Search (94 results, page 1 of 5)

  • × theme_ss:"Automatisches Klassifizieren"
  1. Hotho, A.; Bloehdorn, S.: Data Mining 2004 : Text classification by boosting weak learners based on terms and concepts (2004) 0.36
    0.3604252 = sum of:
      0.07437435 = product of:
        0.22312303 = sum of:
          0.22312303 = weight(_text_:3a in 562) [ClassicSimilarity], result of:
            0.22312303 = score(doc=562,freq=2.0), product of:
              0.39700332 = queryWeight, product of:
                8.478011 = idf(docFreq=24, maxDocs=44218)
                0.046827413 = queryNorm
              0.56201804 = fieldWeight in 562, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                8.478011 = idf(docFreq=24, maxDocs=44218)
                0.046875 = fieldNorm(doc=562)
        0.33333334 = coord(1/3)
      0.22312303 = weight(_text_:2f in 562) [ClassicSimilarity], result of:
        0.22312303 = score(doc=562,freq=2.0), product of:
          0.39700332 = queryWeight, product of:
            8.478011 = idf(docFreq=24, maxDocs=44218)
            0.046827413 = queryNorm
          0.56201804 = fieldWeight in 562, product of:
            1.4142135 = tf(freq=2.0), with freq of:
              2.0 = termFreq=2.0
            8.478011 = idf(docFreq=24, maxDocs=44218)
            0.046875 = fieldNorm(doc=562)
      0.043894395 = weight(_text_:data in 562) [ClassicSimilarity], result of:
        0.043894395 = score(doc=562,freq=4.0), product of:
          0.14807065 = queryWeight, product of:
            3.1620505 = idf(docFreq=5088, maxDocs=44218)
            0.046827413 = queryNorm
          0.29644224 = fieldWeight in 562, product of:
            2.0 = tf(freq=4.0), with freq of:
              4.0 = termFreq=4.0
            3.1620505 = idf(docFreq=5088, maxDocs=44218)
            0.046875 = fieldNorm(doc=562)
      0.019033402 = product of:
        0.038066804 = sum of:
          0.038066804 = weight(_text_:22 in 562) [ClassicSimilarity], result of:
            0.038066804 = score(doc=562,freq=2.0), product of:
              0.16398162 = queryWeight, product of:
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.046827413 = queryNorm
              0.23214069 = fieldWeight in 562, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.046875 = fieldNorm(doc=562)
        0.5 = coord(1/2)
    
    Content
    Vgl.: http://www.google.de/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&cad=rja&ved=0CEAQFjAA&url=http%3A%2F%2Fciteseerx.ist.psu.edu%2Fviewdoc%2Fdownload%3Fdoi%3D10.1.1.91.4940%26rep%3Drep1%26type%3Dpdf&ei=dOXrUMeIDYHDtQahsIGACg&usg=AFQjCNHFWVh6gNPvnOrOS9R3rkrXCNVD-A&sig2=5I2F5evRfMnsttSgFF9g7Q&bvm=bv.1357316858,d.Yms.
    Date
    8. 1.2013 10:22:32
    Source
    Proceedings of the 4th IEEE International Conference on Data Mining (ICDM 2004), 1-4 November 2004, Brighton, UK
  2. Dubin, D.: Dimensions and discriminability (1998) 0.07
    0.069985814 = product of:
      0.13997163 = sum of:
        0.036211025 = weight(_text_:data in 2338) [ClassicSimilarity], result of:
          0.036211025 = score(doc=2338,freq=2.0), product of:
            0.14807065 = queryWeight, product of:
              3.1620505 = idf(docFreq=5088, maxDocs=44218)
              0.046827413 = queryNorm
            0.24455236 = fieldWeight in 2338, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.1620505 = idf(docFreq=5088, maxDocs=44218)
              0.0546875 = fieldNorm(doc=2338)
        0.1037606 = sum of:
          0.05934933 = weight(_text_:processing in 2338) [ClassicSimilarity], result of:
            0.05934933 = score(doc=2338,freq=2.0), product of:
              0.18956426 = queryWeight, product of:
                4.048147 = idf(docFreq=2097, maxDocs=44218)
                0.046827413 = queryNorm
              0.3130829 = fieldWeight in 2338, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                4.048147 = idf(docFreq=2097, maxDocs=44218)
                0.0546875 = fieldNorm(doc=2338)
          0.044411276 = weight(_text_:22 in 2338) [ClassicSimilarity], result of:
            0.044411276 = score(doc=2338,freq=2.0), product of:
              0.16398162 = queryWeight, product of:
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.046827413 = queryNorm
              0.2708308 = fieldWeight in 2338, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.0546875 = fieldNorm(doc=2338)
      0.5 = coord(2/4)
    
