Search (5 results, page 1 of 1)

  • × theme_ss:"Informetrie"
  • × theme_ss:"Visualisierung"
  1. Lamb, I.; Larson, C.: Shining a light on scientific data : building a data catalog to foster data sharing and reuse (2016) 0.02
    0.021947198 = product of:
      0.08778879 = sum of:
        0.08778879 = weight(_text_:data in 3195) [ClassicSimilarity], result of:
          0.08778879 = score(doc=3195,freq=16.0), product of:
            0.14807065 = queryWeight, product of:
              3.1620505 = idf(docFreq=5088, maxDocs=44218)
              0.046827413 = queryNorm
            0.5928845 = fieldWeight in 3195, product of:
              4.0 = tf(freq=16.0), with freq of:
                16.0 = termFreq=16.0
              3.1620505 = idf(docFreq=5088, maxDocs=44218)
              0.046875 = fieldNorm(doc=3195)
      0.25 = coord(1/4)
    
    Abstract
    The scientific community's growing eagerness to make research data available to the public provides libraries - with our expertise in metadata and discovery - an interesting new opportunity. This paper details the in-house creation of a "data catalog" which describes datasets ranging from population-level studies like the US Census to small, specialized datasets created by researchers at our own institution. Based on Symfony2 and Solr, the data catalog provides a powerful search interface to help researchers locate the data that can help them, and an administrative interface so librarians can add, edit, and manage metadata elements at will. This paper will outline the successes, failures, and total redos that culminated in the current manifestation of our data catalog.
  2. Chen, R.H.-G.; Chen, C.-M.: Visualizing the world's scientific publications (2016) 0.01
    0.009144665 = product of:
      0.03657866 = sum of:
        0.03657866 = weight(_text_:data in 3124) [ClassicSimilarity], result of:
          0.03657866 = score(doc=3124,freq=4.0), product of:
            0.14807065 = queryWeight, product of:
              3.1620505 = idf(docFreq=5088, maxDocs=44218)
              0.046827413 = queryNorm
            0.24703519 = fieldWeight in 3124, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              3.1620505 = idf(docFreq=5088, maxDocs=44218)
              0.0390625 = fieldNorm(doc=3124)
      0.25 = coord(1/4)
    
    Abstract
    Automated methods for the analysis, modeling, and visualization of large-scale scientometric data provide measures that enable the depiction of the state of world scientific development. We aimed to integrate minimum span clustering (MSC) and minimum spanning tree methods to cluster and visualize the global pattern of scientific publications (PSP) by analyzing aggregated Science Citation Index (SCI) data from 1994 to 2011. We hypothesized that PSP clustering is mainly affected by countries' geographic location, ethnicity, and level of economic development, as indicated in previous studies. Our results showed that the 100 countries with the highest rates of publications were decomposed into 12 PSP groups and that countries within a group tended to be geographically proximal, ethnically similar, or comparable in terms of economic status. Hubs and bridging nodes in each knowledge production group were identified. The performance of each group was evaluated across 16 knowledge domains based on their specialization, volume of publications, and relative impact. Awareness of the strengths and weaknesses of each group in various knowledge domains may have useful applications for examining scientific policies, adjusting the allocation of resources, and promoting international collaboration for future developments.
  3. Zhang, Y.; Zhang, G.; Zhu, D.; Lu, J.: Scientific evolutionary pathways : identifying and visualizing relationships for scientific topics (2017) 0.01
    0.009144665 = product of:
      0.03657866 = sum of:
        0.03657866 = weight(_text_:data in 3758) [ClassicSimilarity], result of:
          0.03657866 = score(doc=3758,freq=4.0), product of:
            0.14807065 = queryWeight, product of:
              3.1620505 = idf(docFreq=5088, maxDocs=44218)
              0.046827413 = queryNorm
            0.24703519 = fieldWeight in 3758, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              3.1620505 = idf(docFreq=5088, maxDocs=44218)
              0.0390625 = fieldNorm(doc=3758)
      0.25 = coord(1/4)
    
    Abstract
    Whereas traditional science maps emphasize citation statistics and static relationships, this paper presents a term-based method to identify and visualize the evolutionary pathways of scientific topics in a series of time slices. First, we create a data preprocessing model for accurate term cleaning, consolidating, and clustering. Then we construct a simulated data streaming function and introduce a learning process to train a relationship identification function to adapt to changing environments in real time, where relationships of topic evolution, fusion, death, and novelty are identified. The main result of the method is a map of scientific evolutionary pathways. The visual routines provide a way to indicate the interactions among scientific subjects and a version in a series of time slices helps further illustrate such evolutionary pathways in detail. The detailed outline offers sufficient statistical information to delve into scientific topics and routines and then helps address meaningful insights with the assistance of expert knowledge. This empirical study focuses on scientific proposals granted by the United States National Science Foundation, and demonstrates the feasibility and reliability. Our method could be widely applied to a range of science, technology, and innovation policy research, and offer insight into the evolutionary pathways of scientific activities.
  4. Braun, S.: Manifold: a custom analytics platform to visualize research impact (2015) 0.01
    0.0077595054 = product of:
      0.031038022 = sum of:
        0.031038022 = weight(_text_:data in 2906) [ClassicSimilarity], result of:
          0.031038022 = score(doc=2906,freq=2.0), product of:
            0.14807065 = queryWeight, product of:
              3.1620505 = idf(docFreq=5088, maxDocs=44218)
              0.046827413 = queryNorm
            0.2096163 = fieldWeight in 2906, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.1620505 = idf(docFreq=5088, maxDocs=44218)
              0.046875 = fieldNorm(doc=2906)
      0.25 = coord(1/4)
    
    Abstract
    The use of research impact metrics and analytics has become an integral component to many aspects of institutional assessment. Many platforms currently exist to provide such analytics, both proprietary and open source; however, the functionality of these systems may not always overlap to serve uniquely specific needs. In this paper, I describe a novel web-based platform, named Manifold, that I built to serve custom research impact assessment needs in the University of Minnesota Medical School. Built on a standard LAMP architecture, Manifold automatically pulls publication data for faculty from Scopus through APIs, calculates impact metrics through automated analytics, and dynamically generates report-like profiles that visualize those metrics. Work on this project has resulted in many lessons learned about challenges to sustainability and scalability in developing a system of such magnitude.
  5. Chen, C.: CiteSpace II : detecting and visualizing emerging trends and transient patterns in scientific literature (2006) 0.00
    0.0039652926 = product of:
      0.01586117 = sum of:
        0.01586117 = product of:
          0.03172234 = sum of:
            0.03172234 = weight(_text_:22 in 5272) [ClassicSimilarity], result of:
              0.03172234 = score(doc=5272,freq=2.0), product of:
                0.16398162 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046827413 = queryNorm
                0.19345059 = fieldWeight in 5272, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=5272)
          0.5 = coord(1/2)
      0.25 = coord(1/4)
    
    Date
    22. 7.2006 16:11:05

Types