Search (32 results, page 1 of 2)

  • × theme_ss:"Retrievalalgorithmen"
  • × year_i:[2010 TO 2020}
  1. Soulier, L.; Jabeur, L.B.; Tamine, L.; Bahsoun, W.: On ranking relevant entities in heterogeneous networks using a language-based model (2013) 0.03
    0.026219916 = product of:
      0.05243983 = sum of:
        0.03657866 = weight(_text_:data in 664) [ClassicSimilarity], result of:
          0.03657866 = score(doc=664,freq=4.0), product of:
            0.14807065 = queryWeight, product of:
              3.1620505 = idf(docFreq=5088, maxDocs=44218)
              0.046827413 = queryNorm
            0.24703519 = fieldWeight in 664, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              3.1620505 = idf(docFreq=5088, maxDocs=44218)
              0.0390625 = fieldNorm(doc=664)
        0.01586117 = product of:
          0.03172234 = sum of:
            0.03172234 = weight(_text_:22 in 664) [ClassicSimilarity], result of:
              0.03172234 = score(doc=664,freq=2.0), product of:
                0.16398162 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046827413 = queryNorm
                0.19345059 = fieldWeight in 664, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=664)
          0.5 = coord(1/2)
      0.5 = coord(2/4)
    
    Abstract
    A new challenge, accessing multiple relevant entities, arises from the availability of linked heterogeneous data. In this article, we address more specifically the problem of accessing relevant entities, such as publications and authors within a bibliographic network, given an information need. We propose a novel algorithm, called BibRank, that estimates a joint relevance of documents and authors within a bibliographic network. This model ranks each type of entity using a score propagation algorithm with respect to the query topic and the structure of the underlying bi-type information entity network. Evidence sources, namely content-based and network-based scores, are both used to estimate the topical similarity between connected entities. For this purpose, authorship relationships are analyzed through a language model-based score on the one hand and on the other hand, non topically related entities of the same type are detected through marginal citations. The article reports the results of experiments using the Bibrank algorithm for an information retrieval task. The CiteSeerX bibliographic data set forms the basis for the topical query automatic generation and evaluation. We show that a statistically significant improvement over closely related ranking models is achieved.
    Date
    22. 3.2013 19:34:49
  2. Lee, J.; Min, J.-K.; Oh, A.; Chung, C.-W.: Effective ranking and search techniques for Web resources considering semantic relationships (2014) 0.02
    0.023530604 = product of:
      0.04706121 = sum of:
        0.02586502 = weight(_text_:data in 2670) [ClassicSimilarity], result of:
          0.02586502 = score(doc=2670,freq=2.0), product of:
            0.14807065 = queryWeight, product of:
              3.1620505 = idf(docFreq=5088, maxDocs=44218)
              0.046827413 = queryNorm
            0.17468026 = fieldWeight in 2670, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.1620505 = idf(docFreq=5088, maxDocs=44218)
              0.0390625 = fieldNorm(doc=2670)
        0.021196188 = product of:
          0.042392377 = sum of:
            0.042392377 = weight(_text_:processing in 2670) [ClassicSimilarity], result of:
              0.042392377 = score(doc=2670,freq=2.0), product of:
                0.18956426 = queryWeight, product of:
                  4.048147 = idf(docFreq=2097, maxDocs=44218)
                  0.046827413 = queryNorm
                0.22363065 = fieldWeight in 2670, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  4.048147 = idf(docFreq=2097, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=2670)
          0.5 = coord(1/2)
      0.5 = coord(2/4)
    