    Date
    22. 9.1997 19:16:05
    Source
    Visualizing subject access for 21st century information resources: Papers presented at the 1997 Clinic on Library Applications of Data Processing, 2-4 Mar 1997, Graduate School of Library and Information Science, University of Illinois at Urbana-Champaign. Ed.: P.A. Cochrane et al
  3. Autonomy, Inc.: Automatic classification (o.J.) 0.05
    0.046219878 = product of:
      0.092439756 = sum of:
        0.058525857 = weight(_text_:data in 1666) [ClassicSimilarity], result of:
          0.058525857 = score(doc=1666,freq=4.0), product of:
            0.14807065 = queryWeight, product of:
              3.1620505 = idf(docFreq=5088, maxDocs=44218)
              0.046827413 = queryNorm
            0.3952563 = fieldWeight in 1666, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              3.1620505 = idf(docFreq=5088, maxDocs=44218)
              0.0625 = fieldNorm(doc=1666)
        0.033913903 = product of:
          0.067827806 = sum of:
            0.067827806 = weight(_text_:processing in 1666) [ClassicSimilarity], result of:
              0.067827806 = score(doc=1666,freq=2.0), product of:
                0.18956426 = queryWeight, product of:
                  4.048147 = idf(docFreq=2097, maxDocs=44218)
                  0.046827413 = queryNorm
                0.35780904 = fieldWeight in 1666, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  4.048147 = idf(docFreq=2097, maxDocs=44218)
                  0.0625 = fieldNorm(doc=1666)
          0.5 = coord(1/2)
      0.5 = coord(2/4)
    
    Abstract
    Autonomy's Classification solutions remove the necessity for organizations to rely on human intervention or manual processing of information, such as manual tagging, typically required to make most other e-business applications work. Autonomy's ability to consistently and accurately classify data automatically is a unique infrastructure solution that overcomes the predicaments surrounding the exponential growth of unstructured data.
  4. Classification, automation, and new media : Proceedings of the 24th Annual Conference of the Gesellschaft für Klassifikation e.V., University of Passau, March 15 - 17, 2000 (2002) 0.04
    0.0448143 = product of:
      0.0896286 = sum of:
        0.06843241 = weight(_text_:data in 5997) [ClassicSimilarity], result of:
          0.06843241 = score(doc=5997,freq=14.0), product of:
            0.14807065 = queryWeight, product of:
              3.1620505 = idf(docFreq=5088, maxDocs=44218)
              0.046827413 = queryNorm
            0.46216056 = fieldWeight in 5997, product of:
              3.7416575 = tf(freq=14.0), with freq of:
                14.0 = termFreq=14.0
              3.1620505 = idf(docFreq=5088, maxDocs=44218)
              0.0390625 = fieldNorm(doc=5997)
        0.021196188 = product of:
          0.042392377 = sum of:
            0.042392377 = weight(_text_:processing in 5997) [ClassicSimilarity], result of:
              0.042392377 = score(doc=5997,freq=2.0), product of:
                0.18956426 = queryWeight, product of:
                  4.048147 = idf(docFreq=2097, maxDocs=44218)
                  0.046827413 = queryNorm
                0.22363065 = fieldWeight in 5997, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  4.048147 = idf(docFreq=2097, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=5997)
          0.5 = coord(1/2)
      0.5 = coord(2/4)
    
    Abstract
    Given the huge amount of information in the internet and in practically every domain of knowledge that we are facing today, knowledge discovery calls for automation. The book deals with methods from classification and data analysis that respond effectively to this rapidly growing challenge. The interested reader will find new methodological insights as well as applications in economics, management science, finance, and marketing, and in pattern recognition, biology, health, and archaeology.
    Content
    Data Analysis, Statistics, and Classification.- Pattern Recognition and Automation.- Data Mining, Information Processing, and Automation.- New Media, Web Mining, and Automation.- Applications in Management Science, Finance, and Marketing.- Applications in Medicine, Biology, Archaeology, and Others.- Author Index.- Subject Index.
    RSWK
    Data Mining / Kongress / Passau <2000>
    Series
    Proceedings of the ... annual conference of the Gesellschaft für Klassifikation e.V. ; 24)(Studies in classification, data analysis, and knowledge organization
    Subject
    Data Mining / Kongress / Passau <2000>
    Theme
    Data Mining
  5. HaCohen-Kerner, Y. et al.: Classification using various machine learning methods and combinations of key-phrases and visual features (2016) 0.04
    0.04172619 = product of:
      0.08345238 = sum of:
        0.05173004 = weight(_text_:data in 2748) [ClassicSimilarity], result of:
          0.05173004 = score(doc=2748,freq=2.0), product of:
            0.14807065 = queryWeight, product of:
              3.1620505 = idf(docFreq=5088, maxDocs=44218)
              0.046827413 = queryNorm
            0.34936053 = fieldWeight in 2748, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.1620505 = idf(docFreq=5088, maxDocs=44218)
              0.078125 = fieldNorm(doc=2748)
        0.03172234 = product of:
          0.06344468 = sum of:
            0.06344468 = weight(_text_:22 in 2748) [ClassicSimilarity], result of:
              0.06344468 = score(doc=2748,freq=2.0), product of:
                0.16398162 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046827413 = queryNorm
                0.38690117 = fieldWeight in 2748, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.078125 = fieldNorm(doc=2748)
          0.5 = coord(1/2)
      0.5 = coord(2/4)
    
