Search (7 results, page 1 of 1)

  • × classification_ss:"TVV (DU)"
  1. Jacquemin, C.: Spotting and discovering terms through natural language processing (2001) 0.06
    0.056957893 = product of:
      0.113915786 = sum of:
        0.057835944 = weight(_text_:data in 119) [ClassicSimilarity], result of:
          0.057835944 = score(doc=119,freq=10.0), product of:
            0.14807065 = queryWeight, product of:
              3.1620505 = idf(docFreq=5088, maxDocs=44218)
              0.046827413 = queryNorm
            0.39059696 = fieldWeight in 119, product of:
              3.1622777 = tf(freq=10.0), with freq of:
                10.0 = termFreq=10.0
              3.1620505 = idf(docFreq=5088, maxDocs=44218)
              0.0390625 = fieldNorm(doc=119)
        0.056079846 = product of:
          0.11215969 = sum of:
            0.11215969 = weight(_text_:processing in 119) [ClassicSimilarity], result of:
              0.11215969 = score(doc=119,freq=14.0), product of:
                0.18956426 = queryWeight, product of:
                  4.048147 = idf(docFreq=2097, maxDocs=44218)
                  0.046827413 = queryNorm
                0.5916711 = fieldWeight in 119, product of:
                  3.7416575 = tf(freq=14.0), with freq of:
                    14.0 = termFreq=14.0
                  4.048147 = idf(docFreq=2097, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=119)
          0.5 = coord(1/2)
      0.5 = coord(2/4)
    
    Abstract
    In this book Christian Jacquemin shows how the power of natural language processing (NLP) can be used to advance text indexing and information retrieval (IR). Jacquemin's novel tool is FASTR, a parser that normalizes terms and recognizes term variants. Since there are more meanings in a language than there are words, FASTR uses a metagrammar composed of shallow linguistic transformations that describe the morphological, syntactic, semantic, and pragmatic variations of words and terms. The acquired parsed terms can then be applied for precise retrieval and assembly of information. The use of a corpus-based unification grammar to define, recognize, and combine term variants from their base forms allows for intelligent information access to, or "linguistic data tuning" of, heterogeneous texts. FASTR can be used to do automatic controlled indexing, to carry out content-based Web searches through conceptually related alternative query formulations, to abstract scientific and technical extracts, and even to translate and collect terms from multilingual material. Jacquemin provides a comprehensive account of the method and implementation of this innovative retrieval technique for text processing.
    LCSH
    Language and languages / Variation / Data processing
    Terms and phrases / Data processing
    Subject
    Language and languages / Variation / Data processing
    Terms and phrases / Data processing
  2. Spinning the Semantic Web : bringing the World Wide Web to its full potential (2003) 0.02
    0.016471423 = product of:
      0.032942846 = sum of:
        0.018105512 = weight(_text_:data in 1981) [ClassicSimilarity], result of:
          0.018105512 = score(doc=1981,freq=2.0), product of:
            0.14807065 = queryWeight, product of:
              3.1620505 = idf(docFreq=5088, maxDocs=44218)
              0.046827413 = queryNorm
            0.12227618 = fieldWeight in 1981, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.1620505 = idf(docFreq=5088, maxDocs=44218)
              0.02734375 = fieldNorm(doc=1981)
        0.014837332 = product of:
          0.029674664 = sum of:
            0.029674664 = weight(_text_:processing in 1981) [ClassicSimilarity], result of:
              0.029674664 = score(doc=1981,freq=2.0), product of:
                0.18956426 = queryWeight, product of:
                  4.048147 = idf(docFreq=2097, maxDocs=44218)
                  0.046827413 = queryNorm
                0.15654145 = fieldWeight in 1981, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  4.048147 = idf(docFreq=2097, maxDocs=44218)
                  0.02734375 = fieldNorm(doc=1981)
          0.5 = coord(1/2)
      0.5 = coord(2/4)
    