    Abstract
    On the Semantic Web, the types of resources and the semantic relationships between resources are defined in an ontology. By using that information, the accuracy of information retrieval can be improved. In this paper, we present effective ranking and search techniques considering the semantic relationships in an ontology. Our technique retrieves top-k resources which are the most relevant to query keywords through the semantic relationships. To do this, we propose a weighting measure for the semantic relationship. Based on this measure, we propose a novel ranking method which considers the number of meaningful semantic relationships between a resource and keywords as well as the coverage and discriminating power of keywords. In order to improve the efficiency of the search, we prune the unnecessary search space using the length and weight thresholds of the semantic relationship path. In addition, we exploit Threshold Algorithm based on an extended inverted index to answer top-k results efficiently. The experimental results using real data sets demonstrate that our retrieval method using the semantic information generates accurate results efficiently compared to the traditional methods.
    Source
    Information processing and management. 50(2014) no.1, S.132-155
  3. Baloh, P.; Desouza, K.C.; Hackney, R.: Contextualizing organizational interventions of knowledge management systems : a design science perspectiveA domain analysis (2012) 0.02
    0.020863095 = product of:
      0.04172619 = sum of:
        0.02586502 = weight(_text_:data in 241) [ClassicSimilarity], result of:
          0.02586502 = score(doc=241,freq=2.0), product of:
            0.14807065 = queryWeight, product of:
              3.1620505 = idf(docFreq=5088, maxDocs=44218)
              0.046827413 = queryNorm
            0.17468026 = fieldWeight in 241, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.1620505 = idf(docFreq=5088, maxDocs=44218)
              0.0390625 = fieldNorm(doc=241)
        0.01586117 = product of:
          0.03172234 = sum of:
            0.03172234 = weight(_text_:22 in 241) [ClassicSimilarity], result of:
              0.03172234 = score(doc=241,freq=2.0), product of:
                0.16398162 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046827413 = queryNorm
                0.19345059 = fieldWeight in 241, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=241)
          0.5 = coord(1/2)
      0.5 = coord(2/4)
    
    Abstract
    We address how individuals' (workers) knowledge needs influence the design of knowledge management systems (KMS), enabling knowledge creation and utilization. It is evident that KMS technologies and activities are indiscriminately deployed in most organizations with little regard to the actual context of their adoption. Moreover, it is apparent that the extant literature pertaining to knowledge management projects is frequently deficient in identifying the variety of factors indicative for successful KMS. This presents an obvious business practice and research gap that requires a critical analysis of the necessary intervention that will actually improve how workers can leverage and form organization-wide knowledge. This research involved an extensive review of the literature, a grounded theory methodological approach and rigorous data collection and synthesis through an empirical case analysis (Parsons Brinckerhoff and Samsung). The contribution of this study is the formulation of a model for designing KMS based upon the design science paradigm, which aspires to create artifacts that are interdependent of people and organizations. The essential proposition is that KMS design and implementation must be contextualized in relation to knowledge needs and that these will differ for various organizational settings. The findings present valuable insights and further understanding of the way in which KMS design efforts should be focused.
    Date
    11. 6.2012 14:22:34
  4. Biskri, I.; Rompré, L.: Using association rules for query reformulation (2012) 0.01
    0.013439858 = product of:
      0.053759433 = sum of:
        0.053759433 = weight(_text_:data in 92) [ClassicSimilarity], result of:
          0.053759433 = score(doc=92,freq=6.0), product of:
            0.14807065 = queryWeight, product of:
              3.1620505 = idf(docFreq=5088, maxDocs=44218)
              0.046827413 = queryNorm
            0.3630661 = fieldWeight in 92, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              3.1620505 = idf(docFreq=5088, maxDocs=44218)
              0.046875 = fieldNorm(doc=92)
      0.25 = coord(1/4)
    
    Abstract
    In this paper the authors will present research on the combination of two methods of data mining: text classification and maximal association rules. Text classification has been the focus of interest of many researchers for a long time. However, the results take the form of lists of words (classes) that people often do not know what to do with. The use of maximal association rules induced a number of advantages: (1) the detection of dependencies and correlations between the relevant units of information (words) of different classes, (2) the extraction of hidden knowledge, often relevant, from a large volume of data. The authors will show how this combination can improve the process of information retrieval.
    Theme
    Data Mining
  5. Costa Carvalho, A. da; Rossi, C.; Moura, E.S. de; Silva, A.S. da; Fernandes, D.: LePrEF: Learn to precompute evidence fusion for efficient query evaluation (2012) 0.01
    0.012979962 = product of:
      0.051919848 = sum of:
        0.051919848 = product of:
          0.103839695 = sum of:
            0.103839695 = weight(_text_:processing in 278) [ClassicSimilarity], result of:
              0.103839695 = score(doc=278,freq=12.0), product of:
                0.18956426 = queryWeight, product of:
                  4.048147 = idf(docFreq=2097, maxDocs=44218)
                  0.046827413 = queryNorm
                0.547781 = fieldWeight in 278, product of:
                  3.4641016 = tf(freq=12.0), with freq of:
                    12.0 = termFreq=12.0
                  4.048147 = idf(docFreq=2097, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=278)
          0.5 = coord(1/2)
      0.25 = coord(1/4)
    