    Date
    1. 2.2016 18:25:22
    Source
    Semantic keyword-based search on structured data sources: First COST Action IC1302 International KEYSTONE Conference, IKC 2015, Coimbra, Portugal, September 8-9, 2015. Revised Selected Papers. Eds.: J. Cardoso et al
  6. Liu, X.; Yu, S.; Janssens, F.; Glänzel, W.; Moreau, Y.; Moor, B.de: Weighted hybrid clustering by combining text mining and bibliometrics on a large-scale journal database (2010) 0.04
    0.03959743 = product of:
      0.07919486 = sum of:
        0.053759433 = weight(_text_:data in 3464) [ClassicSimilarity], result of:
          0.053759433 = score(doc=3464,freq=6.0), product of:
            0.14807065 = queryWeight, product of:
              3.1620505 = idf(docFreq=5088, maxDocs=44218)
              0.046827413 = queryNorm
            0.3630661 = fieldWeight in 3464, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              3.1620505 = idf(docFreq=5088, maxDocs=44218)
              0.046875 = fieldNorm(doc=3464)
        0.025435425 = product of:
          0.05087085 = sum of:
            0.05087085 = weight(_text_:processing in 3464) [ClassicSimilarity], result of:
              0.05087085 = score(doc=3464,freq=2.0), product of:
                0.18956426 = queryWeight, product of:
                  4.048147 = idf(docFreq=2097, maxDocs=44218)
                  0.046827413 = queryNorm
                0.26835677 = fieldWeight in 3464, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  4.048147 = idf(docFreq=2097, maxDocs=44218)
                  0.046875 = fieldNorm(doc=3464)
          0.5 = coord(1/2)
      0.5 = coord(2/4)
    
    Abstract
    We propose a new hybrid clustering framework to incorporate text mining with bibliometrics in journal set analysis. The framework integrates two different approaches: clustering ensemble and kernel-fusion clustering. To improve the flexibility and the efficiency of processing large-scale data, we propose an information-based weighting scheme to leverage the effect of multiple data sources in hybrid clustering. Three different algorithms are extended by the proposed weighting scheme and they are employed on a large journal set retrieved from the Web of Science (WoS) database. The clustering performance of the proposed algorithms is systematically evaluated using multiple evaluation methods, and they were cross-compared with alternative methods. Experimental results demonstrate that the proposed weighted hybrid clustering strategy is superior to other methods in clustering performance and efficiency. The proposed approach also provides a more refined structural mapping of journal sets, which is useful for monitoring and detecting new trends in different scientific fields.
    Theme
    Data Mining
  7. Teich, E.; Degaetano-Ortlieb, S.; Fankhauser, P.; Kermes, H.; Lapshinova-Koltunski, E.: ¬The linguistic construal of disciplinarity : a data-mining approach using register features (2016) 0.04
    0.03959743 = product of:
      0.07919486 = sum of:
        0.053759433 = weight(_text_:data in 3015) [ClassicSimilarity], result of:
          0.053759433 = score(doc=3015,freq=6.0), product of:
            0.14807065 = queryWeight, product of:
              3.1620505 = idf(docFreq=5088, maxDocs=44218)
              0.046827413 = queryNorm
            0.3630661 = fieldWeight in 3015, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              3.1620505 = idf(docFreq=5088, maxDocs=44218)
              0.046875 = fieldNorm(doc=3015)
        0.025435425 = product of:
          0.05087085 = sum of:
            0.05087085 = weight(_text_:processing in 3015) [ClassicSimilarity], result of:
              0.05087085 = score(doc=3015,freq=2.0), product of:
                0.18956426 = queryWeight, product of:
                  4.048147 = idf(docFreq=2097, maxDocs=44218)
                  0.046827413 = queryNorm
                0.26835677 = fieldWeight in 3015, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  4.048147 = idf(docFreq=2097, maxDocs=44218)
                  0.046875 = fieldNorm(doc=3015)
          0.5 = coord(1/2)
      0.5 = coord(2/4)
    
    Abstract
    We analyze the linguistic evolution of selected scientific disciplines over a 30-year time span (1970s to 2000s). Our focus is on four highly specialized disciplines at the boundaries of computer science that emerged during that time: computational linguistics, bioinformatics, digital construction, and microelectronics. Our analysis is driven by the question whether these disciplines develop a distinctive language use-both individually and collectively-over the given time period. The data set is the English Scientific Text Corpus (scitex), which includes texts from the 1970s/1980s and early 2000s. Our theoretical basis is register theory. In terms of methods, we combine corpus-based methods of feature extraction (various aggregated features [part-of-speech based], n-grams, lexico-grammatical patterns) and automatic text classification. The results of our research are directly relevant to the study of linguistic variation and languages for specific purposes (LSP) and have implications for various natural language processing (NLP) tasks, for example, authorship attribution, text mining, or training NLP tools.
    Theme
    Data Mining
  8. Billal, B.; Fonseca, A.; Sadat, F.; Lounis, H.: Semi-supervised learning and social media text analysis towards multi-labeling categorization (2017) 0.04
    0.037741404 = product of:
      0.07548281 = sum of:
        0.058525857 = weight(_text_:data in 4095) [ClassicSimilarity], result of:
          0.058525857 = score(doc=4095,freq=16.0), product of:
            0.14807065 = queryWeight, product of:
              3.1620505 = idf(docFreq=5088, maxDocs=44218)
              0.046827413 = queryNorm
            0.3952563 = fieldWeight in 4095, product of:
              4.0 = tf(freq=16.0), with freq of:
                16.0 = termFreq=16.0
              3.1620505 = idf(docFreq=5088, maxDocs=44218)
              0.03125 = fieldNorm(doc=4095)
        0.016956951 = product of:
          0.033913903 = sum of:
            0.033913903 = weight(_text_:processing in 4095) [ClassicSimilarity], result of:
              0.033913903 = score(doc=4095,freq=2.0), product of:
                0.18956426 = queryWeight, product of:
                  4.048147 = idf(docFreq=2097, maxDocs=44218)
                  0.046827413 = queryNorm
                0.17890452 = fieldWeight in 4095, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  4.048147 = idf(docFreq=2097, maxDocs=44218)
                  0.03125 = fieldNorm(doc=4095)
          0.5 = coord(1/2)
      0.5 = coord(2/4)
    
