Rousseau, R.; Hooydonk, G. van: Methods for accrediting publications to authors or countries : consequences for evaluation studies (2000) 0.01
    0.0077595054 = product of:
      0.031038022 = sum of:
        0.031038022 = weight(_text_:data in 4384) [ClassicSimilarity], result of:
          0.031038022 = score(doc=4384,freq=2.0), product of:
            0.14807065 = queryWeight, product of:
              3.1620505 = idf(docFreq=5088, maxDocs=44218)
              0.046827413 = queryNorm
            0.2096163 = fieldWeight in 4384, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.1620505 = idf(docFreq=5088, maxDocs=44218)
              0.046875 = fieldNorm(doc=4384)
      0.25 = coord(1/4)
    
    Abstract
    One aim of science evaluation studies is to determine quantitatively the contribution of different players (authors, departments, countries) to the whole system. This information is then used to study the evolution of the system, for instance to gauge the results of special national or international programs. Taking articles as our basic data, we want to determine the exact relative contribution of each coauthor or each country. These numbers are brought together to obtain country scores, or department scores, etc. It turns out, as we will show in this article, that different scoring methods can yield totally different rankings. Conseqeuntly, a ranking between countries, universities, research groups or authors, based on one particular accrediting methods does not contain an absolute truth about their relative importance
  9. Egghe, L.; Rousseau, R.: ¬A measure for the cohesion of weighted networks (2003) 0.01
    0.006466255 = product of:
      0.02586502 = sum of:
        0.02586502 = weight(_text_:data in 5157) [ClassicSimilarity], result of:
          0.02586502 = score(doc=5157,freq=2.0), product of:
            0.14807065 = queryWeight, product of:
              3.1620505 = idf(docFreq=5088, maxDocs=44218)
              0.046827413 = queryNorm
            0.17468026 = fieldWeight in 5157, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.1620505 = idf(docFreq=5088, maxDocs=44218)
              0.0390625 = fieldNorm(doc=5157)
      0.25 = coord(1/4)
    
    Abstract
    Measurement of the degree of interconnectedness in graph like networks of hyperlinks or citations can indicate the existence of research fields and assist in comparative evaluation of research efforts. In this issue we begin with Egghe and Rousseau who review compactness measures and investigate the compactness of a network as a weighted graph with dissimilarity values characterizing the arcs between nodes. They make use of a generalization of the Botofogo, Rivlin, Shneiderman, (BRS) compaction measure which treats the distance between unreachable nodes not as infinity but rather as the number of nodes in the network. The dissimilarity values are determined by summing the reciprocals of the weights of the arcs in the shortest chain between two nodes where no weight is smaller than one. The BRS measure is then the maximum value for the sum of the dissimilarity measures less the actual sum divided by the difference between the maximum and minimum. The Wiener index, the sum of all elements in the dissimilarity matrix divided by two, is then computed for Small's particle physics co-citation data as well as the BRS measure, the dissimilarity values and shortest paths. The compactness measure for the weighted network is smaller than for the un-weighted. When the bibliographic coupling network is utilized it is shown to be less compact than the co-citation network which indicates that the new measure produces results that confirm to an obvious case.