    Abstract
    State-of-the-art search engine ranking methods combine several distinct sources of relevance evidence to produce a high-quality ranking of results for each query. The fusion of information is currently done at query-processing time, which has a direct effect on the response time of search systems. Previous research also shows that an alternative to improve search efficiency in textual databases is to precompute term impacts at indexing time. In this article, we propose a novel alternative to precompute term impacts, providing a generic framework for combining any distinct set of sources of evidence by using a machine-learning technique. This method retains the advantages of producing high-quality results, but avoids the costs of combining evidence at query-processing time. Our method, called Learn to Precompute Evidence Fusion (LePrEF), uses genetic programming to compute a unified precomputed impact value for each term found in each document prior to query processing, at indexing time. Compared with previous research on precomputing term impacts, our method offers the advantage of providing a generic framework to precompute impact using any set of relevance evidence at any text collection, whereas previous research articles do not. The precomputed impact values are indexed and used later for computing document ranking at query-processing time. By doing so, our method effectively reduces the query processing to simple additions of such impacts. We show that this approach, while leading to results comparable to state-of-the-art ranking methods, also can lead to a significant decrease in computational costs during query processing.
  6. Silva, R.M.; Gonçalves, M.A.; Veloso, A.: ¬A Two-stage active learning method for learning to rank (2014) 0.01
    0.009144665 = product of:
      0.03657866 = sum of:
        0.03657866 = weight(_text_:data in 1184) [ClassicSimilarity], result of:
          0.03657866 = score(doc=1184,freq=4.0), product of:
            0.14807065 = queryWeight, product of:
              3.1620505 = idf(docFreq=5088, maxDocs=44218)
              0.046827413 = queryNorm
            0.24703519 = fieldWeight in 1184, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              3.1620505 = idf(docFreq=5088, maxDocs=44218)
              0.0390625 = fieldNorm(doc=1184)
      0.25 = coord(1/4)
    
    Abstract
    Learning to rank (L2R) algorithms use a labeled training set to generate a ranking model that can later be used to rank new query results. These training sets are costly and laborious to produce, requiring human annotators to assess the relevance or order of the documents in relation to a query. Active learning algorithms are able to reduce the labeling effort by selectively sampling an unlabeled set and choosing data instances that maximize a learning function's effectiveness. In this article, we propose a novel two-stage active learning method for L2R that combines and exploits interesting properties of its constituent parts, thus being effective and practical. In the first stage, an association rule active sampling algorithm is used to select a very small but effective initial training set. In the second stage, a query-by-committee strategy trained with the first-stage set is used to iteratively select more examples until a preset labeling budget is met or a target effectiveness is achieved. We test our method with various LETOR benchmarking data sets and compare it with several baselines to show that it achieves good results using only a small portion of the original training sets.
  7. Jacucci, G.; Barral, O.; Daee, P.; Wenzel, M.; Serim, B.; Ruotsalo, T.; Pluchino, P.; Freeman, J.; Gamberini, L.; Kaski, S.; Blankertz, B.: Integrating neurophysiologic relevance feedback in intent modeling for information retrieval (2019) 0.01
    0.009144665 = product of:
      0.03657866 = sum of:
        0.03657866 = weight(_text_:data in 5356) [ClassicSimilarity], result of:
          0.03657866 = score(doc=5356,freq=4.0), product of:
            0.14807065 = queryWeight, product of:
              3.1620505 = idf(docFreq=5088, maxDocs=44218)
              0.046827413 = queryNorm
            0.24703519 = fieldWeight in 5356, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              3.1620505 = idf(docFreq=5088, maxDocs=44218)
              0.0390625 = fieldNorm(doc=5356)
      0.25 = coord(1/4)
    