    Abstract
    In traditional text classification, classes are mutually exclusive, i.e. it is not possible to have one text or text fragment classified into more than one class. On the other hand, in multi-label classification an individual text may belong to several classes simultaneously. This type of classification is required by a large number of current applications such as big data classification, images and video annotation. Supervised learning is the most used type of machine learning in the classification task. It requires large quantities of labeled data and the intervention of a human tagger in the creation of the training sets. When the data sets become very large or heavily noisy, this operation can be tedious, prone to error and time consuming. In this case, semi-supervised learning, which requires only few labels, is a better choice. In this paper, we study and evaluate several methods to address the problem of multi-label classification using semi-supervised learning and data from social networks. First, we propose a linguistic pre-processing involving tokeni-sation, recognition of named entities and hashtag segmentation in order to decrease the noise in this type of massive and unstructured real data and then we perform a word sense disambiguation using WordNet. Second, several experiments related to multi-label classification and semi-supervised learning are carried out on these data sets and compared to each other. These evaluations compare the results of the approaches considered. This paper proposes a method for combining semi-supervised methods with a graph method for the extraction of subjects in social networks using a multi-label classification approach. Experiments show that the performance of the proposed model increases in 4 p.p. the precision of the classification when compared to a baseline.
    Source
    IEEE International Conference on Big Data (Big Data) (2017)
  9. Ru, C.; Tang, J.; Li, S.; Xie, S.; Wang, T.: Using semantic similarity to reduce wrong labels in distant supervision for relation extraction (2018) 0.04
    0.036463115 = product of:
      0.07292623 = sum of:
        0.05173004 = weight(_text_:data in 5055) [ClassicSimilarity], result of:
          0.05173004 = score(doc=5055,freq=8.0), product of:
            0.14807065 = queryWeight, product of:
              3.1620505 = idf(docFreq=5088, maxDocs=44218)
              0.046827413 = queryNorm
            0.34936053 = fieldWeight in 5055, product of:
              2.828427 = tf(freq=8.0), with freq of:
                8.0 = termFreq=8.0
              3.1620505 = idf(docFreq=5088, maxDocs=44218)
              0.0390625 = fieldNorm(doc=5055)
        0.021196188 = product of:
          0.042392377 = sum of:
            0.042392377 = weight(_text_:processing in 5055) [ClassicSimilarity], result of:
              0.042392377 = score(doc=5055,freq=2.0), product of:
                0.18956426 = queryWeight, product of:
                  4.048147 = idf(docFreq=2097, maxDocs=44218)
                  0.046827413 = queryNorm
                0.22363065 = fieldWeight in 5055, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  4.048147 = idf(docFreq=2097, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=5055)
          0.5 = coord(1/2)
      0.5 = coord(2/4)
    
    Abstract
    Distant supervision (DS) has the advantage of automatically generating large amounts of labelled training data and has been widely used for relation extraction. However, there are usually many wrong labels in the automatically labelled data in distant supervision (Riedel, Yao, & McCallum, 2010). This paper presents a novel method to reduce the wrong labels. The proposed method uses the semantic Jaccard with word embedding to measure the semantic similarity between the relation phrase in the knowledge base and the dependency phrases between two entities in a sentence to filter the wrong labels. In the process of reducing wrong labels, the semantic Jaccard algorithm selects a core dependency phrase to represent the candidate relation in a sentence, which can capture features for relation classification and avoid the negative impact from irrelevant term sequences that previous neural network models of relation extraction often suffer. In the process of relation classification, the core dependency phrases are also used as the input of a convolutional neural network (CNN) for relation classification. The experimental results show that compared with the methods using original DS data, the methods using filtered DS data performed much better in relation extraction. It indicates that the semantic similarity based method is effective in reducing wrong labels. The relation extraction performance of the CNN model using the core dependency phrases as input is the best of all, which indicates that using the core dependency phrases as input of CNN is enough to capture the features for relation classification and could avoid negative impact from irrelevant terms.
    Source
    Information processing and management. 54(2018) no.4, S.593-608
  10. Zhou, G.D.; Zhang, M.; Ji, D.H.; Zhu, Q.M.: Hierarchical learning strategy in semantic relation extraction (2008) 0.03
    0.03466491 = product of:
      0.06932982 = sum of:
        0.043894395 = weight(_text_:data in 2077) [ClassicSimilarity], result of:
          0.043894395 = score(doc=2077,freq=4.0), product of:
            0.14807065 = queryWeight, product of:
              3.1620505 = idf(docFreq=5088, maxDocs=44218)
              0.046827413 = queryNorm
            0.29644224 = fieldWeight in 2077, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              3.1620505 = idf(docFreq=5088, maxDocs=44218)
              0.046875 = fieldNorm(doc=2077)
        0.025435425 = product of:
          0.05087085 = sum of:
            0.05087085 = weight(_text_:processing in 2077) [ClassicSimilarity], result of:
              0.05087085 = score(doc=2077,freq=2.0), product of:
                0.18956426 = queryWeight, product of:
                  4.048147 = idf(docFreq=2097, maxDocs=44218)
                  0.046827413 = queryNorm
                0.26835677 = fieldWeight in 2077, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  4.048147 = idf(docFreq=2097, maxDocs=44218)
                  0.046875 = fieldNorm(doc=2077)
          0.5 = coord(1/2)
      0.5 = coord(2/4)
    
