Search (3 results, page 1 of 1)

  • × subject_ss:"Suchmaschine / Information Retrieval"
  1. Berry, M.W.; Browne, M.: Understanding search engines : mathematical modeling and text retrieval (1999) 0.03
    0.033504575 = product of:
      0.06700915 = sum of:
        0.031038022 = weight(_text_:data in 5777) [ClassicSimilarity], result of:
          0.031038022 = score(doc=5777,freq=2.0), product of:
            0.14807065 = queryWeight, product of:
              3.1620505 = idf(docFreq=5088, maxDocs=44218)
              0.046827413 = queryNorm
            0.2096163 = fieldWeight in 5777, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.1620505 = idf(docFreq=5088, maxDocs=44218)
              0.046875 = fieldNorm(doc=5777)
        0.035971127 = product of:
          0.071942255 = sum of:
            0.071942255 = weight(_text_:processing in 5777) [ClassicSimilarity], result of:
              0.071942255 = score(doc=5777,freq=4.0), product of:
                0.18956426 = queryWeight, product of:
                  4.048147 = idf(docFreq=2097, maxDocs=44218)
                  0.046827413 = queryNorm
                0.3795138 = fieldWeight in 5777, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  4.048147 = idf(docFreq=2097, maxDocs=44218)
                  0.046875 = fieldNorm(doc=5777)
          0.5 = coord(1/2)
      0.5 = coord(2/4)
    
    Abstract
    This book discusses many of the key design issues for building search engines and emphazises the important role that applied mathematics can play in improving information retrieval. The authors discuss not only important data structures, algorithms, and software but also user-centered issues such as interfaces, manual indexing, and document preparation. They also present some of the current problems in information retrieval that many not be familiar to applied mathematicians and computer scientists and some of the driving computational methods (SVD, SDD) for automated conceptual indexing
    LCSH
    Text processing (Computer science)
    Subject
    Text processing (Computer science)
  2. Berry, M.W.; Browne, M.: Understanding search engines : mathematical modeling and text retrieval (2005) 0.02
    0.022336382 = product of:
      0.044672765 = sum of:
        0.020692015 = weight(_text_:data in 7) [ClassicSimilarity], result of:
          0.020692015 = score(doc=7,freq=2.0), product of:
            0.14807065 = queryWeight, product of:
              3.1620505 = idf(docFreq=5088, maxDocs=44218)
              0.046827413 = queryNorm
            0.1397442 = fieldWeight in 7, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.1620505 = idf(docFreq=5088, maxDocs=44218)
              0.03125 = fieldNorm(doc=7)
        0.02398075 = product of:
          0.0479615 = sum of:
            0.0479615 = weight(_text_:processing in 7) [ClassicSimilarity], result of:
              0.0479615 = score(doc=7,freq=4.0), product of:
                0.18956426 = queryWeight, product of:
                  4.048147 = idf(docFreq=2097, maxDocs=44218)
                  0.046827413 = queryNorm
                0.2530092 = fieldWeight in 7, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  4.048147 = idf(docFreq=2097, maxDocs=44218)
                  0.03125 = fieldNorm(doc=7)
          0.5 = coord(1/2)
      0.5 = coord(2/4)
    
    Abstract
    The second edition of Understanding Search Engines: Mathematical Modeling and Text Retrieval follows the basic premise of the first edition by discussing many of the key design issues for building search engines and emphasizing the important role that applied mathematics can play in improving information retrieval. The authors discuss important data structures, algorithms, and software as well as user-centered issues such as interfaces, manual indexing, and document preparation. Significant changes bring the text up to date on current information retrieval methods: for example the addition of a new chapter on link-structure algorithms used in search engines such as Google. The chapter on user interface has been rewritten to specifically focus on search engine usability. In addition the authors have added new recommendations for further reading and expanded the bibliography, and have updated and streamlined the index to make it more reader friendly.
    LCSH
    Text processing (Computer science)
    Subject
    Text processing (Computer science)
  3. Baofu, P.: ¬The future of information architecture : conceiving a better way to understand taxonomy, network, and intelligence (2008) 0.01
    0.006466255 = product of:
      0.02586502 = sum of:
        0.02586502 = weight(_text_:data in 2257) [ClassicSimilarity], result of:
          0.02586502 = score(doc=2257,freq=2.0), product of:
            0.14807065 = queryWeight, product of:
              3.1620505 = idf(docFreq=5088, maxDocs=44218)
              0.046827413 = queryNorm
            0.17468026 = fieldWeight in 2257, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.1620505 = idf(docFreq=5088, maxDocs=44218)
              0.0390625 = fieldNorm(doc=2257)
      0.25 = coord(1/4)
    
    Abstract
    The Future of Information Architecture examines issues surrounding why information is processed, stored and applied in the way that it has, since time immemorial. Contrary to the conventional wisdom held by many scholars in human history, the recurrent debate on the explanation of the most basic categories of information (eg space, time causation, quality, quantity) has been misconstrued, to the effect that there exists some deeper categories and principles behind these categories of information - with enormous implications for our understanding of reality in general. To understand this, the book is organised in to four main parts: Part I begins with the vital question concerning the role of information within the context of the larger theoretical debate in the literature. Part II provides a critical examination of the nature of data taxonomy from the main perspectives of culture, society, nature and the mind. Part III constructively invesitgates the world of information network from the main perspectives of culture, society, nature and the mind. Part IV proposes six main theses in the authors synthetic theory of information architecture, namely, (a) the first thesis on the simpleness-complicatedness principle, (b) the second thesis on the exactness-vagueness principle (c) the third thesis on the slowness-quickness principle (d) the fourth thesis on the order-chaos principle, (e) the fifth thesis on the symmetry-asymmetry principle, and (f) the sixth thesis on the post-human stage.