    Abstract
    The use of implicit relevance feedback from neurophysiology could deliver effortless information retrieval. However, both computing neurophysiologic responses and retrieving documents are characterized by uncertainty because of noisy signals and incomplete or inconsistent representations of the data. We present the first-of-its-kind, fully integrated information retrieval system that makes use of online implicit relevance feedback generated from brain activity as measured through electroencephalography (EEG), and eye movements. The findings of the evaluation experiment (N = 16) show that we are able to compute online neurophysiology-based relevance feedback with performance significantly better than chance in complex data domains and realistic search tasks. We contribute by demonstrating how to integrate in interactive intent modeling this inherently noisy implicit relevance feedback combined with scarce explicit feedback. Although experimental measures of task performance did not allow us to demonstrate how the classification outcomes translated into search task performance, the experiment proved that our approach is able to generate relevance feedback from brain signals and eye movements in a realistic scenario, thus providing promising implications for future work in neuroadaptive information retrieval (IR).
  8. Ayadi, H.; Torjmen-Khemakhem, M.; Daoud, M.; Xiangji Huang, J.; Ben Jemaa, M.: MF-Re-Rank : a modality feature-based re-ranking model for medical image retrieval (2018) 0.01
    0.008959906 = product of:
      0.035839625 = sum of:
        0.035839625 = weight(_text_:data in 4459) [ClassicSimilarity], result of:
          0.035839625 = score(doc=4459,freq=6.0), product of:
            0.14807065 = queryWeight, product of:
              3.1620505 = idf(docFreq=5088, maxDocs=44218)
              0.046827413 = queryNorm
            0.24204408 = fieldWeight in 4459, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              3.1620505 = idf(docFreq=5088, maxDocs=44218)
              0.03125 = fieldNorm(doc=4459)
      0.25 = coord(1/4)
    
    Abstract
    One of the main challenges in medical image retrieval is the increasing volume of image data, which render it difficult for domain experts to find relevant information from large data sets. Effective and efficient medical image retrieval systems are required to better manage medical image information. Text-based image retrieval (TBIR) was very successful in retrieving images with textual descriptions. Several TBIR approaches rely on models based on bag-of-words approaches, in which the image retrieval problem turns into one of standard text-based information retrieval; where the meanings and values of specific medical entities in the text and metadata are ignored in the image representation and retrieval process. However, we believe that TBIR should extract specific medical entities and terms and then exploit these elements to achieve better image retrieval results. Therefore, we propose a novel reranking method based on medical-image-dependent features. These features are manually selected by a medical expert from imaging modalities and medical terminology. First, we represent queries and images using only medical-image-dependent features such as image modality and image scale. Second, we exploit the defined features in a new reranking method for medical image retrieval. Our motivation is the large influence of image modality in medical image retrieval and its impact on image-relevance scores. To evaluate our approach, we performed a series of experiments on the medical ImageCLEF data sets from 2009 to 2013. The BM25 model, a language model, and an image-relevance feedback model are used as baselines to evaluate our approach. The experimental results show that compared to the BM25 model, the proposed model significantly enhances image retrieval performance. We also compared our approach with other state-of-the-art approaches and show that our approach performs comparably to those of the top three runs in the official ImageCLEF competition.
  9. Fu, X.: Towards a model of implicit feedback for Web search (2010) 0.01
    0.0077595054 = product of:
      0.031038022 = sum of:
        0.031038022 = weight(_text_:data in 3310) [ClassicSimilarity], result of:
          0.031038022 = score(doc=3310,freq=2.0), product of:
            0.14807065 = queryWeight, product of:
              3.1620505 = idf(docFreq=5088, maxDocs=44218)
              0.046827413 = queryNorm
            0.2096163 = fieldWeight in 3310, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.1620505 = idf(docFreq=5088, maxDocs=44218)
              0.046875 = fieldNorm(doc=3310)
      0.25 = coord(1/4)
    
    Abstract
    This research investigated several important issues in using implicit feedback techniques to assist searchers with difficulties in formulating effective search strategies. It focused on examining the relationship between types of behavioral evidence that can be captured from Web searches and searchers' interests. A carefully crafted observation study was conducted to capture, examine, and elucidate the analytical processes and work practices of human analysts when they simulated the role of an implicit feedback system by trying to infer searchers' interests from behavioral traces. Findings provided rare insight into the complexities and nuances in using behavioral evidence for implicit feedback and led to the proposal of an implicit feedback model for Web search that bridged previous studies on behavioral evidence and implicit feedback measures. A new level of analysis termed an analytical lens emerged from the data and provides a road map for future research on this topic.
  10. Efron, M.; Winget, M.: Query polyrepresentation for ranking retrieval systems without relevance judgments (2010) 0.01
    0.0077595054 = product of:
      0.031038022 = sum of:
        0.031038022 = weight(_text_:data in 3469) [ClassicSimilarity], result of:
          0.031038022 = score(doc=3469,freq=2.0), product of:
            0.14807065 = queryWeight, product of:
              3.1620505 = idf(docFreq=5088, maxDocs=44218)
              0.046827413 = queryNorm
            0.2096163 = fieldWeight in 3469, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.1620505 = idf(docFreq=5088, maxDocs=44218)
              0.046875 = fieldNorm(doc=3469)
      0.25 = coord(1/4)
    