    Abstract
    This paper proposes a novel hierarchical learning strategy to deal with the data sparseness problem in semantic relation extraction by modeling the commonality among related classes. For each class in the hierarchy either manually predefined or automatically clustered, a discriminative function is determined in a top-down way. As the upper-level class normally has much more positive training examples than the lower-level class, the corresponding discriminative function can be determined more reliably and guide the discriminative function learning in the lower-level one more effectively, which otherwise might suffer from limited training data. In this paper, two classifier learning approaches, i.e. the simple perceptron algorithm and the state-of-the-art Support Vector Machines, are applied using the hierarchical learning strategy. Moreover, several kinds of class hierarchies either manually predefined or automatically clustered are explored and compared. Evaluation on the ACE RDC 2003 and 2004 corpora shows that the hierarchical learning strategy much improves the performance on least- and medium-frequent relations.
    Source
    Information processing and management. 44(2008) no.3, S.1008-1021
  11. Yang, P.; Gao, W.; Tan, Q.; Wong, K.-F.: ¬A link-bridged topic model for cross-domain document classification (2013) 0.03
    0.032997858 = product of:
      0.065995716 = sum of:
        0.04479953 = weight(_text_:data in 2706) [ClassicSimilarity], result of:
          0.04479953 = score(doc=2706,freq=6.0), product of:
            0.14807065 = queryWeight, product of:
              3.1620505 = idf(docFreq=5088, maxDocs=44218)
              0.046827413 = queryNorm
            0.30255508 = fieldWeight in 2706, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              3.1620505 = idf(docFreq=5088, maxDocs=44218)
              0.0390625 = fieldNorm(doc=2706)
        0.021196188 = product of:
          0.042392377 = sum of:
            0.042392377 = weight(_text_:processing in 2706) [ClassicSimilarity], result of:
              0.042392377 = score(doc=2706,freq=2.0), product of:
                0.18956426 = queryWeight, product of:
                  4.048147 = idf(docFreq=2097, maxDocs=44218)
                  0.046827413 = queryNorm
                0.22363065 = fieldWeight in 2706, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  4.048147 = idf(docFreq=2097, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=2706)
          0.5 = coord(1/2)
      0.5 = coord(2/4)
    
    Abstract
    Transfer learning utilizes labeled data available from some related domain (source domain) for achieving effective knowledge transformation to the target domain. However, most state-of-the-art cross-domain classification methods treat documents as plain text and ignore the hyperlink (or citation) relationship existing among the documents. In this paper, we propose a novel cross-domain document classification approach called Link-Bridged Topic model (LBT). LBT consists of two key steps. Firstly, LBT utilizes an auxiliary link network to discover the direct or indirect co-citation relationship among documents by embedding the background knowledge into a graph kernel. The mined co-citation relationship is leveraged to bridge the gap across different domains. Secondly, LBT simultaneously combines the content information and link structures into a unified latent topic model. The model is based on an assumption that the documents of source and target domains share some common topics from the point of view of both content information and link structure. By mapping both domains data into the latent topic spaces, LBT encodes the knowledge about domain commonality and difference as the shared topics with associated differential probabilities. The learned latent topics must be consistent with the source and target data, as well as content and link statistics. Then the shared topics act as the bridge to facilitate knowledge transfer from the source to the target domains. Experiments on different types of datasets show that our algorithm significantly improves the generalization performance of cross-domain document classification.
    Source
    Information processing and management. 49(2013) no.6, S.1181-1193
  12. Yoon, Y.; Lee, C.; Lee, G.G.: ¬An effective procedure for constructing a hierarchical text classification system (2006) 0.03
    0.029208332 = product of:
      0.058416665 = sum of:
        0.036211025 = weight(_text_:data in 5273) [ClassicSimilarity], result of:
          0.036211025 = score(doc=5273,freq=2.0), product of:
            0.14807065 = queryWeight, product of:
              3.1620505 = idf(docFreq=5088, maxDocs=44218)
              0.046827413 = queryNorm
            0.24455236 = fieldWeight in 5273, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.1620505 = idf(docFreq=5088, maxDocs=44218)
              0.0546875 = fieldNorm(doc=5273)
        0.022205638 = product of:
          0.044411276 = sum of:
            0.044411276 = weight(_text_:22 in 5273) [ClassicSimilarity], result of:
              0.044411276 = score(doc=5273,freq=2.0), product of:
                0.16398162 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046827413 = queryNorm
                0.2708308 = fieldWeight in 5273, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=5273)
          0.5 = coord(1/2)
      0.5 = coord(2/4)
    