    Abstract
    As the World Wide Web continues to expand, it becomes increasingly difficult for users to obtain information efficiently. Because most search engines read format languages such as HTML or SGML, search results reflect formatting tags more than actual page content, which is expressed in natural language. Spinning the Semantic Web describes an exciting new type of hierarchy and standardization that will replace the current "Web of links" with a "Web of meaning." Using a flexible set of languages and tools, the Semantic Web will make all available information - display elements, metadata, services, images, and especially content - accessible. The result will be an immense repository of information accessible for a wide range of new applications. This first handbook for the Semantic Web covers, among other topics, software agents that can negotiate and collect information, markup languages that can tag many more types of information in a document, and knowledge systems that enable machines to read Web pages and determine their reliability. The truly interdisciplinary Semantic Web combines aspects of artificial intelligence, markup languages, natural language processing, information retrieval, knowledge representation, intelligent agents, and databases.
    Content
    Inhalt: Tim Bemers-Lee: The Original Dream - Re-enter Machines - Where Are We Now? - The World Wide Web Consortium - Where Is the Web Going Next? / Dieter Fensel, James Hendler, Henry Lieberman, and Wolfgang Wahlster: Why Is There a Need for the Semantic Web and What Will It Provide? - How the Semantic Web Will Be Possible / Jeff Heflin, James Hendler, and Sean Luke: SHOE: A Blueprint for the Semantic Web / Deborah L. McGuinness, Richard Fikes, Lynn Andrea Stein, and James Hendler: DAML-ONT: An Ontology Language for the Semantic Web / Michel Klein, Jeen Broekstra, Dieter Fensel, Frank van Harmelen, and Ian Horrocks: Ontologies and Schema Languages on the Web / Borys Omelayenko, Monica Crubezy, Dieter Fensel, Richard Benjamins, Bob Wielinga, Enrico Motta, Mark Musen, and Ying Ding: UPML: The Language and Tool Support for Making the Semantic Web Alive / Deborah L. McGuinness: Ontologies Come of Age / Jeen Broekstra, Arjohn Kampman, and Frank van Harmelen: Sesame: An Architecture for Storing and Querying RDF Data and Schema Information / Rob Jasper and Mike Uschold: Enabling Task-Centered Knowledge Support through Semantic Markup / Yolanda Gil: Knowledge Mobility: Semantics for the Web as a White Knight for Knowledge-Based Systems / Sanjeev Thacker, Amit Sheth, and Shuchi Patel: Complex Relationships for the Semantic Web / Alexander Maedche, Steffen Staab, Nenad Stojanovic, Rudi Studer, and York Sure: SEmantic portAL: The SEAL Approach / Ora Lassila and Mark Adler: Semantic Gadgets: Ubiquitous Computing Meets the Semantic Web / Christopher Frye, Mike Plusch, and Henry Lieberman: Static and Dynamic Semantics of the Web / Masahiro Hori: Semantic Annotation for Web Content Adaptation / Austin Tate, Jeff Dalton, John Levine, and Alex Nixon: Task-Achieving Agents on the World Wide Web
  3. Jurafsky, D.; Martin, J.H.: Speech and language processing : ani ntroduction to natural language processing, computational linguistics and speech recognition (2009) 0.01
    0.014987969 = product of:
      0.059951875 = sum of:
        0.059951875 = product of:
          0.11990375 = sum of:
            0.11990375 = weight(_text_:processing in 1081) [ClassicSimilarity], result of:
              0.11990375 = score(doc=1081,freq=16.0), product of:
                0.18956426 = queryWeight, product of:
                  4.048147 = idf(docFreq=2097, maxDocs=44218)
                  0.046827413 = queryNorm
                0.632523 = fieldWeight in 1081, product of:
                  4.0 = tf(freq=16.0), with freq of:
                    16.0 = termFreq=16.0
                  4.048147 = idf(docFreq=2097, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=1081)
          0.5 = coord(1/2)
      0.25 = coord(1/4)
    