    Abstract
    Ranking information retrieval (IR) systems with respect to their effectiveness is a crucial operation during IR evaluation, as well as during data fusion. This article offers a novel method of approaching the system-ranking problem, based on the widely studied idea of polyrepresentation. The principle of polyrepresentation suggests that a single information need can be represented by many query articulations-what we call query aspects. By skimming the top k (where k is small) documents retrieved by a single system for multiple query aspects, we collect a set of documents that are likely to be relevant to a given test topic. Labeling these skimmed documents as putatively relevant lets us build pseudorelevance judgments without undue human intervention. We report experiments where using these pseudorelevance judgments delivers a rank ordering of IR systems that correlates highly with rankings based on human relevance judgments.
  11. Efron, M.: Linear time series models for term weighting in information retrieval (2010) 0.01
    0.0077595054 = product of:
      0.031038022 = sum of:
        0.031038022 = weight(_text_:data in 3688) [ClassicSimilarity], result of:
          0.031038022 = score(doc=3688,freq=2.0), product of:
            0.14807065 = queryWeight, product of:
              3.1620505 = idf(docFreq=5088, maxDocs=44218)
              0.046827413 = queryNorm
            0.2096163 = fieldWeight in 3688, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.1620505 = idf(docFreq=5088, maxDocs=44218)
              0.046875 = fieldNorm(doc=3688)
      0.25 = coord(1/4)
    
    Abstract
    Common measures of term importance in information retrieval (IR) rely on counts of term frequency; rare terms receive higher weight in document ranking than common terms receive. However, realistic scenarios yield additional information about terms in a collection. Of interest in this article is the temporal behavior of terms as a collection changes over time. We propose capturing each term's collection frequency at discrete time intervals over the lifespan of a corpus and analyzing the resulting time series. We hypothesize the collection frequency of a weakly discriminative term x at time t is predictable by a linear model of the term's prior observations. On the other hand, a linear time series model for a strong discriminators' collection frequency will yield a poor fit to the data. Operationalizing this hypothesis, we induce three time-based measures of term importance and test these against state-of-the-art term weighting models.
  12. Habernal, I.; Konopík, M.; Rohlík, O.: Question answering (2012) 0.01
    0.0077595054 = product of:
      0.031038022 = sum of:
        0.031038022 = weight(_text_:data in 101) [ClassicSimilarity], result of:
          0.031038022 = score(doc=101,freq=2.0), product of:
            0.14807065 = queryWeight, product of:
              3.1620505 = idf(docFreq=5088, maxDocs=44218)
              0.046827413 = queryNorm
            0.2096163 = fieldWeight in 101, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.1620505 = idf(docFreq=5088, maxDocs=44218)
              0.046875 = fieldNorm(doc=101)
      0.25 = coord(1/4)
    
    Abstract
    Question Answering is an area of information retrieval with the added challenge of applying sophisticated techniques to identify the complex syntactic and semantic relationships present in text in order to provide a more sophisticated and satisfactory response to the user's information needs. For this reason, the authors see question answering as the next step beyond standard information retrieval. In this chapter state of the art question answering is covered focusing on providing an overview of systems, techniques and approaches that are likely to be employed in the next generations of search engines. Special attention is paid to question answering using the World Wide Web as the data source and to question answering exploiting the possibilities of Semantic Web. Considerations about the current issues and prospects for promising future research are also provided.
  13. Koumenides, C.L.; Shadbolt, N.R.: Ranking methods for entity-oriented semantic web search (2014) 0.01
    0.0077595054 = product of:
      0.031038022 = sum of:
        0.031038022 = weight(_text_:data in 1280) [ClassicSimilarity], result of:
          0.031038022 = score(doc=1280,freq=2.0), product of:
            0.14807065 = queryWeight, product of:
              3.1620505 = idf(docFreq=5088, maxDocs=44218)
              0.046827413 = queryNorm
            0.2096163 = fieldWeight in 1280, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.1620505 = idf(docFreq=5088, maxDocs=44218)
              0.046875 = fieldNorm(doc=1280)
      0.25 = coord(1/4)
    