    Abstract
    In text categorization tasks, classification on some class hierarchies has better results than in cases without the hierarchy. Currently, because a large number of documents are divided into several subgroups in a hierarchy, we can appropriately use a hierarchical classification method. However, we have no systematic method to build a hierarchical classification system that performs well with large collections of practical data. In this article, we introduce a new evaluation scheme for internal node classifiers, which can be used effectively to develop a hierarchical classification system. We also show that our method for constructing the hierarchical classification system is very effective, especially for the task of constructing classifiers applied to hierarchy tree with a lot of levels.
    Date
    22. 7.2006 16:24:52
  13. Ibekwe-SanJuan, F.; SanJuan, E.: From term variants to research topics (2002) 0.03
    0.028887425 = product of:
      0.05777485 = sum of:
        0.03657866 = weight(_text_:data in 1853) [ClassicSimilarity], result of:
          0.03657866 = score(doc=1853,freq=4.0), product of:
            0.14807065 = queryWeight, product of:
              3.1620505 = idf(docFreq=5088, maxDocs=44218)
              0.046827413 = queryNorm
            0.24703519 = fieldWeight in 1853, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              3.1620505 = idf(docFreq=5088, maxDocs=44218)
              0.0390625 = fieldNorm(doc=1853)
        0.021196188 = product of:
          0.042392377 = sum of:
            0.042392377 = weight(_text_:processing in 1853) [ClassicSimilarity], result of:
              0.042392377 = score(doc=1853,freq=2.0), product of:
                0.18956426 = queryWeight, product of:
                  4.048147 = idf(docFreq=2097, maxDocs=44218)
                  0.046827413 = queryNorm
                0.22363065 = fieldWeight in 1853, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  4.048147 = idf(docFreq=2097, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=1853)
          0.5 = coord(1/2)
      0.5 = coord(2/4)
    
    Abstract
    In a scientific and technological watch (STW) task, an expert user needs to survey the evolution of research topics in his area of specialisation in order to detect interesting changes. The majority of methods proposing evaluation metrics (bibliometrics and scientometrics studies) for STW rely solely an statistical data analysis methods (Co-citation analysis, co-word analysis). Such methods usually work an structured databases where the units of analysis (words, keywords) are already attributed to documents by human indexers. The advent of huge amounts of unstructured textual data has rendered necessary the integration of natural language processing (NLP) techniques to first extract meaningful units from texts. We propose a method for STW which is NLP-oriented. The method not only analyses texts linguistically in order to extract terms from them, but also uses linguistic relations (syntactic variations) as the basis for clustering. Terms and variation relations are formalised as weighted di-graphs which the clustering algorithm, CPCL (Classification by Preferential Clustered Link) will seek to reduce in order to produces classes. These classes ideally represent the research topics present in the corpus. The results of the classification are subjected to validation by an expert in STW.
  14. Wu, K.J.; Chen, M.-C.; Sun, Y.: Automatic topics discovery from hyperlinked documents (2004) 0.03
    0.028236724 = product of:
      0.05647345 = sum of:
        0.031038022 = weight(_text_:data in 2563) [ClassicSimilarity], result of:
          0.031038022 = score(doc=2563,freq=2.0), product of:
            0.14807065 = queryWeight, product of:
              3.1620505 = idf(docFreq=5088, maxDocs=44218)
              0.046827413 = queryNorm
            0.2096163 = fieldWeight in 2563, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.1620505 = idf(docFreq=5088, maxDocs=44218)
              0.046875 = fieldNorm(doc=2563)
        0.025435425 = product of:
          0.05087085 = sum of:
            0.05087085 = weight(_text_:processing in 2563) [ClassicSimilarity], result of:
              0.05087085 = score(doc=2563,freq=2.0), product of:
                0.18956426 = queryWeight, product of:
                  4.048147 = idf(docFreq=2097, maxDocs=44218)
                  0.046827413 = queryNorm
                0.26835677 = fieldWeight in 2563, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  4.048147 = idf(docFreq=2097, maxDocs=44218)
                  0.046875 = fieldNorm(doc=2563)
          0.5 = coord(1/2)
      0.5 = coord(2/4)
    
    Source
    Information processing and management. 40(2004) no.2, S.239-255
    Theme
    Data Mining
  15. Li, T.; Zhu, S.; Ogihara, M.: Text categorization via generalized discriminant analysis (2008) 0.02
    0.023530604 = product of:
      0.04706121 = sum of:
        0.02586502 = weight(_text_:data in 2119) [ClassicSimilarity], result of:
          0.02586502 = score(doc=2119,freq=2.0), product of:
            0.14807065 = queryWeight, product of:
              3.1620505 = idf(docFreq=5088, maxDocs=44218)
              0.046827413 = queryNorm
            0.17468026 = fieldWeight in 2119, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.1620505 = idf(docFreq=5088, maxDocs=44218)
              0.0390625 = fieldNorm(doc=2119)
        0.021196188 = product of:
          0.042392377 = sum of:
            0.042392377 = weight(_text_:processing in 2119) [ClassicSimilarity], result of:
              0.042392377 = score(doc=2119,freq=2.0), product of:
                0.18956426 = queryWeight, product of:
                  4.048147 = idf(docFreq=2097, maxDocs=44218)
                  0.046827413 = queryNorm
                0.22363065 = fieldWeight in 2119, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  4.048147 = idf(docFreq=2097, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=2119)
          0.5 = coord(1/2)
      0.5 = coord(2/4)
    
