Search (4 results, page 1 of 1)

  • × theme_ss:"Metadaten"
  • × theme_ss:"Social tagging"
  1. Kim, H.L.; Scerri, S.; Breslin, J.G.; Decker, S.; Kim, H.G.: ¬The state of the art in tag ontologies : a semantic model for tagging and folksonomies (2008) 0.02
    0.020863095 = product of:
      0.04172619 = sum of:
        0.02586502 = weight(_text_:data in 2650) [ClassicSimilarity], result of:
          0.02586502 = score(doc=2650,freq=2.0), product of:
            0.14807065 = queryWeight, product of:
              3.1620505 = idf(docFreq=5088, maxDocs=44218)
              0.046827413 = queryNorm
            0.17468026 = fieldWeight in 2650, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.1620505 = idf(docFreq=5088, maxDocs=44218)
              0.0390625 = fieldNorm(doc=2650)
        0.01586117 = product of:
          0.03172234 = sum of:
            0.03172234 = weight(_text_:22 in 2650) [ClassicSimilarity], result of:
              0.03172234 = score(doc=2650,freq=2.0), product of:
                0.16398162 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046827413 = queryNorm
                0.19345059 = fieldWeight in 2650, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=2650)
          0.5 = coord(1/2)
      0.5 = coord(2/4)
    
    Abstract
    There is a growing interest into how we represent and share tagging data in collaborative tagging systems. Conventional tags, meaning freely created tags that are not associated with a structured ontology, are not naturally suited for collaborative processes, due to linguistic and grammatical variations, as well as human typing errors. Additionally, tags reflect personal views of the world by individual users, and are not normalised for synonymy, morphology or any other mapping. Our view is that the conventional approach provides very limited semantic value for collaboration. Moreover, in cases where there is some semantic value, automatically sharing semantics via computer manipulations is extremely problematic. This paper explores these problems by discussing approaches for collaborative tagging activities at a semantic level, and presenting conceptual models for collaborative tagging activities and folksonomies. We present criteria for the comparison of existing tag ontologies and discuss their strengths and weaknesses in relation to these criteria.
    Source
    Metadata for semantic and social applications : proceedings of the International Conference on Dublin Core and Metadata Applications, Berlin, 22 - 26 September 2008, DC 2008: Berlin, Germany / ed. by Jane Greenberg and Wolfgang Klas
  2. Social tagging in a linked data environment. Edited by Diane Rasmussen Pennington and Louise F. Spiteri. London, UK: Facet Publishing, 2018. 240 pp. £74.95 (paperback). (ISBN 9781783303380) (2019) 0.02
    0.01828933 = product of:
      0.07315732 = sum of:
        0.07315732 = weight(_text_:data in 101) [ClassicSimilarity], result of:
          0.07315732 = score(doc=101,freq=16.0), product of:
            0.14807065 = queryWeight, product of:
              3.1620505 = idf(docFreq=5088, maxDocs=44218)
              0.046827413 = queryNorm
            0.49407038 = fieldWeight in 101, product of:
              4.0 = tf(freq=16.0), with freq of:
                16.0 = termFreq=16.0
              3.1620505 = idf(docFreq=5088, maxDocs=44218)
              0.0390625 = fieldNorm(doc=101)
      0.25 = coord(1/4)
    
    Abstract
    Social tagging, hashtags, and geotags are used across a variety of platforms (Twitter, Facebook, Tumblr, WordPress, Instagram) in different countries and cultures. This book, representing researchers and practitioners across different information professions, explores how social tags can link content across a variety of environments. Most studies of social tagging have tended to focus on applications like library catalogs, blogs, and social bookmarking sites. This book, in setting out a theoretical background and the use of a series of case studies, explores the role of hashtags as a form of linked data?without the complex implementation of RDF and other Semantic Web technologies.
    LCSH
    Linked data
    Linked data
    RSWK
    Linked Data / Social Tagging
    Subject
    Linked data
    Linked data
    Linked Data / Social Tagging
  3. Catarino, M.E.; Baptista, A.A.: Relating folksonomies with Dublin Core (2008) 0.01
    0.0056077703 = product of:
      0.022431081 = sum of:
        0.022431081 = product of:
          0.044862162 = sum of:
            0.044862162 = weight(_text_:22 in 2652) [ClassicSimilarity], result of:
              0.044862162 = score(doc=2652,freq=4.0), product of:
                0.16398162 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046827413 = queryNorm
                0.27358043 = fieldWeight in 2652, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=2652)
          0.5 = coord(1/2)
      0.25 = coord(1/4)
    
    Pages
    S.14-22
    Source
    Metadata for semantic and social applications : proceedings of the International Conference on Dublin Core and Metadata Applications, Berlin, 22 - 26 September 2008, DC 2008: Berlin, Germany / ed. by Jane Greenberg and Wolfgang Klas
  4. Syn, S.Y.; Spring, M.B.: Finding subject terms for classificatory metadata from user-generated social tags (2013) 0.01
    0.005299047 = product of:
      0.021196188 = sum of:
        0.021196188 = product of:
          0.042392377 = sum of:
            0.042392377 = weight(_text_:processing in 745) [ClassicSimilarity], result of:
              0.042392377 = score(doc=745,freq=2.0), product of:
                0.18956426 = queryWeight, product of:
                  4.048147 = idf(docFreq=2097, maxDocs=44218)
                  0.046827413 = queryNorm
                0.22363065 = fieldWeight in 745, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  4.048147 = idf(docFreq=2097, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=745)
          0.5 = coord(1/2)
      0.25 = coord(1/4)
    
    Abstract
    With the increasing popularity of social tagging systems, the potential for using social tags as a source of metadata is being explored. Social tagging systems can simplify the involvement of a large number of users and improve the metadata-generation process. Current research is exploring social tagging systems as a mechanism to allow nonprofessional catalogers to participate in metadata generation. Because social tags are not from controlled vocabularies, there are issues that have to be addressed in finding quality terms to represent the content of a resource. This research explores ways to obtain a set of tags representing the resource from the tags provided by users. Two metrics are introduced. Annotation Dominance (AD) is a measure of the extent to which a tag term is agreed to by users. Cross Resources Annotation Discrimination (CRAD) is a measure of a tag's potential to classify a collection. It is designed to remove tags that are used too broadly or narrowly. Using the proposed measurements, the research selects important tags (meta-terms) and removes meaningless ones (tag noise) from the tags provided by users. To evaluate the proposed approach to find classificatory metadata candidates, we rely on expert users' relevance judgments comparing suggested tag terms and expert metadata terms. The results suggest that processing of user tags using the two measurements successfully identifies the terms that represent the topic categories of web resource content. The suggested tag terms can be further examined in various usages as semantic metadata for the resources.