    Abstract
    This article provides a technical review of semantic search methods used to support text-based search over formal Semantic Web knowledge bases. Our focus is on ranking methods and auxiliary processes explored by existing semantic search systems, outlined within broad areas of classification. We present reflective examples from the literature in some detail, which should appeal to readers interested in a deeper perspective on the various methods and systems implemented in the outlined literature. The presentation covers graph exploration and propagation methods, adaptations of classic probabilistic retrieval models, and query-independent link analysis via flexible extensions to the PageRank algorithm. Future research directions are discussed, including development of more cohesive retrieval models to unlock further potentials and uses, data indexing schemes, integration with user interfaces, and building community consensus for more systematic evaluation and gradual development.
  14. Hoenkamp, E.; Bruza, P.: How everyday language can and will boost effective information retrieval (2015) 0.01
    0.0074939844 = product of:
      0.029975938 = sum of:
        0.029975938 = product of:
          0.059951875 = sum of:
            0.059951875 = weight(_text_:processing in 2123) [ClassicSimilarity], result of:
              0.059951875 = score(doc=2123,freq=4.0), product of:
                0.18956426 = queryWeight, product of:
                  4.048147 = idf(docFreq=2097, maxDocs=44218)
                  0.046827413 = queryNorm
                0.3162615 = fieldWeight in 2123, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  4.048147 = idf(docFreq=2097, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=2123)
          0.5 = coord(1/2)
      0.25 = coord(1/4)
    
    Abstract
    Typing 2 or 3 keywords into a browser has become an easy and efficient way to find information. Yet, typing even short queries becomes tedious on ever shrinking (virtual) keyboards. Meanwhile, speech processing is maturing rapidly, facilitating everyday language input. Also, wearable technology can inform users proactively by listening in on their conversations or processing their social media interactions. Given these developments, everyday language may soon become the new input of choice. We present an information retrieval (IR) algorithm specifically designed to accept everyday language. It integrates two paradigms of information retrieval, previously studied in isolation; one directed mainly at the surface structure of language, the other primarily at the underlying meaning. The integration was achieved by a Markov machine that encodes meaning by its transition graph, and surface structure by the language it generates. A rigorous evaluation of the approach showed, first, that it can compete with the quality of existing language models, second, that it is more effective the more verbose the input, and third, as a consequence, that it is promising for an imminent transition from keyword input, where the onus is on the user to formulate concise queries, to a modality where users can express more freely, more informal, and more natural their need for information in everyday language.
  15. Wei, F.; Li, W.; Liu, S.: iRANK: a rank-learn-combine framework for unsupervised ensemble ranking (2010) 0.01
    0.006466255 = product of:
      0.02586502 = sum of:
        0.02586502 = weight(_text_:data in 3472) [ClassicSimilarity], result of:
          0.02586502 = score(doc=3472,freq=2.0), product of:
            0.14807065 = queryWeight, product of:
              3.1620505 = idf(docFreq=5088, maxDocs=44218)
              0.046827413 = queryNorm
            0.17468026 = fieldWeight in 3472, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.1620505 = idf(docFreq=5088, maxDocs=44218)
              0.0390625 = fieldNorm(doc=3472)
      0.25 = coord(1/4)
    
    Abstract
    The authors address the problem of unsupervised ensemble ranking. Traditional approaches either combine multiple ranking criteria into a unified representation to obtain an overall ranking score or to utilize certain rank fusion or aggregation techniques to combine the ranking results. Beyond the aforementioned combine-then-rank and rank-then-combine approaches, the authors propose a novel rank-learn-combine ranking framework, called Interactive Ranking (iRANK), which allows two base rankers to teach each other before combination during the ranking process by providing their own ranking results as feedback to the others to boost the ranking performance. This mutual ranking refinement process continues until the two base rankers cannot learn from each other any more. The overall performance is improved by the enhancement of the base rankers through the mutual learning mechanism. The authors further design two ranking refinement strategies to efficiently and effectively use the feedback based on reasonable assumptions and rational analysis. Although iRANK is applicable to many applications, as a case study, they apply this framework to the sentence ranking problem in query-focused summarization and evaluate its effectiveness on the DUC 2005 and 2006 data sets. The results are encouraging with consistent and promising improvements.
  16. Nunes, S.; Ribeiro, C.; David, G.: Term weighting based on document revision history (2011) 0.01
    0.006466255 = product of:
      0.02586502 = sum of:
        0.02586502 = weight(_text_:data in 4946) [ClassicSimilarity], result of:
          0.02586502 = score(doc=4946,freq=2.0), product of:
            0.14807065 = queryWeight, product of:
              3.1620505 = idf(docFreq=5088, maxDocs=44218)
              0.046827413 = queryNorm
            0.17468026 = fieldWeight in 4946, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.1620505 = idf(docFreq=5088, maxDocs=44218)
              0.0390625 = fieldNorm(doc=4946)
      0.25 = coord(1/4)
    