    Abstract
    Text categorization is an important research area and has been receiving much attention due to the growth of the on-line information and of Internet. Automated text categorization is generally cast as a multi-class classification problem. Much of previous work focused on binary document classification problems. Support vector machines (SVMs) excel in binary classification, but the elegant theory behind large-margin hyperplane cannot be easily extended to multi-class text classification. In addition, the training time and scaling are also important concerns. On the other hand, other techniques naturally extensible to handle multi-class classification are generally not as accurate as SVM. This paper presents a simple and efficient solution to multi-class text categorization. Classification problems are first formulated as optimization via discriminant analysis. Text categorization is then cast as the problem of finding coordinate transformations that reflects the inherent similarity from the data. While most of the previous approaches decompose a multi-class classification problem into multiple independent binary classification tasks, the proposed approach enables direct multi-class classification. By using generalized singular value decomposition (GSVD), a coordinate transformation that reflects the inherent class structure indicated by the generalized singular values is identified. Extensive experiments demonstrate the efficiency and effectiveness of the proposed approach.
    Source
    Information processing and management. 44(2008) no.5, S.1684-1697
  16. Borodin, Y.; Polishchuk, V.; Mahmud, J.; Ramakrishnan, I.V.; Stent, A.: Live and learn from mistakes : a lightweight system for document classification (2013) 0.02
    0.023530604 = product of:
      0.04706121 = sum of:
        0.02586502 = weight(_text_:data in 2722) [ClassicSimilarity], result of:
          0.02586502 = score(doc=2722,freq=2.0), product of:
            0.14807065 = queryWeight, product of:
              3.1620505 = idf(docFreq=5088, maxDocs=44218)
              0.046827413 = queryNorm
            0.17468026 = fieldWeight in 2722, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.1620505 = idf(docFreq=5088, maxDocs=44218)
              0.0390625 = fieldNorm(doc=2722)
        0.021196188 = product of:
          0.042392377 = sum of:
            0.042392377 = weight(_text_:processing in 2722) [ClassicSimilarity], result of:
              0.042392377 = score(doc=2722,freq=2.0), product of:
                0.18956426 = queryWeight, product of:
                  4.048147 = idf(docFreq=2097, maxDocs=44218)
                  0.046827413 = queryNorm
                0.22363065 = fieldWeight in 2722, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  4.048147 = idf(docFreq=2097, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=2722)
          0.5 = coord(1/2)
      0.5 = coord(2/4)
    
    Abstract
    We present a Life-Long Learning from Mistakes (3LM) algorithm for document classification, which could be used in various scenarios such as spam filtering, blog classification, and web resource categorization. We extend the ideas of online clustering and batch-mode centroid-based classification to online learning with negative feedback. The 3LM is a competitive learning algorithm, which avoids over-smoothing, characteristic of the centroid-based classifiers, by using a different class representative, which we call clusterhead. The clusterheads competing for vector-space dominance are drawn toward misclassified documents, eventually bringing the model to a "balanced state" for a fixed distribution of documents. Subsequently, the clusterheads oscillate between the misclassified documents, heuristically minimizing the rate of misclassifications, an NP-complete problem. Further, the 3LM algorithm prevents over-fitting by "leashing" the clusterheads to their respective centroids. A clusterhead provably converges if its class can be separated by a hyper-plane from all other classes. Lifelong learning with fixed learning rate allows 3LM to adapt to possibly changing distribution of the data and continually learn and unlearn document classes. We report on our experiments, which demonstrate high accuracy of document classification on Reuters21578, OHSUMED, and TREC07p-spam datasets. The 3LM algorithm did not show over-fitting, while consistently outperforming centroid-based, Naïve Bayes, C4.5, AdaBoost, kNN, and SVM whose accuracy had been reported on the same three corpora.
    Source
    Information processing and management. 49(2013) no.1, S.83-98
  17. Wang, H.; Hong, M.: Supervised Hebb rule based feature selection for text classification (2019) 0.02
    0.023530604 = product of:
      0.04706121 = sum of:
        0.02586502 = weight(_text_:data in 5036) [ClassicSimilarity], result of:
          0.02586502 = score(doc=5036,freq=2.0), product of:
            0.14807065 = queryWeight, product of:
              3.1620505 = idf(docFreq=5088, maxDocs=44218)
              0.046827413 = queryNorm
            0.17468026 = fieldWeight in 5036, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.1620505 = idf(docFreq=5088, maxDocs=44218)
              0.0390625 = fieldNorm(doc=5036)
        0.021196188 = product of:
          0.042392377 = sum of:
            0.042392377 = weight(_text_:processing in 5036) [ClassicSimilarity], result of:
              0.042392377 = score(doc=5036,freq=2.0), product of:
                0.18956426 = queryWeight, product of:
                  4.048147 = idf(docFreq=2097, maxDocs=44218)
                  0.046827413 = queryNorm
                0.22363065 = fieldWeight in 5036, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  4.048147 = idf(docFreq=2097, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=5036)
          0.5 = coord(1/2)
      0.5 = coord(2/4)
    