    Abstract
    For undergraduate or advanced undergraduate courses in Classical Natural Language Processing, Statistical Natural Language Processing, Speech Recognition, Computational Linguistics, and Human Language Processing. An explosion of Web-based language techniques, merging of distinct fields, availability of phone-based dialogue systems, and much more make this an exciting time in speech and language processing. The first of its kind to thoroughly cover language technology at all levels and with all modern technologies this text takes an empirical approach to the subject, based on applying statistical and other machine-learning algorithms to large corporations. The authors cover areas that traditionally are taught in different courses, to describe a unified vision of speech and language processing. Emphasis is on practical applications and scientific evaluation. An accompanying Website contains teaching materials for instructors, with pointers to language processing resources on the Web. The Second Edition offers a significant amount of new and extended material.
  4. Barnsley, M.F.; Hurd, L.P.: Fractal image compression (1993) 0.01
    0.008992782 = product of:
      0.035971127 = sum of:
        0.035971127 = product of:
          0.071942255 = sum of:
            0.071942255 = weight(_text_:processing in 1546) [ClassicSimilarity], result of:
              0.071942255 = score(doc=1546,freq=4.0), product of:
                0.18956426 = queryWeight, product of:
                  4.048147 = idf(docFreq=2097, maxDocs=44218)
                  0.046827413 = queryNorm
                0.3795138 = fieldWeight in 1546, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  4.048147 = idf(docFreq=2097, maxDocs=44218)
                  0.046875 = fieldNorm(doc=1546)
          0.5 = coord(1/2)
      0.25 = coord(1/4)
    
    LCSH
    Image processing / Digital techniques / Mathematics
    Subject
    Image processing / Digital techniques / Mathematics
  5. Barnsley, M.F.; Hurd, L.P.: Bildkompression mit Fraktalen (1996) 0.01
    0.0074939844 = product of:
      0.029975938 = sum of:
        0.029975938 = product of:
          0.059951875 = sum of:
            0.059951875 = weight(_text_:processing in 1547) [ClassicSimilarity], result of:
              0.059951875 = score(doc=1547,freq=4.0), product of:
                0.18956426 = queryWeight, product of:
                  4.048147 = idf(docFreq=2097, maxDocs=44218)
                  0.046827413 = queryNorm
                0.3162615 = fieldWeight in 1547, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  4.048147 = idf(docFreq=2097, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=1547)
          0.5 = coord(1/2)
      0.25 = coord(1/4)
    
    LCSH
    Image processing / Digital techniques / Mathematics
    Subject
    Image processing / Digital techniques / Mathematics
  6. Hutchins, W.J.; Somers, H.L.: ¬An introduction to machine translation (1992) 0.01
    0.005299047 = product of:
      0.021196188 = sum of:
        0.021196188 = product of:
          0.042392377 = sum of:
            0.042392377 = weight(_text_:processing in 4512) [ClassicSimilarity], result of:
              0.042392377 = score(doc=4512,freq=2.0), product of:
                0.18956426 = queryWeight, product of:
                  4.048147 = idf(docFreq=2097, maxDocs=44218)
                  0.046827413 = queryNorm
                0.22363065 = fieldWeight in 4512, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  4.048147 = idf(docFreq=2097, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=4512)
          0.5 = coord(1/2)
      0.25 = coord(1/4)
    
    Abstract
    The translation of foreign language texts by computers was one of the first tasks that the pioneers of Computing and Artificial Intelligence set themselves. Machine translation is again becoming an importantfield of research and development as the need for translations of technical and commercial documentation is growing well beyond the capacity of the translation profession.This is the first textbook of machine translation, providing a full course on both general machine translation systems characteristics and the computational linguistic foundations of the field. The book assumes no previous knowledge of machine translation and provides the basic background information to the linguistic and computational linguistics, artificial intelligence, natural language processing and information science.
  7. Schweibenz, W.; Thissen, F.: Qualität im Web : Benutzerfreundliche Webseiten durch Usability Evaluation (2003) 0.00
    0.0039652926 = product of:
      0.01586117 = sum of:
        0.01586117 = product of:
          0.03172234 = sum of:
            0.03172234 = weight(_text_:22 in 767) [ClassicSimilarity], result of:
              0.03172234 = score(doc=767,freq=2.0), product of:
                0.16398162 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046827413 = queryNorm
                0.19345059 = fieldWeight in 767, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=767)
          0.5 = coord(1/2)
      0.25 = coord(1/4)
    
    Date
    22. 3.2008 14:24:08

Languages

Types

Classifications