    Abstract
    In real-world information retrieval systems, the underlying document collection is rarely stable or definitive. This work is focused on the study of signals extracted from the content of documents at different points in time for the purpose of weighting individual terms in a document. The basic idea behind our proposals is that terms that have existed for a longer time in a document should have a greater weight. We propose 4 term weighting functions that use each document's history to estimate a current term score. To evaluate this thesis, we conduct 3 independent experiments using a collection of documents sampled from Wikipedia. In the first experiment, we use data from Wikipedia to judge each set of terms. In a second experiment, we use an external collection of tags from a popular social bookmarking service as a gold standard. In the third experiment, we crowdsource user judgments to collect feedback on term preference. Across all experiments results consistently support our thesis. We show that temporally aware measures, specifically the proposed revision term frequency and revision term frequency span, outperform a term-weighting measure based on raw term frequency alone.
  17. Symonds, M.; Bruza, P.; Zuccon, G.; Koopman, B.; Sitbon, L.; Turner, I.: Automatic query expansion : a structural linguistic perspective (2014) 0.01
    0.006466255 = product of:
      0.02586502 = sum of:
        0.02586502 = weight(_text_:data in 1338) [ClassicSimilarity], result of:
          0.02586502 = score(doc=1338,freq=2.0), product of:
            0.14807065 = queryWeight, product of:
              3.1620505 = idf(docFreq=5088, maxDocs=44218)
              0.046827413 = queryNorm
            0.17468026 = fieldWeight in 1338, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.1620505 = idf(docFreq=5088, maxDocs=44218)
              0.0390625 = fieldNorm(doc=1338)
      0.25 = coord(1/4)
    
    Abstract
    A user's query is considered to be an imprecise description of their information need. Automatic query expansion is the process of reformulating the original query with the goal of improving retrieval effectiveness. Many successful query expansion techniques model syntagmatic associations that infer two terms co-occur more often than by chance in natural language. However, structural linguistics relies on both syntagmatic and paradigmatic associations to deduce the meaning of a word. Given the success of dependency-based approaches to query expansion and the reliance on word meanings in the query formulation process, we argue that modeling both syntagmatic and paradigmatic information in the query expansion process improves retrieval effectiveness. This article develops and evaluates a new query expansion technique that is based on a formal, corpus-based model of word meaning that models syntagmatic and paradigmatic associations. We demonstrate that when sufficient statistical information exists, as in the case of longer queries, including paradigmatic information alone provides significant improvements in retrieval effectiveness across a wide variety of data sets. More generally, when our new query expansion approach is applied to large-scale web retrieval it demonstrates significant improvements in retrieval effectiveness over a strong baseline system, based on a commercial search engine.
  18. Tsai, C.-F.; Hu, Y.-H.; Chen, Z.-Y.: Factors affecting rocchio-based pseudorelevance feedback in image retrieval (2015) 0.01
    0.006466255 = product of:
      0.02586502 = sum of:
        0.02586502 = weight(_text_:data in 1607) [ClassicSimilarity], result of:
          0.02586502 = score(doc=1607,freq=2.0), product of:
            0.14807065 = queryWeight, product of:
              3.1620505 = idf(docFreq=5088, maxDocs=44218)
              0.046827413 = queryNorm
            0.17468026 = fieldWeight in 1607, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.1620505 = idf(docFreq=5088, maxDocs=44218)
              0.0390625 = fieldNorm(doc=1607)
      0.25 = coord(1/4)
    