    Abstract
    Text documents usually contain high dimensional non-discriminative (irrelevant and noisy) terms which lead to steep computational costs and poor learning performance of text classification. One of the effective solutions for this problem is feature selection which aims to identify discriminative terms from text data. This paper proposes a method termed "Hebb rule based feature selection (HRFS)". HRFS is based on supervised Hebb rule and assumes that terms and classes are neurons and select terms under the assumption that a term is discriminative if it keeps "exciting" the corresponding classes. This assumption can be explained as "a term is highly correlated with a class if it is able to keep "exciting" the class according to the original Hebb postulate. Six benchmarking datasets are used to compare HRFS with other seven feature selection methods. Experimental results indicate that HRFS is effective to achieve better performance than the compared methods. HRFS can identify discriminative terms in the view of synapse between neurons. Moreover, HRFS is also efficient because it can be described in the view of matrix operation to decrease complexity of feature selection.
    Source
    Information processing and management. 56(2019) no.1, S.167-191
  18. Wu, M.; Liu, Y.-H.; Brownlee, R.; Zhang, X.: Evaluating utility and automatic classification of subject metadata from Research Data Australia (2021) 0.02
    0.021947198 = product of:
      0.08778879 = sum of:
        0.08778879 = weight(_text_:data in 453) [ClassicSimilarity], result of:
          0.08778879 = score(doc=453,freq=16.0), product of:
            0.14807065 = queryWeight, product of:
              3.1620505 = idf(docFreq=5088, maxDocs=44218)
              0.046827413 = queryNorm
            0.5928845 = fieldWeight in 453, product of:
              4.0 = tf(freq=16.0), with freq of:
                16.0 = termFreq=16.0
              3.1620505 = idf(docFreq=5088, maxDocs=44218)
              0.046875 = fieldNorm(doc=453)
      0.25 = coord(1/4)
    
    Abstract
    In this paper, we present a case study of how well subject metadata (comprising headings from an international classification scheme) has been deployed in a national data catalogue, and how often data seekers use subject metadata when searching for data. Through an analysis of user search behaviour as recorded in search logs, we find evidence that users utilise the subject metadata for data discovery. Since approximately half of the records ingested by the catalogue did not include subject metadata at the time of harvest, we experimented with automatic subject classification approaches in order to enrich these records and to provide additional support for user search and data discovery. Our results show that automatic methods work well for well represented categories of subject metadata, and these categories tend to have features that can distinguish themselves from the other categories. Our findings raise implications for data catalogue providers; they should invest more effort to enhance the quality of data records by providing an adequate description of these records for under-represented subject categories.
  19. Mengle, S.; Goharian, N.: Passage detection using text classification (2009) 0.02
    0.020863095 = product of:
      0.04172619 = sum of:
        0.02586502 = weight(_text_:data in 2765) [ClassicSimilarity], result of:
          0.02586502 = score(doc=2765,freq=2.0), product of:
            0.14807065 = queryWeight, product of:
              3.1620505 = idf(docFreq=5088, maxDocs=44218)
              0.046827413 = queryNorm
            0.17468026 = fieldWeight in 2765, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.1620505 = idf(docFreq=5088, maxDocs=44218)
              0.0390625 = fieldNorm(doc=2765)
        0.01586117 = product of:
          0.03172234 = sum of:
            0.03172234 = weight(_text_:22 in 2765) [ClassicSimilarity], result of:
              0.03172234 = score(doc=2765,freq=2.0), product of:
                0.16398162 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046827413 = queryNorm
                0.19345059 = fieldWeight in 2765, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=2765)
          0.5 = coord(1/2)
      0.5 = coord(2/4)
    
    Abstract
    Passages can be hidden within a text to circumvent their disallowed transfer. Such release of compartmentalized information is of concern to all corporate and governmental organizations. Passage retrieval is well studied; we posit, however, that passage detection is not. Passage retrieval is the determination of the degree of relevance of blocks of text, namely passages, comprising a document. Rather than determining the relevance of a document in its entirety, passage retrieval determines the relevance of the individual passages. As such, modified traditional information-retrieval techniques compare terms found in user queries with the individual passages to determine a similarity score for passages of interest. In passage detection, passages are classified into predetermined categories. More often than not, passage detection techniques are deployed to detect hidden paragraphs in documents. That is, to hide information, documents are injected with hidden text into passages. Rather than matching query terms against passages to determine their relevance, using text-mining techniques, the passages are classified. Those documents with hidden passages are defined as infected. Thus, simply stated, passage retrieval is the search for passages relevant to a user query, while passage detection is the classification of passages. That is, in passage detection, passages are labeled with one or more categories from a set of predetermined categories. We present a keyword-based dynamic passage approach (KDP) and demonstrate that KDP outperforms statistically significantly (99% confidence) the other document-splitting approaches by 12% to 18% in the passage detection and passage category-prediction tasks. Furthermore, we evaluate the effects of the feature selection, passage length, ambiguous passages, and finally training-data category distribution on passage-detection accuracy.
    Date
    22. 3.2009 19:14:43
  20. Fong, A.C.M.: Mining a Web citation database for document clustering (2002) 0.02
    0.018105512 = product of:
      0.07242205 = sum of:
        0.07242205 = weight(_text_:data in 3940) [ClassicSimilarity], result of:
          0.07242205 = score(doc=3940,freq=2.0), product of:
            0.14807065 = queryWeight, product of:
              3.1620505 = idf(docFreq=5088, maxDocs=44218)
              0.046827413 = queryNorm
            0.48910472 = fieldWeight in 3940, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.1620505 = idf(docFreq=5088, maxDocs=44218)
              0.109375 = fieldNorm(doc=3940)
      0.25 = coord(1/4)
    
    Theme
    Data Mining

Languages

  • e 89
  • d 5
  • More… Less…

Types

  • a 88
  • el 8
  • s 2
  • m 1
  • r 1
  • More… Less…