    Abstract
    Pseudorelevance feedback (PRF) was proposed to solve the limitation of relevance feedback (RF), which is based on the user-in-the-loop process. In PRF, the top-k retrieved images are regarded as PRF. Although the PRF set contains noise, PRF has proven effective for automatically improving the overall retrieval result. To implement PRF, the Rocchio algorithm has been considered as a reasonable and well-established baseline. However, the performance of Rocchio-based PRF is subject to various representation choices (or factors). In this article, we examine these factors that affect the performance of Rocchio-based PRF, including image-feature representation, the number of top-ranked images, the weighting parameters of Rocchio, and similarity measure. We offer practical insights on how to optimize the performance of Rocchio-based PRF by choosing appropriate representation choices. Our extensive experiments on NUS-WIDE-LITE and Caltech 101 + Corel 5000 data sets show that the optimal feature representation is color moment + wavelet texture in terms of retrieval efficiency and effectiveness. Other representation choices are that using top-20 ranked images as pseudopositive and pseudonegative feedback sets with the equal weight (i.e., 0.5) by the correlation and cosine distance functions can produce the optimal retrieval result.
  19. Bhansali, D.; Desai, H.; Deulkar, K.: ¬A study of different ranking approaches for semantic search (2015) 0.01
    0.006466255 = product of:
      0.02586502 = sum of:
        0.02586502 = weight(_text_:data in 2696) [ClassicSimilarity], result of:
          0.02586502 = score(doc=2696,freq=2.0), product of:
            0.14807065 = queryWeight, product of:
              3.1620505 = idf(docFreq=5088, maxDocs=44218)
              0.046827413 = queryNorm
            0.17468026 = fieldWeight in 2696, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.1620505 = idf(docFreq=5088, maxDocs=44218)
              0.0390625 = fieldNorm(doc=2696)
      0.25 = coord(1/4)
    
    Abstract
    Search Engines have become an integral part of our day to day life. Our reliance on search engines increases with every passing day. With the amount of data available on Internet increasing exponentially, it becomes important to develop new methods and tools that help to return results relevant to the queries and reduce the time spent on searching. The results should be diverse but at the same time should return results focused on the queries asked. Relation Based Page Rank [4] algorithms are considered to be the next frontier in improvement of Semantic Web Search. The probability of finding relevance in the search results as posited by the user while entering the query is used to measure the relevance. However, its application is limited by the complexity of determining relation between the terms and assigning explicit meaning to each term. Trust Rank is one of the most widely used ranking algorithms for semantic web search. Few other ranking algorithms like HITS algorithm, PageRank algorithm are also used for Semantic Web Searching. In this paper, we will provide a comparison of few ranking approaches.
  20. Jiang, X.; Sun, X.; Yang, Z.; Zhuge, H.; Lapshinova-Koltunski, E.; Yao, J.: Exploiting heterogeneous scientific literature networks to combat ranking bias : evidence from the computational linguistics area (2016) 0.01
    0.006466255 = product of:
      0.02586502 = sum of:
        0.02586502 = weight(_text_:data in 3017) [ClassicSimilarity], result of:
          0.02586502 = score(doc=3017,freq=2.0), product of:
            0.14807065 = queryWeight, product of:
              3.1620505 = idf(docFreq=5088, maxDocs=44218)
              0.046827413 = queryNorm
            0.17468026 = fieldWeight in 3017, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.1620505 = idf(docFreq=5088, maxDocs=44218)
              0.0390625 = fieldNorm(doc=3017)
      0.25 = coord(1/4)
    
    Abstract
    It is important to help researchers find valuable papers from a large literature collection. To this end, many graph-based ranking algorithms have been proposed. However, most of these algorithms suffer from the problem of ranking bias. Ranking bias hurts the usefulness of a ranking algorithm because it returns a ranking list with an undesirable time distribution. This paper is a focused study on how to alleviate ranking bias by leveraging the heterogeneous network structure of the literature collection. We propose a new graph-based ranking algorithm, MutualRank, that integrates mutual reinforcement relationships among networks of papers, researchers, and venues to achieve a more synthetic, accurate, and less-biased ranking than previous methods. MutualRank provides a unified model that involves both intra- and inter-network information for ranking papers, researchers, and venues simultaneously. We use the ACL Anthology Network as the benchmark data set and construct the gold standard from computer linguistics course websites of well-known universities and two well-known textbooks. The experimental results show that MutualRank greatly outperforms the state-of-the-art competitors, including PageRank, HITS, CoRank, Future Rank, and P-Rank, in ranking papers in both improving ranking effectiveness and alleviating ranking bias. Rankings of researchers and venues by MutualRank are also quite reasonable.

Languages

  • e 31
  • d 1
  • More… Less…

Types

  • a 31
  • r 1
  • More… Less…